
A quick guide to PID Feedback Control

HUAN Q. BUI

July 9, 2021

1 An Example and Theory

Consider a 1D harmonic oscillator with natural resonance frequency ω0 and
damping parameter β, driven by some function y(t). Its motion follows the
following second-order ordinary differential equation:

ẍ(t) + βẋ(t) + ω2
0x(t) = ω2

0y(t).

There are many ways to solve this ODE, but in the context of control theory,
we will proceed using the Fourier transform (or the Laplace transform). The
point of the FT is twofold: (1) we convert a differential equation into an alge-
braic equation, and (2) we go from the time domain to the frequency domain,
where analysis becomes more “intuitive” (eventually, anyway).

In any case, we define the FT of x(t) as

x(ω) =

ˆ
dt

2π
eiωtx(t).

Factors of 2π don’t really matter here since we now take the FT of both sides
of the ODE to find

− ω2x(ω) + iβωx(ω) + ω2
0x(ω) = ω2

0y(ω). (1)

Here, we have used the following identity:

F
[
dn

dtn
x(t)

]
= (iω)nx(ω).

From (1), we can define G(ω), the impulse response function (in frequency
domain), as the ratio of output x(ω) over input y(ω):

G(ω) ≡ x(ω)

y(ω)
=

1

(ω2
0 − ω2) + iβω

We can justify why G is called as such by considering the impulse input y(t) =
y0δ(t) and find that G(ω) = x(ω)/y0. More commonly, G(ω) is also known as

1

the transfer function of the system.1 With G(ω), we have basically solved
the problem: given some input y(ω), we can inverse-FT to find x(t) from x(ω)
via G(ω).

Suppose we want to control the position of the oscillator so that x(t) follows
some desired position r(t) as faithfully as possible. How do we do this?

A first guess is setting the driving function to be the desired position, i.e.,
y(t) = r(t). In this case, we have

x(ω) = G(ω)r(ω).

A convenient way to see how the system may respond to any driving function
is to study the transfer function G(ω) using the amplitude and phase Bode
plots. The former is almost always a log-log plot, while the latter can either
be a linear-linear or log-linear plot. For our system, we can generate these plots
(Figure 1) in Mathematica using the following Mathematica code. 2

\[Beta] = 2; \[Omega]0 = 2*Pi;

G[\[Omega]_] := \[Omega]0^2/((\[Omega]0^2 - \[Omega]^2) +
I*\[Beta]*\[Omega]);

LogLogPlot[Abs[G[a*\[Omega]0]], {a, 0, 10}, PlotRange -> Full ,
AxesLabel -> {\[Omega]/"\[Omega]0", Abs[G]}]

LogLinearPlot[Arg[G[a*\[Omega]0]], {a, 0.01, 200},
AxesLabel -> {\[Omega]/"\[Omega]0", Arg[G]}]

0.05 0.10 0.50 1 5 10

ω

ω0

0.05

0.10

0.50

1

0.10 1 10 100

ω

ω0

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

arg(G)

Figure 1: Bode plots for the transfer function G with β = 2, ω0 = 2π. The plot
on the left is the amplitude Bode plot; the plot on the right shows the phase.
Notice how |G| exceeds unity when ω ≈ ω0 (resonance!). Notice also on the
phase Bode plot how the phase lags behind as ω grows and exceeds ω0.

To continue our analysis, we consider different regimes for ω:

1There might be some confusion here regarding whether to use the Fourier or Laplace
transform. Here’s the resolution: If we’re using the FT, then evaluate G at ω ∈ R. If we’re
using the LT, then evaluate G at iω.

2For the reader who is disinclined to create a new Mathematica notebook, the Mathematica
code for this article can be downloaded here.

2

https://huanqbui.com/MIT PhD/BUI_AtomicPhysics/mathematica/PID_DDSHO.nb

• For low frequencies (ω � ω0), the system follows the drive quite well:
|G| ≈ 1 and the phase lag arg(G) ≈ 0.

