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1 de Moivre’s Formula

(cos θ + sin θ)n = cosnθ + i sinnθ. (1)

2 Roots & Things

All roots of z = r0e
iθ are of the form

zr = r
1/n
0 exp

(
θ0

n
+

2kπ

n

)
(2)

where k = 0, 1, 2, . . .

3 Regions of the Complex Plane

♠ The ε-neighborhood of z0 is the set of points

Bε(z0) := {z ∈ C : |z − z0| < ε}. (3)

♠ The deleted ε-neighborhood (nbh) of z0 is the set

Bε(z0) \ {z0} = {z ∈ C : 0 < |z − z0| < ε}. (4)

♠ z0 is an interior point of S ⊂ C if some ε-nbh is completely contained in S,
i.e.,

∃Bε(z0) s.t. Bε(z0) ⊂ S. (5)

♠ z0 is an exterior point of S if ∃Bε(z0) which does not intersect S.

♠ If z0 is neither an interior nor an exterior point of S then it is called a bound-
ary point of S. The set of boundary points of S is called the boundary of S.

♠ z0 is a boundary point of S ⇐⇒ ∀ε > 0,Bε(z0) contains at least one point
in S and at least one point in Sc.

♠ A set O is called open if it contains none of its boundary points.

♠ A set C is called closed if it contains all of its boundary points.

♠ The closure of a set S is the set cl(S) = S ∪ ∂S.

♠ Let O ⊂ C. O is open ⇐⇒ ∀z ∈ O,∃ε > 0,Bε(z) ⊂ O.

♠ A set S is called path connected if ∀z1, z2 ∈ S, there exists a continuous
function γ : [0, 1]→ C such that γ(0) = z1, γ(1) = z2 and γ(t) ∈ S∀t ∈ [0, 1].
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♠ A set S is bounded if ∃R > 0 such that S ⊂ BR(0).

♠ A point z0 is called an accumulation point of a set S if ∀ε > 0,

Bε(z0) \ {z0} ∩ S 6= ∅, (6)

i.e. every deleted nbh of z0 contains at least an element of S.

♠ A set is closed if and only if it contains all of its accumulation points.

4 Limits

♠ Let f be a function defined on some punctured nbh of z0. We say that the
limit of f is w0 as z approaches z0 and write

lim
z→z0

f(z) = w0 (7)

if ∀ε > 0,∃δ > 0 such that

|f(z)− w0| < ε whenever 0 < |z − z0| < δ (8)

for z ∈ dom(f).

♠ Proposition: Limits are unique.

Proof. Assume that

lim
z→z0

f(z) = w0

lim
z→z0

f(z) = w1. (9)

Given ε > 0, choose δ0, δ1 > 0 such that

|f(z)− w0| < ε whenever 0 < |z − z0| < δ0

|f(z)− w1| < ε whenever 0 < |z − z0| < δ1. (10)

Consider δ = min{δ0, δ1}. Then, we have for some z such that 0 < |z − z0| < δ,

|f(z)− w0| < ε and |f(z)− w1| < ε. (11)

For this particular z,

|w0 − w1| = |f(z)− w0 − f(z) + w1|
≤ |f(z)− w0|+ |f(z)− w1|
< ε+ ε

= 2ε. (12)

So, for any ε > 0, |w1 − w0| < 2ε. This means w0 = w1.
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5 Limits obtained via an admissible path

If limz→z0 f(z) = w0, then given any continuous function γ satisfying

1. γ : [0, 1]→ R2 ≡ C is continuous

2. γ(t) 6= z0∀t > 0, γ(t) ∈ dom(f)∀t > 0

3. γ(0) = z0

then limt→0+ f(γ(t)) = w0. Any path satisfying the three conditions above is
said to be admissible for f near z0, or simply admissible.

6 Existence of Limits

If given any two admissible paths γ0, γ1 we have

lim
t→0+

f(γ0(t)) 6= lim
t→0+

f(γ1(t)) (13)

then limz→z0 f(z) does not exist.

7 Connect to multi-variable calculus

Suppose that f(z) = u(x, y) + iv(x, y) and z0 = x0 + iy0. Then

lim
z→z0

f(z) = w0 = a0 + ib0 ⇐⇒

{
lim(x,y)→(x0,y0) u(x, y) = a0

lim(x,y)→(x0,y0) v(x, y) = b0
(14)

8 Limit facts

Suppose that limz→z0 f(z) = w0 and limz→z0 F (z) = W0, then

1. limz→z0 f(z) + F (z) = w0 +W0.

2. limz→z0 f(z)F (z) = w0W0.

3. If W0 6= 0 then limz→z0 f(z)/F (z) = w0/W0.

Proof. We will prove the second statement. Let z0 = x0 + iy0 and f(z) = u+ iv
and F (z) = U + iV . Then

f(z)F (z) = (uU − vV ) + i(uV + vU). (15)
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Since the limits of f, F at z0 are given, we have

lim
(x,y)→(x0,y0)

u = u0

lim
(x,y)→(x0,y0)

v = U0

lim
(x,y)→(x0,y0)

U = v0

lim
(x,y)→(x0,y0)

V = V0. (16)

Applying to the algebra of limits for R2 → R, we have

lim
(x,y)→(x0,y0)

(uU − vV ) = u0U0 − v0V0 = Re(w0W0). (17)

Similarly,

lim
(x,y)→(x0,y0)

(uV + vU) = u0V0 + v0U0 = Im(w0W0). (18)

So, by the previous theorem, limz→z0 f(z)F (z) = w0W0.

9 ε-neighborhood of ∞
♠ Given ε > 0, we call the set Bε(∞) = {z ∈ C : |z| > 1ε} the ε-nbh of ∞.

♠ Given z0 ∈ C and f defined on a nbh of z0, we say that the limit of f as
z → z0 is ∞ and write

lim
z→z0

f =∞ (19)

if ∀ε > 0, δ > 0 s.t. f(z) ∈ Bε(∞) whenever z ∈ dom(f) and z ∈ δ−nbh of z0,
i.e., ∀ε > 0,∃δ > 0 s.t. |f(z)| > 1/ε whenever 0 < |z − z0| < δ.

♠ Additionally, we say limz→∞ f(z) = w0 for w0 ∈ C if ∀ε > 0,∃δ > 0 s.t. f(z)
lines in the ε-nbh of w0 whenever z ∈ the δ-nbh of ∞, i.e., ∀ε > 0,∃δ > 0 s.t.
|f(z)− w0| < ε whenever |z| > 1/δ.

