
Matrices in Quantum Computing

A 2-qubit Entangler Circuit

Huan Q. Bui

Colby College CLAS 2019

PHYSICS & MATHEMATICS
Statistics

Class of 2021

May 1, 2019

Contents

1 Introduction 2

2 Presentation layout 2

3 Qubits 2

4 Quantum gates 3

5 Multiple qubits 4

6 Elementariness & Entanglement 5

7 Kronecker product 6

8 Some properties & Elementariness 7

9 Entanglement circuit 7

10 Simulation on IBM-Q 8

11 Tensor Products 9

12 Recap 10

13 Why quantum computers? 10

1

1 Introduction

Quantum computing and quantum information science are rapidly growing fields
in recent years. Progress is made everyday in not only in the physics labs but
also in the mathematical foundation, most of which is linear algebra. The matrix
theory behind quantum computing is voluminous, and thus it would be insane
for me to talk about all kinds of matrices in quantum computing. So today, I
would like to draw your attention to one of the simplest and basic yet interesting
circuits in all of quantum computing: the 2-qubit entanglement circuit, and some
of the matrix theory behind it.

a : |0〉

b : |0〉 H •

2 Presentation layout

Here’s my plan for this presentation. I will

1. first provide some background on quantum computing. I will introduce
some of the basic objects in quantum computing such as qubits, quantum
circuits, quantum gates, and entanglement.

2. And as I introduce these objects, the mathematical concepts of the Kro-
necker product and tensor product will come up, as they are the building
blocks of the theory of quantum computation. I will talk about what these
matrix theories are, how they work, and, time permitting, “why” they are
required.

3. Then, we will walkthrough the 2-qubit entanglement circuit that I have
just shown. We will see how the tensor product appears and how we can
use it “see” what the circuit actually does.

4. Finally, I will show how you can actually implement this circuit (or any
other circuit) on your browser and have an actual quantum computer at
IBM execute the commands.

3 Qubits

So let us start with qubits. Qubits are kind of like classical bits, but not really.
Classical bits can take values of only 0 and 1, “on” or “off”, “up” or “down,”
while quantum bits can take any “superposition” of those two states, since qubits
are quantum mechanical objects.

Most of the time, qubits are individual atoms that can be excited to the
excited state or de-excited into the ground state. Mathematically, we can think

2

of these states as forming a basis for the space of all possible states of the atom,
and the state of a qubit can be represented by the following linear combination:

a

[
1
0

]
+ b

[
0
1

]
,

where

[
1
0

]
represents the ground state, and

[
0
1

]
represents the excited state. The

coefficients a, b are complex numbers such that the sum of the modulus squares
is one:

|a|2 + |b|2 = 1,

the reason being, in quantum mechanics, it is require that the magnitude of
the state vector is 1. In fact, in physics, it is often interpreted that |a|2 is the
probability of the qubit being in the ground state, and |b| is the probability of
the qubit being in the excited state.

Now, before we move on, for the sake of convenience, let us introduce a new

notation for the basis states of a qubit. Let |0〉 represent the vector
[
1 0

]>
and |1〉 represent the vector

[
0 1

]>
. The reason for doing this is that now we

can just call the ground state the “zero” state and excited state the “one” state,
giving us a nice way to relate the basis values of a classical bit. So, the state of
single qubit can be written as

a |0〉+ b |1〉 .

4 Quantum gates

Another fundamental object in quantum computing is quantum gates. If we
think of states of qubits as vectors, then quantum gates are modeled by linear
transformations - matrices - on the state vectors of qubits. For example, one
of the most common and important single-qubit quantum gates, is called the
Hadamard gate, which is in matrix form is

H =
1√
2

[
1 1
1 −1

]
.