• However, as we approach the resonance frequency ω0 we become “too
slow” because both |G| and arg(G) deviate from “unity,” and x(ω) no
longer follows r(ω) well.

• On resonance (ω = ω0), the amplitude becomes larger than that of the
reference:

|x(ω0)| = |G(ω0)||r(ω0)| = ω0

β
|r(ω0)| = Q|r(ω0)|,

where Q is the quality factor of the oscillator. Meanwhile, the phase
lags behind by

arg(G(ω0)) = arg

(
−iω0

β

)
=
π

2
.

• For higher frequencies, we can take some limits and find that the phase
lags by π and the amplitude decreases like

|x(ω)| → ω2
0

ω2
|r(ω)|.

Because of this, we see a drop in frequency response in the amplitude Bode
plot when ω � ω0. The asymptote here is ω2

0/ω
2, which appears on the

log scale as a straight line.

So, we have a problem: using y(t) = r(t) itself as a driving function is only
good when ω is very small. But there’s a way around this (otherwise this ar-
ticle wouldn’t exist). For our system to follow r(t) more faithfully, the driving
function must also take into account the current position x(t) relative to the
reference r(t). This is feedback: we control our system based on not just the
reference but also the current state of the system. Feedback is nice because it
detects if the system lags behind or if its amplitude is too large or too small and
tries to compensate accordingly. Furthermore, it allows us to correct for noise,
which appears in all real system. While we can simply let some function ξ(t)
represent noise, we won’t worry about it for the forthcoming part of our analysis.

What we have to do is instead of naively setting y(t) = r(t), we will first
define some error signal ε(t) and try to minimize it. The error signal is simply
how far away our system is from the reference:

ε(t) = r(t)− x(t).

With the error signal, we can now define the driving function y(t) such that
y(t) changes the system to minimize e(t). This is where the three letters P-I-D
come in. Intuitively, we want y(t) to do the following things:

3

• If ε(t) is large (large error), then y(t) should also be large (large correction),
and vice versa. So, we can set y(t) = Kpε(t). This is P, which stands for
Proportional. Here Kp is called the proportional gain.

• If the system is not at the reference for a long time, then y(t) must be
larger to move the system faster towards the reference, and vice versa. We
can set y(t) = Ki

´ t
0
ε(t′) dt′. This is I, which stands for Integral. Here,

Ki is called the integral gain. 3

• If ε(t) is changing fast, then we’re still far away from the reference, so we
make y(t) large to approach the reference faster. So we set y(t) = Kdε̇(t).
This is D, which stands for Derivative. Here, Kd is called the derivative
gain.

Putting everything together, we have the PID control function

y(t) = Kpε(t) +Ki

ˆ t

0

ε(t′) dt′ +Kd
d

dt
ε(t).

This is just another ODE. And just as we did before, we can go to Fourier
space to solve it. Our system is the PID controller, and the input is the driving
function. Inspired by our previous approach, we can also define an impulse
response function K(ω) for the PID controller:

y(ω) =

(
Kp − i

Ki

ω
+ iKdω

)
ε(ω) ≡ K(ω)ε(ω),

where we have used the following identity of the FT:

F
[ˆ t

−∞
ε(t′) dt′

]
(ω) =

−i
ω
ε(ω).

So, we have x(ω) = G(ω)y(ω) and y(ω) = K(ω)[r(ω)− x(ω)]. Solving for x(ω),
i.e., “closing the loop,” we find that

x(ω) =
K(ω)G(ω)

1 +K(ω)G(ω)
r(ω) ≡ T (ω)r(ω),

which is now completely independent of y(ω) and ε(ω) and is dependent only
on the reference and ω. This is what we want. Note how we have chosen the
error signal such that there is a (−) sign in front of x(t). This is so that the
error signal makes y(t) goes in the direction which reduces the error.