♠ Further, we say that the limit of f as z → ∞ is ∞ if ∀ε > 0,∃Bδ(∞) s.t.
f(z) ∈ Bε(∞) whenever z ∈ Bδ(∞).
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10 Limit facts involving ∞
Let z0, w0 ∈ C, then

lim
z→z0

f(z) =∞ ⇐⇒ lim
z→z0

1

f(z)
= 0.

lim
z→∞

f(z) = w0 ⇐⇒ lim
z→0

f

(
1

z

)
= w0.

lim
z→∞

f(z) =∞ ⇐⇒ lim
z→0

1

f
(

1
z

) = 0. (20)

Proof. We will prove (3). Suppose that limz→∞ f(z) =∞. Let ε > 0 be given.
Then ∃δ > 0 s.t. |f(z)| > 1/ε whenever |z| > 1/δ. Then 1/|f(z)| < ε whenever
|z| > 1/δ ⇐⇒ |w| = 1/|z| < δ. Thus, for any 0 < |w| < δ, we have that∣∣∣∣ 1

f(1/w)

∣∣∣∣ =
1

|f(z)|
< ε (21)

as long as w = 1/z, i.e., ∀ε > 0,∃δ > 0 s.t. |1/f(1/z)| < ε whenever |z| < δ.
The converse is gotten by reversing the steps.

11 Continuity & 3 Theorems

♠Let f be defined on a full nbh of z0. We say that f is continuous at z0 if the
following hold:

1. limz→z0 f(z) exists.

2. f(z0) exists.

3. limz→z0 f(z) = f(z0).

♠ Compositions of continuous functions: Suppose that f is continuous at z0

and g is continuous at f(z0) = w0 then g ◦ f(z0) is continuous at z0.

Proof. Let ε > 0 be given, then ∃γ > 0 s.t. |g(w)− g(w0)| < ε whenever
|w − w0| < γ. Given this γ,∃δ > 0 s.t. |f(z)− f(z0)| < γ whenever |z − z0| < δ.
So, whenever |z − z0| < δ, |f(z)− f(z0)| < γ and so |g(w)− g(w0)| < ε.

♠ If a continuous function is nonzero at a point then it is nonzero near that point:
Suppose that f is continuous at z0 and |f(z0)| 6= 0,∃δ > 0 such that f(z) 6=
0∀z ∈ Bδ(z0).

Proof. Choose ε = |f(z0)/2| > 0. Then ∃δ > 0 such that |f(z)− f(z0)| < ε =
|f(z0)/2|∀|z − z0| < δ. Then, for all such z, we have that

|f(z0)| = |f(z0) + f(z)− f(z)|
≤ |f(z0)− f(z)|+ |f(z)|

≤ |f(z0)|
2

+ |f(z)|. (22)
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So, ∀z ∈ Bδ(z0), we have |f(z0)|/2 ≤ |f(z)|.

♠ Continuous functions on a closed and bounded set is bounded: Let R be a
closed and bounded subset of the complex plane. Let f be continuous on R.
Then ∃M ≥ 0 such that

|f(z)| ≤M∀z ∈ R (23)

and ∃z0 ∈ R at which |f(z0)| = M .

12 Differentiability

♠Let f be defined in a nbh of z0. The derivative of f at z0 is the limit

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
(24)

and it is defined whenever this limit exists. When this limit exists, we say f is
differentiable at z0.

♠ If f is differentiable at z0, it is continuous at z0.

Proof. Since the limit of the difference quotient exists,

lim
z→z0

f(z)− f(z0) = lim
z→z0

f(z)− f(z0)

z − z0
(z − z0)

= lim
z→z0

f(z)− f(z0)

z − z0
lim
z→z0

(z − z0)

= f ′(z0) · 0
= 0. (25)

Thus, limz→z0 f(z) = f(z0), and so f is continuous at z0.

13 Differentiability Facts

Let f, g be differentiable at z0 then
Dz(f + g)(z0) = f ′(z0) + g′(z0)

Dzcf(z0) = cf ′(z0)

Dzf(z0)g(z0) = f ′(z0)g(z0) + f(z0)g′(z0).

If, additionally, g(z0) 6= 0, then f/g is differentiable at z0 and

Dz
f

g
(z0) =

f ′(z0)g(z0)− f(z0)g′(z0)

g2(z0)
. (26)
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Proof. We shall prove the product rule:

lim
∆z→0

f(z0 + ∆z)g(z0 + ∆z)− f(z0)g(z0)

∆z

= lim
∆z→0

1

∆z
[(f(z0 + ∆z)− f(z0))g(z0 + ∆z) + f(z0)g(z0 + ∆z)− f(z0)g(z0)]

= lim
∆z→0

1

∆z
[∆fg(z0 + ∆z) + f(z0)∆g]

=g(z0)f ′(z0) + g′(z0)f(z0), (27)

where g(z0 + ∆z) exists by continuity.

14 The Chain Rule

Let f be differentiable at z0 and g be differentiable at w0 = f(z0). Then
F (z) = g ◦ f(z) = g(f(z)) is differentiable at z0 and F ′(z0) ≡ Dzg ◦ f(z0) =
g′(f(z0))f ′(z0).

Proof. On a nbh of w0, define φ : N → C by

φ(w) =

{
g(w)−g(w0)
w−w0

− g′(w0) w 6= w0

0 w = w0

. (28)

Observe that because g is differentiable, limw→w0
φ(w) = 0. It follows that φ is

continuous on its domain. Also, for w ∈ N ,

(w − w0)φ(w) = (g(w)− g(w0))− g′(w0)(w − w0). (29)

Given the continuity of f at z0, we can choose δ > 0 such that for z ∈ Bδ(z0)
we have f(z) = w ∈ N = Bε(w0) because

|f(z)− f(z0)| = |w − w0| < ε (30)

whenever |z − z0| < δ. So, ∀z ∈ Bδ(z0), we have that φ(f(z)) makes sense.
Also, for these values of z 6= z0,

F (z)− F (z0)

z − z0
=
g(f(z))− g(f(z0))

z − z0

=
g(w)− g(w0)

z − z0

=
(w − w0)φ(w) + g′(w0)(w − w0)

z − z0

=
(f(z)− f(z0))φ(f(z)) + g′(f(z0))(f(z)− f(z0))

z − z0
. (31)
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Because φ(f(z)) is continuous, g′(z0) is simply a constant, and f is differentiable
at z0, we can easily see that

lim
z→z0

F (z)− F (z0)

z − z0
= f ′(z0)φ(f(z0)) + g′(f(z0))f ′(z0). (32)

But φ(f(z0)) = φ(w0) = 0 by definition, so we have

F ′(z0) = g′(f(z0))f ′(z0). (33)

15 The Cauchy-Riemann Equations

Let f(z) = u(x, y) + iv(x, y) be defined on a nbh of z0 = x0 + iy0. Suppose that

1. u, v have partial derivative on a nbh of z0.

2. All first order partial derivative are continuous on this nbh of z0 and the
C-R equations:

ux(x0, y0) = vy(x0, y0); uy(x0, y0) = −vx(x0, y0) (34)

are satisfied.

Then f is differentiable at z0 and

f ′(z0) = ux(x0, y0) + ivx(x0, y0). (35)

Proof. The proof is not that bad, but it is quite technical. So I won’t try to
reproduce it here.

16 Analytic Functions: Differentiable on a Ball

♠ A function f is analytic at a point z ∈ C if it is differentiable on same nbh f
z0, i.e., at every point in Bδ(z0) for some δ > 0.

♠ f is said to be analytic on an open set O if it is analytic at each z ∈ O.