This gate is actually the first component on the quantum circuit we have seen:

3

a : |0〉

b : |0〉 H •

The Hadamard gate is denoted with an H. We can see what H does to, say |0〉:

H |0〉 = H

[
1
0

]
=

1√
2

[
1 1
1 −1

] [
1
0

]
=

1√
2

[
1
1

]
,

which we can equivalently write as

1√
2
|0〉+

1

2
|1〉 .

So what the Hadamard gate does is putting a pure state into a perfect superpo-
sition, with exactly 50% chance of finding the qubit either state |0〉 or |1〉.

5 Multiple qubits

Like classical circuits, quantum circuits require multiple qubits to operate. And
so a natural question to ask now is how do we represent the quantum state of
2-qubits with the same vector. Let us say that the qubit 1 has state

a |0〉+ b |1〉 =

[
a
b

]
and qubit 2 has state

c |0〉+ d |1〉 =

[
c
d

]
.

It is clear that we can neither add, nor “multiply” these “pairs” in any traditional
way in order to get a vector of unit length. It turns out that we can represent
the state of two qubits by do the following seemingly “magical” multiplication
procedure,

[
a
b

]
�

[
c
d

]
=

a
[
c
d

]
b

[
c
d

]
 =

ac
ad
bc
bd

 .
We can check quite easily that this new vector has unit length. Applying this
procedure to the basis states |0〉, |1〉, we actually get a basis for the vector space
that contains all possible quantum states of two qubits:

|0〉� |0〉 =

1
0
0
0

 , |0〉� |1〉 =

0
1
0
0

 , |1〉� |0〉 =

0
0
1
0

 , |1〉� |1〉 =

0
0
0
1

 ,

4

and so it is convenient for us to write

|00〉 = |0〉� |0〉
|01〉 = |0〉� |1〉
|10〉 = |1〉� |0〉
|11〉 = |1〉� |1〉

where the first slot indicates the (pure) state of the first qubit, and the second
slot indicates the (pure) state of the second qubit. And so it is not so hard to
see that [

a
b

]
�

[
c
d

]
= ac |00〉+ ad |01〉+ bc |10〉+ bd |11〉 .

6 Elementariness & Entanglement

With this, we can see that given two qubits with defined states, this “product”
always gives us a new two-qubit joint state, and we call this joint state elemen-
tary. Now, we might wonder whether any joint state can be expressed as this
special product of two single-qubit states. It turns out that the answer is no.

This is a subtle fact. So, let us consider an analogue to this, with polynomials.
Let us consider p(x) a polynomial in x and q(y) a polynomial in y. It is clear
that p(x) · q(y) is a polynomial of both x and y. However, this polynomial with
both x and y,

xy + 1,

cannot be written as a product of a polynomial in x and one in y.

Back to qubits. Consider the following example. This joint state

1√
2

1
0
0
1

 =
1√
2
|00〉+

1√
2
|11〉

while can written as a linear combination of products of basis states, cannot be
written as a single product of two single-qubit states. These qubits are now in a
state we call entanglement.

Why this terminology? If we stare at the state vector above for a bit, we can
see that the two-qubit is either in the state |00〉 or |11〉 with equal probability.
So we can make a measurement on the first qubit, for example, and see |0〉, then
we immediately know with high very high confidence that the state of the second
qubit is |0〉 without measuring it. And because this feels very much like the two
qubits are somehow “coordinating” they are said to be “entangled.”

5

7 Kronecker product

Now that we are able to represent a system of qubits with a single vector. What
about matrices that act on these vectors? It turns out that if A is some matrix
that acts on the first qubit, and B is some matrix that acts on the second qubit,
then the corresponding matrix that acts on the two-qubit state is given by

A |a〉� B |b〉 = (A⊗ B)(|a〉� |b〉)

where “⊗” is called the Kronecker product. And the way the Kronecker
product is defined is kind of similar to how the magical product “�” was defined
before. The Kronecker product of two matrices is defined as follows. If we are
given two matrices

A =

[
m n
o p

]
B =

q r s
t u v
w x y

then the Kronecker product of A and B is a 6× 6 matrix:

A⊗ B =

m

q r s
t u v
w x y

 n

q r s
t u v
w x y

o

q r s
t u v
w x y

 p

q r s
t u v
w x y

 =

mq mr ms nq nr ns
mt mu mv nt nu nv
mw mx ms nw nx ny
oq or os pq pr ps
ot ou ov pt pu pv
ow ox oy pw px py

We can look back at our circuit diagram:

a : |0〉

b : |0〉 H •

and check that this definition of the Kronecker product makes sense, i.e., the left
hand side where we have single-qubit gates acting on individual qubits:

I |0〉�H |0〉 =

[
1 0
0 1

] [
1
0

]
�

1√
2

[
1 1
1 −1

] [
0
1

]
=

[
1
0

]
�

1√
2

[
1
1

]

=
1√
2

1
1
0
0

is equal to the right hand side, where we have a two-qubit gate acting on a
two-qubit state vector:

(I ⊗H)(|0〉� |0〉) =

1√
2

[
1 1
1 −1

]
O

O 1√
2

[
1 1
1 −1

]

1
0
0
0

 =
1√
2

1
1
0
0

 .
6

8 Some properties & Elementariness

So it appears that the ⊗ product is very similar to the � product. In fact, we
can notice a few things:

1. Both are bilinear, i.e., linear in both the first and second argument.

2. Both are distributive, left and right. We in fact have seen these properties
before when we wrote[

a
b

]
�

[
c
d

]
= ac |00〉+ ad |01〉+ bc |10〉+ bd |11〉 .

By tweaking the left hand side, the bilinear and distributive properties
become very clear:

(a |0〉+ b |1〉) � (c |0〉+ d |1〉) = ac |00〉+ ad |01〉+ bc |10〉+ bd |11〉 .

3. Both are associative, which can easily be checked.

4. Both are NOT commutative. For example, |01〉 6= |10〉.

5. It also turns out that the business with elementariness also carries over
into Kronecker products of matrices. What I mean is that, say, given two
2 × 2 matrices, their Kronecker product is a 4 × 4 matrix (which is what
we just did). But not every 4 × 4 matrix can be written as a Kronecker
product of two 2 × 2 matrices. An example can be readily found in our
quantum circuit:

a : |0〉

b : |0〉 H •

The last gate before the measurements is called the Control−NOT gate.
It is a conditional bit-flip gate, conditioned on the second qubit. In matrix
form,

CNOTb =

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 −→

|00〉 → |00〉
|10〉 → |10〉
|01〉 → |11〉
|11〉 → |01〉

Quantum gates that are not elementary are also called “entangled.”

9 Entanglement circuit

So, we look back at the quantum circuit

7

a : |0〉

b : |0〉 H •

we realize that we have seen how every component works. We don’t have to
worry so much about what the measurement gates. Technically speaking, they
are not exactly quantum gates, since what they do is projecting the state vector
onto one of the basis states |0〉 or |1〉. Nevertheless, since we already know how
each quantum gate in this circuit functions, we can sort of work through the
circuit and see why this circuit does what it does - entangling two qubits.

1. First, the identity gate doesn’t do anything to the first qubit. But the
second qubit is subjected to the Hadamard which puts it in a perfect
superposition. So we have

a : |0〉 → |0〉

b : |0〉 → 1√
2
|0〉+

1√
2
|1〉 .

2. Then, the CNOT gate acts on the two-qubit state:

CNOTb

[
|0〉�

(
1√
2
|0〉+

1√
2
|1〉
)]

=

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

1/
√

2

1/
√

2
0
0

 =
1√
2

1
0
0
1

 ,
which is exactly what we have said before:

1√
2

1
0
0
1

 =
1√
2
|00〉+

1√
2
|11〉 ,

and entangled state.