Our system is now a combination of the “bare” system with the oscillator and
the PID controller. Depending on Ki,Kp,Kd we may or may not have reso-
nance. The goal of PID tuning, which we will do “experimentally” later, is to

3The lower bound of the integral can be 0 or −∞ – this doesn’t really matter too much
here.

4

find these three parameters such that the system has good response in a large
frequency range. Ideally, we want the gain to be unity and phase lag to be
(near) zero for as large ω as possible.

Before analyzing each of P-I-D separately, let us first consider a special set of
Kp,Ki,Kd for the resonance in G(ω) to canceled out. Recall that the transfer
function for the composite system is

T (ω) =
K(ω)G(ω)

1 +K(ω)G(ω)
.

Let’s find Kp,Ki,Kd such that K(ω)G(ω) doesn’t go bad:

K(ω)G(ω) =
ω2
0(Kp − iKi/ω + iKdω)

ω2
0 − ω2 + iβω

=
−iω2

0(iωKp +Ki −Kdω
2)

ω(ω2
0 − ω2 + iβω)

It turns out that by fixing Kd and setting

Kp = βKd, Ki = ω2
0Kd, and Kd =

1

ω0

we have

K(ω)G(ω) =
−iω0

ω
which no longer has the ω0 resonance frequency. Also, we see that the open-loop
(i.e., KG only) system now has a 1/ω frequency response (1st-order) rather than
a ∼ 1/ω2 (2nd-order). The Bode plots (Figure 2) associated with the open-loop
system are generated using the following Mathematica commands.

Kd = 1/\[Omega]0; Kp = \[Beta]*Kd; Ki = \[Omega]0^2*Kd;

K[\[Omega]_] := Kp - I*Ki/\[Omega] + I*Kd*\[Omega];

LogLogPlot[Abs[K[a*\[Omega]0]*G[a*\[Omega]0]], {a, 0.01, 10},
AxesLabel -> {\[Omega]/"\[Omega]0", Abs[KG[\[Omega]]]}]

LogLinearPlot[Arg[K[a*\[Omega]0]*G[a*\[Omega]0]], {a, 0.01, 100},
PlotRange -> Full ,
AxesLabel -> {\[Omega]/"\[Omega]0", Arg[KG[\[Omega]]]},
Exclusions -> None]

Meanwhile, the closed-loop transfer function is

T (ω) =
K(ω)G(ω)

1 +K(ω)G(ω)
=

1

1 + iω/ω0
.

This is nothing but a low-pass filter with time constant τ = 1/ω0. To see why,
we have to recall the ODE for the low-pass filter:

vout(t) = vin(t)−RC d

dt
vout(t)

Taking the Fourier transform and rearranging gives

T (ω) ≡ vout(ω)

vin(ω)
=

1

1 + iRCω
.

The time constant is τ = RC.

5

0.05 0.10 0.50 1 5 10

ω

ω0

0.5

1

5

10

50

100

KG(

0.10 1 10 100

ω

ω0

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

Figure 2: Open-loop gain KG for oscillator-PID system with natural resonance
frequency ω0 “tweaked away” (the gain at ω = ω0 is unity, which implies to
change in amplitude). The phase lag is constantly π/2 and the gain decreases
like 1/ω. Again, β = 2, ω0 = 2π.

1.1 The P-gain

Suppose we set Ki = Kd = 0 and only have Kp. Is Kp enough to bring the
system to r(t)? The answer is “Yes, but not very well.” Here’s why. In time
domain, the ODE is

ẍ(t) + βẋ+ ω2
0x(t) = ω2

0Kp(r(t)− x(t)).

Rearranging gives

ẍ(t) + βẋ+ ω2
0(1 +Kp)x(t) = ω2

0KpPr(t).