♠ If f is analytic on a set S, we say it is analytic on an open set O ⊂ S.

♠ Vocabulary: Analytic ≡ Holomorphic.

♠ A function f is said to be entire if it is analytic on C.
♠ If z0 ∈ C is such that f is analytic at every point in a nbh centered at z0 but
not at z0 (i.e., analytic on Bδ(z0) \ {z0}) we say z0 is a singular point for f .
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♠ Suppose f, g are analytic on an open set O then f ± g, fg are also analytic
on O. If g(z) 6= 0∀z ∈ O then f/g is also analytic on O.

♠ The set of analytic functions on an open set O form a commutative ring,
denoted Hol(O).

17 Analytic Functions: Familiar, but Weird

Suppose D is a domain (open, nonempty, path connected) and f is analytic on
D. If f ′(z) = 0∀z ∈ D then f is constant on D.

Proof. Given z0, z1 ∈ D,∃ a path γ(t) : [0, 1] → D such that γ(0) = z0, γ(1) =
z1, and γ is a continuous. Next, consider h(t) = Re(f ◦ γ(t)) = u(γ(t)), where
f = u+ iv. By C-R, we have that f = u+ iv with u, v both differentiable. And
so h(t) is differentiable on [0, 1], and by the mulvar chain rule

h′(t) = ux(γ(t))γ′1(t) + uy(γ(t))γ′2(t) (36)

with γ(t) = (γ1(t), γ2(t))∀t ∈ [0, 1]. By MVT, ∃c ∈ (0, 1) s.t.

h(1)− h(0) = h′(c)(1− 0)

= h′(c)

= ux(γ(c))γ′1(c) + uy(γ(c))γ′2(c)

= ux(γ(c))γ′1(c)− vx(γ(c))γ′2(c) (37)

where the last equality follows from C-R. But we also know that f ′ = ux+ivx =
0 ⇐⇒ ux = vx = 0. So ∃c ∈ (0, 1) such that h(1)−h(0) = 0 ⇐⇒ h(1) = h(0).
With this,

Re(f(z0)) = Re(f(γ(0))) = h(0) = h(1) = Re(f(γ(1))) = Re(f(z1)). (38)

Similarly we can show Im(f(z0)) = Im(f(z1)). Therefore, f(z0) = f(z1)∀z0, z1 ∈
D. And so f is constant on D.

18 Cauchy-Riemann Theorem for Analytic Func-
tions

Let f be a function defined on an open set O ⊂ Cm then f is analytic on O if
and only if for f = u+ iv

1. u, v have first-order partial derivatives on all of O.

2. ux, uy, vx, vy are continuous on all of O.

3. C-R equations are satisfied, i.e., ux = vy, uy = −vx on all of O.
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19 Analytic Function Facts

♠ Suppose f, f̄ are both analytic on D then f is constant.

Proof. Using the C-R theorem. Suppose that f = u+ iv and f̄ = U + iV where
u = U, v = −V . Because f, f̄ are both analytic we have

ux = vy;uy = −vx
Ux = Vy;Uy = −Vx (39)

on all of D. So ux = Ux = Vy = −vy = −ux ⇐⇒ ux = 0 on all of D. Similarly,
vx = 0 on all of D. It follows that f ′ = ux+ ivx = 0 on all of D. By the previous
theorem, we have that f must be constant.

♠ If |f(z)| = C∀z ∈ D where D is a domain and f is analytic on D, then f is
constant on D.

Proof. If C = 0 then the statement is true. If C 6= 0, then

¯f(z)f(z) = |f(z)|2 = C2 > 0. (40)

Because f(z) 6= 0∀z ∈ D and is analytic on all of D,

¯f(z) =
C2

f(z)
(41)

is also analytic. This says that both f̄ , f are analytic on D. Therefore, f must
be constant.

20 Harmonic Functions

♠ A function U is said to be harmonic on a set O if

∆u = uxx + uyy ≡ 0 (42)

on O. This equation is called Laplace’s equation.

♠ If f = u+ iv is analytic in D and u, v are twice differentiable with continuous
partials in D then u, v are harmonic in D.

Proof. By C-R, ux = vy;uy = −vx. So, uxx = vyx = vyx = uyy. So ∆u = 0.
Similarly, ∆v = 0.

♠ If f = u+ iv is analytic on a domain D then u, v are harmonic in D.

13



21 Harmonic Conjugates

Given a harmonic function u on D and another harmonic function v on D. If
u, v satisfy the C-R equations, then we say v is a harmonic conjugate of u. Note
that this relation is not symmetric.

♠ A function f = u+ iv on a domain D is analytic if and only if v is a harmonic
conjugate of u.

Proof. If f is analytic, then u, v satisfying the C-R equation by C-R theorem.
So v is a harmonic conjugate of u. Conversely, if v is a harmonic conjugate of
u then C-R hold everywhere in D. By C-R theorem, f is analytic on D.

22 The Exponential Function

This function is so nice there’s nothing to say about it.

23 The Complex Logarithm

♠ In general, for z = reiθ 6= 0.

log(z) = ln(|z|) + i(θ + 2πn) (43)

where θ = arg(z).

♠ The principal value of log is given by

Log(z) = ln(|z|) + iθ−π (44)

where θ−π = Arg(z) ∈ (−π, π].

♠ Log(z) = ln(1) + iπ = iπ.

♠ Some properties for complex log don’t work the way we expect: e.g. sum of
logs is not the same as the log of powers. Tip: double-check everything and use
only the “safe” properties.

24 Branches

♠ Given α ∈ R, define the α-branch of log by

logα(z) = ln |z|+ iθα (45)

where θα is the argument of z 6= 0 which lives between α and α+ 2π.
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♠ elogα(z) = z, but log(ez) 6= z in general.

♠ The logα function is not continuous. However, if we cut away the α-branch of
log then logα is not only continuous but also analytic on this restricted domain.

25 Contours

A contour C is a path/curve with parameterization z ∈ C0([a, b],C) where z is
differentiable at all but a finite number of points in [a, b]. Everywhere else it
is continuously differentiable and non-degenerate. In other words, a contour is
smooth arcs pieced together.

26 Contour Integrals

Suppose C is a contour with parameterization z ∈ C0([a, b],C) and f : O ⊂
C→ C. We define the contour integral of f along C (direction matters) as

ˆ
C

f(z) dz =

ˆ b

a

f(z(t))z′(t) dt. (46)

This makes sense because z′ exists everywhere except a finite number of points
which don’t contribute to the integral. In addition, the contour integral is
independent of parameterization up to direction of integration.