10 Simulation on IBM-Q

There’s a website by IBM called the IBM-Q experience that lets us upload/design
a quantum circuit and have an actual quantum computer at IBM execute the
circuit. Here is what I got when I ran this circuit: As you can see, the probabil-
ities of measuring |00〉 and |11〉 are roughly equal. One thing to notice is that
there are errors, which is due to the quantum mechanical - probabilistic nature
of the computation.

8

11 Tensor Products

Finally, there is one more piece to my talk, that is the connection between the
“magical product” denoted as � and the Kronecker product, ⊗. As you might
have guessed, or had an intuitive feel for, the � and ⊗ are very much the same -
because they are! In fact, they are instances, or representations, of what’s called
the tensor product. So, the notation � is just my way of not confusing myself
and you guys. In reality, the tensor product is denoted by ⊗.

So why exactly do we use the tensor product to describe the state of multiple
qubits and what exactly is the tensor product? The answer to the first question
is not so satisfying: because the tensor product is one that works, and that it is
postulated in quantum mechanics that the joint state of two quantum states is
the tensor product of the two individual quantum states.

The answer to the second question is a little more subtle and interesting.
Like I said, the Kronecker product and � are instances of the tensor product.
Kronecker products are special kind of product on matrices, same for �, since
we can always think about a vector as a very tall and very narrow matrix. On
the other hand, the tensor product is one of vector spaces and of linear functions
on vector spaces in general.

V ⊗W X

V ×W

linear

f̂

f

bilinear
φ

Roughly speaking, the tensor product of two vector spaces is a new vector
space. But the tensor product is constructed in such a way that if somebody
gives me a bilinear function from the Cartesian product space to some target
space, then I immediately have a unique corresponding linear function from the

9

tensor product space to the same target space.

Since we are working with operators, we can consider the case where X is
V ⊗W itself. Let’s say we given an operator L on V and M on W.

V ⊗W V ⊗W

V ×W

linear

f̂

f

bilinear
φ

We know that L ⊗M is an operator on V ⊗W, and that L[v] ⊗M[w] is
a bilinear function from V ×W to V ⊗W. And so by the uniqueness in the
definition, it must be true that

(L ⊗M)(v ⊗ w) = L[v]⊗M[w].

This looks every much like how the Kronecker product is defined, as except here
L,M are general linear functions, not matrices. And while there is not a general
definition for how to compute the tensor product of two linear functions, we don’t
have to worry so much because if possible, we can always choose a basis ν for V
and ω for W with respect to which L and M can be represented by matrices.
And so the matrix of L⊗M with respect to a basis τ of V⊗W created by tensor
products of the elements of ν, ω can be calculated via the Kronecker product.

[L ⊗M]τ←τ = [L]ν←ν ⊗ [M]ω←ω.

And so we’re done.

12 Recap

And so, just to summarize, in this talk we have learned a few things from trying
to figure out how a 2-qubit entanglement circuit works. We have seen what
qubits and quantum gates are, and how the Kronecker product and matrix rep-
resentations of these objects allow us to model a quantum computation and
calculate numerical results. We also learn about entanglement and how entan-
glement manifests in the language of matrix theory. Finally, we look at a more
general concept of the Kronecker product on matrices, called the tensor product.

13 Why quantum computers?

At this point, it would be natural to question the fidelity of quantum computa-
tions. Are answers reliable? And why quantum computation? How is quantum

10

computation “better” than classical computation with bits and deterministic
processes? The main advantage of quantum computation is resources. Because
one qubit can store much more information than a single classical bit can due to
its quantum mechanical-probabilistic nature, quantum computers can do certain
things much faster and more efficiently than classical computers can such as fac-
toring numbers or optimization problems or where quantum parallelism proves
superior.

11

	Introduction
	Presentation layout
	Qubits
	Quantum gates
	Multiple qubits
	Elementariness & Entanglement
	Kronecker product
	Some properties & Elementariness
	Entanglement circuit
	Simulation on IBM-Q
	Tensor Products
	Recap
	Why quantum computers?