This is basically a driven harmonic oscillator with a modified natural frequency
of ωP = ω0

√
1 +Kp. When the proportional gain Kp is very high (Kp � 1), the

modified natural frequency is much greater than the original natural frequency,
ωP � ω. As a result, the oscillator can follow the reference without significant
phase lags even with ω’s much larger than ω0. Meanwhile, the gain can be
calculated from

x(ω � ωP) = G(ω)

∣∣∣∣
ω�ω0

r(ω)

=
ω2
0Kp

ω2
0(1 +Kp)− ω2 + iβω

∣∣∣∣
ω�ω0

r(ω)

≈ Kp

1 +Kp
r(ω)

≈ r(ω), when Kp � 1

which says that the gain is very close to unity ω within ωP (again, assuming
that Kp � 1). Both of these features can be seen in Figure 3, generated using
the following Mathematica code.

Kd = 0; Kp = 100; Ki = 0;

6

K[\[Omega]_] := Kp - I*Ki/\[Omega] + I*Kd*\[Omega];
T[\[Omega]_] := G[\[Omega]]*K[\[Omega]]/(1 + G[\[Omega]]*K[\[Omega]]);

LogLogPlot[Abs[T[a*\[Omega]0]], {a, 0, 200},
AxesLabel -> {\[Omega]/"\[Omega]0", Abs[T]}]

LogLinearPlot[Arg[T[a*\[Omega]0]], {a, 0.01, 400}, PlotRange -> Full ,
AxesLabel -> {\[Omega]/"\[Omega]0", Arg[T]}, Exclusions -> None]

0.5 1 5 10 50 100

ω

ω0

0.01

0.10

1

10

0.10 1 10 100

ω

ω0

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

Figure 3: Bode plot for P-controlled system |KG|(ω) and arg(KG). Here,
β = 2, ω0 = 2π, and Kp = 100.

So why not use only P rather than PID? Well, one catch is that we just
pushed the resonance frequency of our system to a much higher value which
could be comparable to variations due to noise. If noise is around the modified
resonance frequency ωP then resonance will kick in. There are two types of
noise: d(t) due to disturbance to our system (more or less “mechanical”) and
ξ(t) which is measurement noise (usually fast). The total dynamics will then be

x(ω) = K(ω)G(ω)ε(ω) + d(ω)

where
ε(ω) = r(ω)− x(ω)− ξ(ω)

which gives

x(ω) =
K(ω)G(ω)

1 +K(ω)G(ω)
[r(ω)− ξ(ω)] +

1

1 +K(ω)G(ω)
d(ω).

From here, we see that for really high proportional gain (i.e., |K| � 1), the d(ω)
noise will be suppressed up to ωP , which is good. However, the measurement
noise ξ(t) gets mixed up with the referent signal r(ω) and amplified. To analyze
this further, one can define the tracking error, which is the difference between
the reference r and the actual position x (all error free), in terms of the errors:

ε0 ≡ r − x = S(r − d) + Tξ

with the sensitivity function S and complimentary sensitivity function
T . The goal is to make ε0 as small as possible, but we’re limited by the fact
that S+T = 1 for all ω. This means that for small S, disturbances are rejected
but then T is large and measurement noise is coupled in, and vice versa. For
more information on this part, the reader may reference [1].

7

1.2 The I-gain

Another reason why we can’t just have P -gain is because proportional control
suffers from “proportional droop.” When ω = 0, the DC value r(ω = 0) is not
faithfully reproduced, because

x(ω = 0) =
Kp

1 +Kp
r(ω = 0) 6= r(ω = 0).

Basically, this says that there is always some non-zero difference between the ref-
erence r(t) and the output of the system x(t). Only for infinite gain (Kp →∞)
can x(t) match the reference, which we know is not possible physically.

This is where the integral gain comes in. Like we said before, the point
is that the longer the system is not at the reference, i.e., if

´
e(t′) dt′ is large,

then y(t) must be large to push the system towards the reference faster. The
equation of motion is

ẍ+ βẋ+ ω2
0x(t) = ω2Ki

ˆ t

0

e(t′) dt′ = ω2Ki

ˆ t

0

[r(t′)− x(t′)] dt′

Differentiating both sides, we get

...
x + βẍ+ ω2

0 ẋ(t) = ω2Ki[r(t)− x(t)],

which has a steady-state solution x∞ = r∞. We can also see this by going into
Fourier space:

x(ω) = K(ω)r(ω) =

(
−iKi

ω

)
r(ω).