27 Lemma on Modulus & Contours

Let w ∈ C0([a, b],C) then ∣∣∣∣∣
ˆ b

a

w(t) dt

∣∣∣∣∣ ≤
ˆ b

a

|w(t)| dt. (47)

Proof. This is essentially the triangle inequality. Let

r0 =

∣∣∣∣∣
ˆ b

a

w dt

∣∣∣∣∣. (48)

If r0 = 0 then the statement is obvious. Now suppose r0 > 0. In this case,
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∃θ0 ∈ R such that
ˆ b

a

w dt = r0e
iθ0 =⇒ r0 = e−iθ0

ˆ b

a

w dt

=

ˆ b

a

we−iθ0 dt ∈ R

= Re

(ˆ b

a

we−iθ0 dt

)

=

ˆ b

a

Re
(
we−iθ0

)
dt. (49)

But

Re
(
we−iθ0

)
≤
∣∣Re

(
we−iθ0

)∣∣ ≤ ∣∣e−iθ0w∣∣ = |w|∀t ∈ [a, b]. (50)

And so ∣∣∣∣∣
ˆ b

a

w dt

∣∣∣∣∣ = r0 ≤
ˆ b

a

|w| dt. (51)

28 Bound on Modulus of Contour Integrals

Let C be a contour and let f : Dom(f) → C be piecewise continuous on C. If
|f(z)| ≤M∀z ∈ C, then ∣∣∣∣ˆ

C

f(z) dz

∣∣∣∣ ≤ML(C) (52)

where L(C) is the arclength of C.

Proof. This result follows from the previous lemma. Let z(t) : [a, b] → C be a
parameterization, then ∣∣∣∣ˆ

C

f dz

∣∣∣∣ =

∣∣∣∣∣
ˆ b

a

f(z(t))z′(t) dt

∣∣∣∣∣
≤
ˆ b

a

|f(z(t))z′(t)| dt

≤
ˆ b

a

|f(z(t))||z′(t)| dt

≤M
ˆ b

a

|z′(t)| dt

= ML(C). (53)
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29 TFAE

Let f be continuous on D. The following are equivalent (TFAE):

1. f(z) has an antiderivative F (z) throughout D.

2. Given any z1, z2 ∈ D and contours C1, C2 ⊂ D both going from z1 to z2,
˛
C1

f(z) dz =

˛
C2

f(z) dz. (54)

In other words, the integral is independent of contour.

3. Given any close contour C ⊂ D,
ˆ
C

f(z) dz = 0. (55)

In the case that one (and hence every) condition is satisfied, we have that
for any z1, z2 ∈ D and contour C from z1 → z2 ⊂ D,

ˆ
C

f(z) dz = F (z2)− F (z1) (56)

where F ’s existence is guaranteed by (1).

Proof. (2 ⇐⇒ 3) Suppose (2) is valid and let C be a closed contour in D.
Then C contains 2 points z1, z2 and we can divide C into 2 pieces C1 + C2

where C1 : z1 → z2 and C2 : z2 → z1.

Note that by reversing the direction of C2, we ave both C1 and −C2 go from
z1 to z2 and stay inside of D. Thus,

˛
C

f dz =

ˆ
C1

f dz −
ˆ
−C2

f dz. (57)

By (2), we have that
ˆ
C1

f dz =

ˆ
C2

f dz. (58)

This means ˛
C

f(z) dz = 0. (59)
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So (2) =⇒ (3).

Now, assume (3) is true and let z0, z1 ∈ D. Let C1, C2 ⊂ D be contours
going from z0 to z1. We observe that C := C1 − C2 is a s.c.c. in D. So by (3),

0 =

˛
C

f dz =

ˆ
C1−C2

f dz =

ˆ
C1

f dz −
ˆ
C2

f dz. (60)

(1 ⇐⇒ 2) Assume (1) is true. Let z0, z1 ∈ D and let C be a contour
from z0 → z1, i.e., C : z(t) ∈ C([a, b],C) piecewise differentiable, z(a) = z0 and
z(b) = z1. As F is an antiderivative of f , for all t ∈ [a, b] for which z′(t) exists
the chain rule gives

d

dt
F (z(t)) = F ′(z(t))z′(t) = f(z(t))z′(t). (61)

So,
˛
C

f dz =

n∑
k=1

ˆ bk

ak

f(z(t))z′(t) dt =

n∑
k=1

ˆ bk

ak

d

dt
F (z(t)) dt (62)

where ak, bk are points at which z fails to be differentiable, a1 = a, bn = b. By
the fundamental theorem of calculus,

˛
C

f dz =

n∑
k=1

ˆ bk

ak

d

dt
F (z(t)) dt

=

n∑
k=1

F (z(bk))− F (z(ak))

= F (b)− F (a) = F (z1)− F (z0). (63)

So, given any 2 contours C1, C2 ∈⊂ D from z0 → z1, we haveˆ
C1

f dz = F (z1)− F (z0) =

ˆ
C2

f dz. (64)

Now, assume (2) is true. We need to construct an antiderivative F . Let
z0 ∈ D and define F : D → C by

F (z) =

ˆ
Cz

f(w) dw (65)

18



where Cz is a contour from z0 → z1. Since D is a domain, it is a path connected,
and so for each z, a path Cz exists. By (2) this is not dependent on the choice
of contour Cz. So F is well-defined. We wish to show that F (z) is differentiable
and its derivative is f .

Let z ∈⊂ D and choose ε > 0. Given th continuity of f , let δ be chosen so
that

1.

|f(w)− f(z)| < ε

2
∀|w − z| < δ (66)

2. Bδ(z) ⊂ D (or D is open.)

Given a ∆z ∈ C such that ∆z < δ, we consider a path Cz,∆z defined by
w(t) = z + t∆z, t ∈ [0, 1]. We have that Cz + Cz,∆z is a contour in D from
z0 → z + ∆z. Then,

1

∆z
(F (z + ∆z)− F (z)) =

1

∆z

(ˆ
Cz+Cz,∆z

f(w) dw −
ˆ
Cz

f(w) dw

)

=
1

∆z

ˆ
Cz,∆z

f(w) dw

=
1

∆z

ˆ 1

0

f(z + t∆z)(z + t∆z)′ dt

=

ˆ 1

0

f(z + t∆z) dt. (67)

So, for |∆z| < δ,∣∣∣∣F (z + ∆z)− F (z)

∆z
− f(z)

∣∣∣∣ =

∣∣∣∣ˆ 1

0

f(z + t∆z) dt− f(z)

∣∣∣∣
=

∣∣∣∣ˆ 1

0

[f(z + t∆z)− f(z)] dt

∣∣∣∣
≤
ˆ 1

0

|f(z + t∆z)− f(z)| dt

≤
ˆ 1

0

ε

2
dt

≤ ε

2
< ε (68)

by choice of δ. So, we have shown that given z ∈ D and ε > 0, there exists δ > 0
such that ∣∣∣∣F (z + ∆z)− F (z)

∆z
− f(z)

∣∣∣∣ < ε (69)

whenever |∆z| < δ. So, F is differentiable at z and F ′(z) = f(z).

19



30 Cauchy-Goursat Theorem

Suppose that C is a simple closed contour and f is analytic on the interior of
C and all points of C then

˛
C

f(z) dz = 0. (70)

Proof. The proof involves slicing the interior of C into squares and partial
squares. I won’t try to reproduce it here.

31 Simply-connected domain

A domain D is called simply-connected if every simple closed contour C ⊂ D
contains only points of D and its interior, i.e., every simple closed contour is
contractible to a point.