We recognize that we have infinite gain |K| → ∞ at DC (ω → 0).

1.3 The PI controller

In practice, we mostly have P and I only. Also, when testing a PI controller,
we want to look at how a PI controller responses to purely sinusoidal (single-
frequency) errors. Here we present a “typical” Bode plot for a PI-controller only
(i.e. we set G ≡ 1).

Kd = 0; Kp = 1; Ki = 1;(*PI gain only*)

K[\[Omega]_] := Kp - I*Ki/\[Omega] + I*Kd*\[Omega];

LogLogPlot[Abs[K[a*\[Omega]0]], {a, 0.01, 10},
AxesLabel -> {\[Omega]/"\[Omega]0", "|K[\[Omega]]|"}] (*just K*)

LogLinearPlot[Arg[K[a*\[Omega]0]], {a, 0.01, 400}, PlotRange -> Full ,
AxesLabel -> {\[Omega]/"\[Omega]0", Arg[K]},
Exclusions -> None](*P only , phase plot for K*)

8

0.05 0.10 0.50 1 5 10

ω

ω0

2

5

10

|K[ω]|

0.10 1 10 100

ω

ω0

-1.5

-1.0

-0.5

arg(K

Figure 4: Bode plot for PI-controlled system |K|(ω) and arg(K). Here, β =
2, ω0 = 2π, and Kp = 100.

1.4 Instability

It is possible to get instability with feedback. To study when instability might
occur, we can revisit the closed-loop transfer function equation:

x(ω) =
K(ω)G(ω)

1 +K(ω)G(ω)
r(ω).

It is clear that instability occurs when K(ω)G(ω) = −1. But since both K
and G are complex, this single condition for instability can be split into two
(simultaneous) conditions: |KG| = 1 and arg(KG) = π.

For the bare system where K ≡ 1, the phase lag is π only for ω � ω0 (see Fig-
ure 1) and |G| = 1 only for low frequencies, so instability is not a problem there.

We also don’t get instability with pure (ideal) P-gain (see Figure 2, which acts
similarly to Figure 1). However, it is important to mention that the preceding
statement only holds for ideal systems where there is no time lag the measure-
ment and the drive.

With pure I-gain, instability becomes a problem because we have a π phase lag
when ω = ω0 due to K(ω) = −iKi/ω (see Figures 5 and 6). To avoid instability
(at resonance) we must have |GK| < 1 at resonance. This limits our integral
gain to I < ω0/Q, where Q is the quality factor. To see this, we do the following
computation:

|GK|
∣∣∣∣
ω0

< 1 =⇒ Ki

ω0
|G(ω0)| = Q < 1 =⇒ Ki <

ω0

Q

where we recall that

G(ω0) =

∣∣∣∣ ω2
0

ω2
0 − ω2

0 + iβω0

∣∣∣∣ =
ω0

β
= Q.

Instability in pure I-gain by Ki > ω0/Q:

9

Kd = 0; Kp = 0; Ki = 100; \[Beta] = 2; \[Omega]0 = 2*Pi;

K[\[Omega]_] := Kp - I*Ki/\[Omega] + I*Kd*\[Omega];
G[\[Omega]_] := \[Omega]0^2/((\[Omega]0^2 - \[Omega]^2) +
I*\[Beta]*\[Omega]);
T[\[Omega]_] := G[\[Omega]]*K[\[Omega]]/(1 + G[\[Omega]]*K[\[Omega]]);

LogLogPlot[Abs[K[a*\[Omega]0]*G[a*\[Omega]0]], {a, 0.01, 5},
AxesLabel -> {\[Omega]/"\[Omega]0", Abs[KG[\[Omega]]]}]

LogLinearPlot[Arg[K[a*\[Omega]0]*G[a*\[Omega]0]], {a, 0.01, 100},
PlotRange -> Full ,
AxesLabel -> {\[Omega]/"\[Omega]0", Arg[KG[\[Omega]]]},
Exclusions -> None]

0.05 0.10 0.50 1 5

ω

ω0

1

10

100

1000

KG(ω)

0.10 1 10 100

ω

ω0

-3

-2

-1

1

2

3

arg(

Figure 5: Pure I-gain system. Instability occurs at resonance (|KG| > 1 since
Ki = 1 < ω0/Q = β = 2).

Instability removed in pure I-gain by K < ω0/Q:

Kd = 0; Kp = 0; Ki = 100; \[Beta] = 2; \[Omega]0 = 2*Pi;

K[\[Omega]_] := Kp - I*Ki/\[Omega] + I*Kd*\[Omega];
G[\[Omega]_] := \[Omega]0^2/((\[Omega]0^2 - \[Omega]^2) +
I*\[Beta]*\[Omega]);
T[\[Omega]_] := G[\[Omega]]*K[\[Omega]]/(1 + G[\[Omega]]*K[\[Omega]]);

LogLogPlot[Abs[K[a*\[Omega]0]*G[a*\[Omega]0]], {a, 0.01, 5},
AxesLabel -> {\[Omega]/"\[Omega]0", Abs[KG[\[Omega]]]}]

LogLinearPlot[Arg[K[a*\[Omega]0]*G[a*\[Omega]0]], {a, 0.01, 100},
PlotRange -> Full ,
AxesLabel -> {\[Omega]/"\[Omega]0", Arg[KG[\[Omega]]]},
Exclusions -> None]

When we have integral gain in addition to proportional gain, the instability
issues are resolved (see Figure 7). The π phase lag is avoided while the DC gain
is still infinite.

In an actual system, however, there is always a finite delay between the
measurement and the drive. A constant delay for example would yield a drive
y(t) = ε(t − τ), which in Fourier space corresponds to a phase shift: y(ω) =
e−iωτ ε(ω). This phase lag is proportional to frequency. Thus, eventually any
system will cross the π phase lag. At this point, we need |KG| < 1 to prevent
instabilities.

10

0.05 0.10 0.50 1 5

ω

ω0

0.010

0.100

1

10

KG(ω)

0.10 1 10 100

ω

ω0

-3

-2

-1

1

2

3

arg(

Figure 6: Pure I-gain system. Instability no longer occurs at resonance (|KG| <
1 since Ki = 1 < ω0/Q = β = 2).

0.05 0.10 0.50 1 5

ω

ω0

2

5

10

20



0.10 1 10 100

ω

ω0

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

arg(KG(ω))

Figure 7: Pure (I+P)-gain in ideal system. Instability issues are resolved (see
Figure 7). The π phase lag is avoided while the DC gain is still infinite.
Kp = 10,Ki = 1. Note that |KG| = 1 and the phase flip by π don’t occur
simultaneously.

1.5 The D-gain

The point of the D-gain Kdė(t) is to prevent the π phase lag. Translated into
more physical language: the D-gain “predicts” trajectory of the system and
counteracts before the system goes beyond the reference (around which point
the P-gain and I-gain kick in). In most cases, however, we won’t worry too
much about the D-gain. Most laser lock boxes in atomic physics laboratories
do not have the D-control.

2 Experimentally tuning P-I-D with MATLAB

2.1 Technique

While there are known techniques for tuning the PID parameters (see the
Ziegler-Nicholds methods, for example), we usually “just do it” by turning some
knobs by hand.

The technique suggested by Martin Zwierlein is as follows:

11

“Using a step function as the reference one first starts with the I-gain until the
system runs into oscillations. Backing up a bit, one increases P (which in this
idealized system cannot lead to ever growing oscillations), then D, which usually
makes the feedback faster and reduces oscillations, as the phase lag is reduced
from 180 degrees at high frequencies. For the proper choice of the P,I, D-values,
one should observe that the system behaves as a low-pass, without oscillations
(critical damping of oscillations).”