32 Multiply-connected domain

A multiply-connected domain D is a dmain which is not simply-connected. (very
imaginative)

33 Cauchy-Goursat Theorem for simply-connected
domain

Let D be a simply connected domain. f is analytic in D. For all closed contour
C ⊂ D,

˛
C

f(z) dz = 0. (71)

Proof. Notice that we C need not be simple. Consider the figure

Let C be a closed contour in D with a finite number of self-intersections.
Given that C only has n interactions, we can split C into a finite number m
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of simple closed contour Cj . Also, given D is simply connected, the interior of
each Cj lives in D. By the previous theorem, we have

˛
Cj

f(z) dz = 0∀j = 1, 2, 3, · · · =⇒
˛
C

f(z) dz =

˛
∑
Cj

f(z) dz = 0. (72)

34 Corollary to Cauchy-Goursat for simply-connected
domain

If f is analytic on a simply connected domain in D then f has an antiderivative
F everywhere in D.

Proof. TFAE.

35 Cauchy-Goursat Theorem for multiply-connected
regions

Suppose that

1. C is a s.c.c.(+).

2. Cj , j = 1, 2, . . . , n are s.c.c.(-), all disjoint and all live in the interior of C.

If f is analytic on C,Cj∀j and the region between C,Cj (enclosed by C but
outside of Cj) then

˛
C

f(z) dz +

n∑
j=1

˛
Cj

f(z) dz = 0. (73)

Proof. The proof follows from the this figure
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36 Principle of Path Deformation (Corollary to
Cauchy-Goursat)

Let C1 and C2 be simple closed curves and C2 encloses C1. Both are (+)
oriented. Then if f is analytic on the region between C1, C2 then

ˆ
C1

f(z) dz =

ˆ
C2

f(z) dz. (74)

Proof. Consider the following suggestive figure:

37 Cauchy’s Integral Formula

Let C be a s.c.c.(+) and let f be analytic on C and its interior. If z0 lives
interior to C then

f(z0) =
1

2πi

˛
C

f(z)

z − z0
dz. (75)

Proof. Let δ < 1 be small enough such that |z − z0| < δ so that C encloses z.
Since the quotient f(z)/(z− z0) is analytic in the region exterior to Bδ(z0) and
interior to C, we have that

˛
C

f(z)

z − z0
dz =

˛
Cρ

f(z)

z − z0
dz (76)

where ρ < δ and Cρ is a (+) circle centered at z0 of radius ρ. The equality is
guaranteed by the principle of deformation of path.
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Now, consider

E =
1

2πi

˛
C

f(z)

z − z0
− f(z0)

=
1

2πi

˛
Cρ

f(z)

z − z0
− f(z0)

2πi

˛
Cρ

1

z − z0
dz

=
1

2πi

(˛
Cρ

f(z)− f(z0)

z − z0
dz

)
. (77)

Given that f(z) is continuous at z0, ∀ε > 0,∃ρ > 0 s.t. |f(z)− f(z0)| < ε
whenever |z − z0| < 2ρ < δ. Since |z − z0| = ρ < 2ρ on Cρ, we have∣∣∣∣f(z)− f(z0)

z − z0

∣∣∣∣ =
1

ρ
|f(z)− f(z0)| < ε

ρ
on Cρ. (78)

So,

|E| ≤ 1

2π

ε

ρ
L(Cρ) = ε. (79)

So, given any ε > 0, |E| ≤ ε. This says that

1

2πi

˛
C

f(z)

z − z0
dz = f(z0). (80)

38 Cauchy’s Integral Formula for First-Order
Derivative

Let C s.c.c.(+) and let f be analytic on the interior of C and on C. Then if
z0 ∈ int(C) then

f ′(z0) =
1

2πi

˛
C

f(z)

(z − z0)2
dz. (81)
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Proof. LetM = max |f(z)| where z ∈ C. Given z0 ∈ int(C), let d = min |z − z0| >
0 where z ∈ C. Let h = ∆z is such that |h| = |∆z| < d. Using Cauchy’s integral
formula,

f(z0) =
1

2πi

˛
C

f(z)

z − z0
dz. (82)

Because |h| < d, z0 + h ∈ int(C). So,

f(z0 + h) =
1

2πi

˛
C

f(z)

z − (z0 + h)
dz. (83)

Now, observe that

E =
f(z0 + h)− f(z0)

h
− 1

2πi

˛
C

f(z)

(z − z0)2
dz

=
1

h

1

2πi

˛
C

f(z)

z − (z0 + h)
dz − 1

h

1

2πi

˛
C

f(z)

z − z0
dz − 1

2πi

˛
C

f(z)

(z − z0)2
dz

= . . .

=
1

2πi

˛
C

f(z)

(z − z0)2

h

z − (z0 + h)
dz (84)

for all z ∈ int(C), d ≤ |z − z0|. So,

1

|z − z0|2
≤ 1

d2
. (85)

Also, 0 ≤ d− |h| ≤ |z − (z0 + h)|∀|h| < d. So for all z ∈ C, whenever |h| < d,∣∣∣∣ f(z)

(z − z0)2

h

z − (z0 + h)

∣∣∣∣ ≤ M |h|
d2(d− |h|)

. (86)

So, whenever |h| < d, we have

|E| ≤ 1

2π

M |h|
d2(d− |h|)

L(C) =
M |h|

2πd2(d− |h|)
L(C). (87)

Let ε > 0 be given and choose

δ = min

[
d

2
,

πd3

ML(C)

]
(88)

then whenever |h| < δ ≤ d
2 < d,

1

d− |h|
≤ 1

d/2
. (89)

With this,

E ≤ M |h|
2πd3/2

L(C) <
ML(C)

πd3

πd3ε

ML(C)
= ε. (90)

24



So,

f ′(z0) = lim
h→0

f(z0 + h)− f(z0)

h
=

1

2πi

˛
C

f(z)

(z − z0)2
dz. (91)

39 Cauchy’s Integral Formula for Higher-Order
Derivatives

Let C be s.c.c.(+) and f analytic on C and its interior. Then ∀z0 ∈ int(C), and
n ∈ N, f is n-times differentiable at z0 and

f (n)(z0) =
n!

2πi

˛
C

f(z)

(z − z0)n+1
dz. (92)

40 Analyticity of Derivatives

If f is analytic at z0 then f has derivatives of all orders which are also analytic
at z0.

Proof. We simply applying the preceding theorem.

41 Analyticity of Derivatives on a Domain

If D is a domain and f is analytic on D then f has derivatives of all orders and
each derivative is analytic on D. This means f is infinitely differentiable on D.

42 Infinite Differentiability

Let f(z) = u(x, y) + iv(x, y) be analytic at z0 = (x0, y0). Then u, v have
continuous partial derivatives of all orders at z0. Further, if f = u + iv is
analytic on D, then u, v are infinitely differentiable in D, i.e., u, v ∈ C∞(D).

Proof. The proof follows from Cauchy-Riemann theorem and equations.

43 Hörmander’s Theorem

If u is harmonic in a domain D then u is smooth ⇐⇒ u ∈ C∞(D).

Proof. If u is harmonic then u has a harmonic conjugate v. Then f = u+ iv is
analytic, etc.
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44 Morera’s Theorem

Let f be continuous on D. If for all closed C ⊂ D,

˛
C

f(z) dz = 0, (93)

then f is analytic on D.

Proof. The proof follows from TFAE. By TFAE, f has an antiderivative F
throughout D. But F is analytic because f ′ = F . This means F ’s derivatives
are analytic throughout D as well. So, f is analytic throughout D.

45 Cauchy’s Inequality

Let f be analytic on and inside a (+) circle C with center z0 and radius R. Let
MR = max [|f(z)|] , z ∈ CR. Then ∀n ∈ N,∣∣∣f (n)(z0)

∣∣∣ ≤ n!MR

Rn
. (94)

Proof. This follows from Cauchy’s integral formula and the triangle inequality:∣∣∣f (n)(z0)
∣∣∣ =

∣∣∣∣ n!

2πi

˛
CR

f(z)

(z − z0)n+1
dz

∣∣∣∣
≤ n!

2π

MR

Rn+1
(2πR)

=
n!MR

Rn
. (95)

46 Liouville’s Theorem

If f is bounded and entire and f is constant.

Proof. Let M ≥ 0 for which |f(z)| ≤M∀z ∈ C. Given any z0 ∈ C, f is analytic
on every neighborhood of z0 and so ∀R > 0,

|f ′(z0)| ≤ 1!MR

R
(96)

where MR = max |f(z)| ≤M where z ∈ CR(z0). So, for any z0 ∈ C, R > 0,

|f ′(z0)| ≤ M

R
. (97)

This shows f ′(z0) = 0∀z0 ∈ C. So, f is constant because C is a domain.
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47 The Fundamental Theorem of Algebra

If P (z) is a non constant polynomial, i.e.,

P (z) = a0 + a1z
1 + · · ·+ anz

n (98)

where an 6= 0, n = deg(P ), then ∃z0 ∈ C at which P (z0) = 0.

Proof. Let

w =
a0

zn
+

a1

zn−1
+ · · ·+ an−1

z
(99)

and note that

P (z) = (w + an)zn. (100)

We observe that zk from k ∈ {1, 2, 3, . . . } has 1/zk → 0 has z → ∞. So, given
ε = |an|/2, there exists R > 0 for which

|w| ≤ |an|
2
∀|z| > R. (101)

So, for |z| > R,

|w + an| ≥ ||w| − |an|| = |an| − |w| ≥
|an|

2
. (102)

So, ∣∣∣∣ 1

P (z)

∣∣∣∣ =
1

|w + an||zn|
≤ 2

|an|
1

|zn|
≤ 2

|an|
1

Rn
(103)

where |z| > R. Now, suppose that P (z) 6= 0∀z ∈ C to get a contradiction.
Since P (z) is never vanishes, f(z) = 1/P (z) is entire. Since, in particular, f(z)
is continuous, it is bounded on all closed bounded set. So, ∃M > 0 such that
|f(z)| ≤M∀z, |z| ≤ R. So, by what we’ve just shown∣∣∣∣ 1

P (z)

∣∣∣∣ ≤ max

[
M,

2

|an|Rn

]
. (104)

So, we have f(z) is bounded and entire. By Liouville’s theorem, 1/P (z) must
be constant. This is a contradiction.

48 Corollary to The Fundamental Theorem of
Algebra

If P (z) has degree n, then there exists c ∈ C and z1, z2, . . . , zn ∈ C such that

P (z) = c(z − z1) . . . (z − zn). (105)
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49 The Maximum Modulus Principle 1

Suppose that an analytic function f has |f(z)| maximized at z0 in some nbh
Bε(z0) for some ε > 0. Then f(z) is constant on Bε(z0).

Proof. Take 0 < ρ < ε and by invoking Cauchy’s integral formula, we have

f(z0) =
1

2πi

˛
Cρ

f(z)

z − z0
dz

=
1

2πi

ˆ 2π

0

f(z0 + ρeit)

z0 + ρeit − z0
iρeit dt

=
1

2π

ˆ 2π

0

f(z0 + ρeit) dt. (106)

So

|f(z0)| = 1

2π

∣∣∣∣ˆ 2π

0

f(z0 + ρeit) dt

∣∣∣∣
≤ 1

2π

ˆ 2π

0

∣∣f(z0 + ρeit)
∣∣︸ ︷︷ ︸

≤|f(z0)|

dt

≤ 1

2π

ˆ 2π

0

|f(z0)| dt = |f(z0)|. (107)

This says

|f(z0)| = 1

2π

ˆ 2π

0

∣∣f(z0 + ρeit)
∣∣ dt (108)

so

1

2π

ˆ 2π

0

|f(z0)| −
∣∣f(z0 + ρeit)

∣∣︸ ︷︷ ︸
≥0

dt. (109)

This says ∀t ∈ [0, 2π] and ∀ρ < ε

|f(z0)| =
∣∣f(z0 + ρeit)

∣∣. (110)

This is true for all ρ < ε, so |f(z)| = |f(z0)| for all z ∈ Bε(z0).

50 The Maximum Modulus Principle 2

Let f be analytic and non-constant on a domain D (open and connected), then
|f(z)| cannot be maximized in D.

Proof. Assume to reach a contradiction that f is maximized at z0 ∈ D. Let
z1 ∈ D be arbitrary. Then by the following figure
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we get a contradiction, using the maximum modulus principle 1, as desired.

51 Convergence of Sequences

Consider a sequence {zn} = (z0, z1, . . . ) of complex numbers. Write {zn} ∈ C.
We say that the sequence converges if ∃z ∈ C for which the following holds:
∀ε > 0,∃N = Nε ∈ N s.t.

|z − zn| < ε∀n ≥ N. (111)

In this sense, we also say that {zn} converges to z and call z the limit of the
sequence:

z = lim
n→∞

zn. (112)

52 Real and Imaginary parts of a convergent se-
quence

Let zn = xn + iyn be a sequence, then zn → z = x + iy if and only if xn → x
and yn → y in the sense of real numbers.

53 Cauchy sequences

A sequence {zn} is called a Cauchy sequence if ∀ε > 0,∃N ∈ N such that

|zn − zm| < ε∀n,m ≥ N. (113)

54 Cauchy and Convergence

A sequence is convergent if and only if it is Cauchy.
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55 Series

Consider a sequence {zn}∞n=0 and the series formed with the sequential elements
as its terms:

∞∑
n=0

zk = z0 + z1 + z2 + . . . (114)

where, a priori, we don’t assume they add to anything. This series convergences
if {SN} where

SN =

N∑
n=0

zk (115)

is a convergent sequence, i.e.,

S = lim
N→∞

SN (116)

exists.

56 Convergence of Series

♠ Given zn = xn + iyn then
∑
zn converges to x + iy ⇐⇒

∑
xn → x and∑

yn → y.

♠ If
∑
zn converges then limn→∞ zn = 0. The converse also holds.