Figure 8: From [2].

2.2 MATLAB code

The MATLAB file is available for download here. The user is encouraged to
follow the steps outlined by MZ and reproduce a similar sequence of plots as
that in Figure 8.

% Author: Huan Q. Bui
% June 30, 2021
% Simple demo of PID control
% for a driven damped HO

12

https://huanqbui.com/MIT PhD/BUI_AtomicPhysics/MATLAB/PID_harmonic_osc.m

% Inspired by: https :// robotics.stackexchange.com...
% /questions /6859/how -to -implement -tracking -problem -with -pid -controller

clear all; close all; clc;

global error r dt time_array;

error = 0;
dt = 0.1;
stoptime = 100;

%%% create set(point)function
r = ones(stoptime/dt ,1); % setpoint
%r(1:10) = 0;
r(floor((stoptime/dt)/4):(stoptime/dt)/2) = 0;
r(floor (3*(stoptime/dt)/(4)): end) = 0;
% define time array so that dimension matches setpoint r(t)
time_array = 0:dt:dt*(numel(r)-1);

x0 = [0; 0]; % initial condition , position & velocity = 0;
options = odeset(’Reltol ’,dt,’Stats ’,’off ’);
tspan = [time_array (1), time_array(end)];
[t_ode , x] = ode45(@ODESolver , tspan , x0, options);

% interpolate setpoint function
% so that we have r(t) with the same dimension as
% x(t) from ODE (which has finer resolution)
r_desired_ode = interp1(time_array ,r,t_ode);
err = x(:,1) - r_desired_ode; % Error signal

%%% plotting %%%

figure (1)
plot(t_ode ,x(:,1))
hold on
plot(t_ode ,r_desired_ode)
xlabel(’Time (sec)’);
ylabel(’Position ’, ’Interpreter ’,’LaTex ’);
legend(’Actual position ’, ’Desired position ’)
grid on
hold off

% figure (2)
% plot(t_ode , x(:,2), ’r’, ’LineWidth ’, 2);
% title(’Velocity ’,’Interpreter ’,’LaTex ’);
% xlabel(’time (sec)’);
% ylabel(’$\dot{\theta }(t)$’, ’Interpreter ’,’LaTex ’);
% grid on

%%% %%%

function dxdt = ODESolver(t, x)

persistent r_old t_old;
global error r time_array;

if isempty(r_old)
r_old = 0;
t_old = 0;
end

% Parameters:

13

beta = 1;
omega0 = 2*pi;

% PID tuning
Kp = 100;
Ki = 20;
Kd = 7;

% dr/dt: find the derivative of r(t) for D-gain:
r_now = interp1(time_array ,r,t);
if t == t_old
drdt = 0;
else
drdt = (r_now - r_old)/(t-t_old);
end
r_old = r_now;

% u: control function
u = Kp*(r_now - x(1))... % P-gain
+ Kd*(drdt - x(2))... % D-gain
+ Ki*error; % I-gain;

% new error signal , obtained by accumulating errors (integral)
error = error + (r_now - x(1))*(t-t_old);

% 2x2 system of 1st-order ODEs
% initialize: matrix with position & velocity
dxdt = zeros (2,1);
dxdt (1) = x(2); % velocity
dxdt (2) = (omega0 ^2)*u - beta*x(2) - (omega0 ^2)*x(1); % acceleration

t_old = t;
end

References

[1] J. Bechhoefer, “Feedback for physicists: A tutorial essay on control,” Re-
views of modern physics, vol. 77, no. 3, p. 783, 2005.

[2] M. Zwierlein, “A short introduction to feedback control,” 2008.

14

	An Example and Theory
	The P-gain
	The I-gain
	The PI controller
	Instability
	The D-gain

	Experimentally tuning P-I-D with MATLAB
	Technique
	MATLAB code