Proof. Let ε > 0 be given. Then that
∑
zn converges, {SN} also converges. So,

{SN} is Cauchy, so ∃M ∈ N such that

|Sn − Sm| < ε (117)

whenever n,m ≥M . Setting n = m+ 1 we have

|zn| = |Sn+1 − Sn| < ε. (118)

♠ A series
∑
zn is said to be absolutely convergent if

∑
|zn| is convergent as a

series of real, non-negative numbers.

♠ If
∑
zn is absolute convergent than

∑
zn is convergent.

Proof. Here is a sketch of the proof:

|SN − SM | =

∣∣∣∣∣
M∑

k=N+1

zk

∣∣∣∣∣ ≤
M∑

k=N+1

|zk| (119)

due to the triangle inequality. With this inequality, the Cauchyness of
∑
|zk|

implies the Cauchyness of
∑
zk.
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♠ The series
∑∞
n=0 zn converges to S ⇐⇒ limN→∞ ρN = 0 where ρN =

S − SN = S −
∑N
n=0 zn and S is some number that is to be the sum of the

series.
♠ “Geometric series”:

SN =
1− zN+1

1− z
=

N∑
n=0

zn. (120)

♠ For any z ∈ C such that |z| < 1,
∑∞
n=0 converges and its sum is 1/(1− z).

Proof. For each N ∈ N ,

ρN =
1

1− z
−

N∑
n=0

zn =
1

1− z
− 1− zN+1

1− z
=
zN+1

1− z
. (121)

Since |z| < 1, limN→∞ zN+1 = 0. So, limN→∞ ρN = 0. So, by one of the
previous theorems, we have

∞∑
n=0

zn =
1

1− z
. (122)

57 Taylor’s Theorem

Let f(z) be analytic on a disk BR0
(z0), then for any z ∈ BR0

(z0),

f(z) =

∞∑
n=0

an(z − z0)n =

∞∑
n=0

f (n)(z0)

n!
(z − z0)n. (123)

Remarks:

1. In particular, the series
∑∞
n=0

f(n)(z0)
n! (z − z0)n converges.

2. The sum is f .

3. For real functions h : R→ R. If h is differentiable on an open set containing
x0, it might not be twice differentiable.

4. For infinitely differentiable functions, now the series makes sense, but
we might have h being representable by a Taylor series that is infinitely
differentiable, but not equal to its Maclaurin series. For example:

h(x) =

{
e−1/x2

x 6= 0

0 x = 0
. (124)
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Proof. Without loss of generality, assume that z0 = 0 and consider BR0(z0) on
which f is analytic. Let z ∈ BR0(z0). Let |z0| < |z| < R0, and define a s.c.c.(+)
C centered at z0 = 0 of radius R0. Since z lives in the interior of C, Cauchy
integral formula says

f(z) =
1

2πi

˛
C

f(w)

w − z
dw. (125)

Since w 6= 0, we write

1

w − z
=

1

w

1

1− z/w
=

N∑
n=0

zn

wn+1
+

1

w − z

( z
w

)N+1

, (126)

which is made possible by the fact that

1

1− a
=

1− aN+1

1− a
+
aN+1

1− a
=

N∑
n=0

an +
aN+1

1− a
. (127)

Next, by Cauchy’s derivative formula,

f (n)(0) =
n!

2πi

˛
C

f(w)

(w − 0)n+1
dw. (128)

So we have

an =
f (n)(0)

n!
=

1

2πi

˛
C

f(w)

(w − 0)n+1
dw. (129)

Next, let the error be

ρN = f(z)−
N∑
n=0

anz
n

=
1

2πi

˛
C

f(w)

w − z
dw −

N∑
n=0

f (n)(0)

n!
=

1

2πi

˛
C

f(w)

(w − 0)n+1
zn dw

=
1

2πi

˛
C

f(w)

[
1

w − z
−

N∑
n=0

zn

wn+1

]
dw

=
1

2πi

˛
C

f(w)
(z/w)N+1

w − z
dw. (130)

Set

d = min |w − z| z ∈ C (131)

and

M = max |f(z)| z ∈ BR0(z0 = 0) (132)
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then

|ρN | =
1

2π

∣∣∣∣˛
C

f(w)
(z/w)N+1

w − z
dw

∣∣∣∣
≤ 1

2π

|z/w|N+1

d
ML(C)

=
M |z/w|N+1

d
r0 (133)

So, we have shown that given z ∈ BR0
(0), ∃|z| < r0 < R0 for which

|ρN | ≤M
|z|N+1

d · rN0
=

(
M |z|
d

)(
|z|
r0

)N
∀N ∈ N. (134)

Since we’ve chosen |z| < r0 < R0, |z|/r0 < 1. Given ε > 0, ∃N0 ∈ N for which
∀N ≥ N0, (

|z|
r0

)N
<

εd

M |z|
. (135)

So, for all N ≥ N0,

|ρN | ≤
M |z|
d

(
|z|
r0

)N
< ε. (136)

Thus,

f(z) = lim
N→∞

SN = lim
N→∞

N∑
n=0

anz
n =

∞∑
n=0

f (n)(0)

n!
zn. (137)

58 Laurent’s Theorem

Let f be analytic on a region D defined by R1 < |z − z0| < R2, and let a simple
closed contour C endowed with a positive orientation in this annulus be given.
Then, for each z ∈ D,

f(z) =

∞∑
n=0

an(z − z0)n +

∞∑
n=1

bn
(z − z0)−n+1

(138)

where

an =
1

2πi

˛
C

f(z)

(z − z0)n+1
dz bn =

1

2πi

˛
C

f(z)

(z − z0)−n+1
dz. (139)
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Proof. Without loss of generality, assume z0 = 0. Let C1, C2, s.c.c.(+) be given
such that C2 encloses C1, z, C; C encloses C1, and the exterior of C1 contains
z, C. Also, let γ be a s.c.c.(+) around z, exterior to C1 but interior to C2. An
appeal to Cauchy-Goursat for multiply-connected domain shows that

˛
C2

f(s)

s− z
ds−

˛
C1

f(s)

s− z
ds−

˛
Cγ

f(s)

s− z
ds = 0. (140)

Next, by Cauchy integral formula,

f(z) =
1

2πi

˛
Cγ

f(s)

s− z
ds

=

˛
C2

f(s)

s− z
ds−

˛
C1

f(s)

s− z
ds

=

˛
C2

f(s)

s− z
ds+

˛
C1

f(s)

z − s
ds. (141)

For the first integral, we can make the following replacement

1

s− z
=

1

s

(
1

1− z/s

)
=

N−1∑
n=0

zn

sn+1
+

1

s− z

(z
s

)N
. (142)

For the second integral, we can make the following replacement (interchanging
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the role of s and z)

1

z − s
=

1

z

(
1

1− s/z

)
=

N−1∑
n=0

sn

zn+1
+

1

z − s

(s
z

)N
=

N∑
n=1

sn−1

zn
+

1

z − s

(s
z

)N
=

N∑
n=1

z−n

s−n+1
+

1

z − s

(s
z

)N
. (143)

And so we have

f(z) =
1

2πi

˛
C2

f(s)

[
N−1∑
n=0

zn

sn+1
+

1

s− z

(z
s

)N]
zn dz

+
1

2πi

˛
C1

f(s)

[
N∑
n=1

z−n

s−n+1
+

1

z − s

(s
z

)N]
z−n dz

=

N−1∑
n=0

[
1

2πi

˛
C2

f(s)

sn+1
ds

]
︸ ︷︷ ︸

αn

zn +

N∑
n=1

[
1

2πi

˛
C1

f(s)

s−n+1
ds

]
︸ ︷︷ ︸

βn

z−n + ρN + σN

(144)

where

ρN =
1

2πi

˛
C2

f(s)

s− z

(z
s

)N
ds (145)

σN =
1

2πi

˛
C1

f(s)

z − s

(s
z

)N
ds. (146)

Now, on C2,

1

|s− z|
≤ 1

R2 −R
, (147)

and on C1,

1

|z − s|
≤ 1

R−R1
, (148)

where R = |z|, R1 < R < R2. Setting M = max |f(s)| where s ∈ C1 ∩ C2, by
triangle inequality, we have that

|ρN | =
1

2π

∣∣∣∣˛
C2

f(s)

s− z

(z
s

)N
ds

∣∣∣∣ ≤ 1

2π

M

R2 −R

(
R

R2

)N
2πR2 =

M

1−R/R2

(
R

R2

)N
.

(149)
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Similarly,

|σN | ≤
M

1−R1/R

(
R1

R

)N
. (150)

We see that ρN → 0, σ → 0 as N →∞. It follows (with ε’s and N ’s similar to
those in the proof of Taylor’s theorem) that

f(z) =

∞∑
n=0

αnz
n +

∞∑
n=1

βnz
−n. (151)

And by corollary to Cauchy-Goursat for multiply-connected regions,

αn =
1

2πi

ˆ
C

( ) ds = an

βn =
1

2πi

ˆ
C

( ) ds = bn (152)

for all n.

59 More results about series

Consider a power series

S(z) =

∞∑
n=0

an(z − z0)n, (153)

1. If S(z) converges at some z1 6= z0 the S(z) converges on BR(z0) where
|z0 − z1| ≤ R.

2. The series converges uniformly and absolutely on every ball B properly
contained in BR(z0).

3. On BR(z0), S(z) is analytic, S′(z) =
∑∞
n=1 nan(z − z0)n−1.

4. If C is a s.c.c.(+) and g is continuous on C and C ⊂ BR(z0) then

˛
C

fg dz =

∞∑
n=0

˛
C

ang(z)(z − z0)n dz (154)

5. Uniqueness of Laurent series: If S(z) =
∑
n∈Z cn(z−z0)n converges on an

annulus R1 ≤ |z − z0| ≤ R2 then this is precisely the Laurent series of S
at z0.
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60 Residues

For C a s.c.c.(+), let f have singularities at z1, z2, . . . , zn enclosed by C. Then all
the zk’s are isolated singularities, and there exist punctured disks B1,B2, . . . ,Bn
inside C which are on-overlapping whose centers contains zk’s, respectively.

Next, suppose that f has an isolated singularity at z0. Then f has a Laurent
series expansion on an annulus 0 < |z − z0| < R with

f(z) =

∞∑
n=0

an(z − z0)n +

∞∑
n=1

bn
(z − z0)n

. (155)

Further, for any s.c.c.(+) Ck,

bn =
1

2πi

˛
Ck

f(z)

(z − z0)−n+1
dz∀n = 1, 2, 3, . . . (156)

In particular,

b1 =
1

2πi

˛
Ck

f(z) dz. (157)

We shall call this coefficient of 1/(z − z0) in the Laurent series expansion the
residue of f at z0, denoted

b1 := Resz=z0 f(z). (158)

This gives us a way to compute integrals by finding Laurent series expansions.

61 The Residue Theorem

Let C be a s.c.c.(+) and suppose that f is analytic on C and the interior to C
except at a finite number of points z1, z2, . . . , zn, all enclosed by C. Then

˛
C

f(z) dz = 2πi

n∑
k=1

Resz=zk f(z). (159)

Proof. Take C1, C2, . . . , Cn to be non-intersecting s.c.c.(+) inside C where each
enclosed only the singular point zk, respectively. Then f is analytic on Int(C) \
∪nIntCk. By Cauchy-Goursat for multiply-connected region,

˛
C

f(z) dz =

n∑
k=1

˛
Ck

f(z) dz. (160)

But for each k, we also have
˛
Ck

f(z) dz = 2πiResz=zk f(z). (161)
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So,

˛
C

f(z) dz = 2πi

n∑
k=1

Resz=zk f(z). (162)

62 Classification of Singularities

If the principal part of the Laurent series expansion of f is identically zero then
z0 is said to be a removable singularity.

If z0 is an isolated removable singularity for f for z 6= z0 but 0 < |z − z0| < R,
then

f(z) =

∞∑
n=0

an(z − z0)n + 0. (163)

At z = z0, the left-hand side is a0. So if we define

fext(z) =

{
f(z) 0 < |z − z0| < R

a0 z = z0

(164)

then

fext(z) =

∞∑
n=0

an(z − z0)n (165)

for all z such that |z − z0| < R. This is called an extension of f . We note that
fext(z) is analytic on BR(z0). We have just removed the removable singularity.

When the principal part of f is nonzero and contains a finite number of
summands

∞∑
n=1

bn
(z − z0)n

=
b1

(z − z0)
+ . . .

bm
(z − z0)m

(166)

and bk 6= 0∀k ≥ m + 1 then z0 is a pole of order m for f . When m = 1, z0 is
called a simple pole.

If the principal part of f is identically zero, then z0 is a removable singularity
for f , because f can be extended via its valid Taylor-Laurent series expansion
to an analytic function on BR(z0).

z0 is said to be an essential singularity of f it it is not removable or a pole,
i.e., the principle part of the Laurent series of f contains an infinite number of
non-zero terms.
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63 Residues with Φ theorem

Let z0 be an isolated singularity of f . Then z0 is a pole or order m if and only
if ∃ a function φ(z) which is non zero at z0, analytic at z0 and for which

f(z) =
φ(z)

(z − z0)m
(167)

for z ∈ a nbh of z0. In this case,

Resz=z0 f(z) =
φ(m−1)(z0)

(m− 1)!
. (168)

Proof. (→) Suppose that

f(z) =
φ(z)

(z − z0)m
(169)

where φ(z) is analytic at z0 and φ(z0) 6= 0. Then we have that φ(z) has a valid
Taylor series expansion in BR(z0):

φ(z) =

∞∑
n=0

φ(n)(z0)

n!
(z − z0)n. (170)

With this, we can write f(z) as

f(z) =
1

(z − z0)m

∞∑
n=0

φ(n)(z0)

n!
(z − z0)n

=

∞∑
n=0

φ(n)(z0)

n!
(z − z0)n−m

=

m−1∑
n=0

φ(n)(z0)

n!
(z − z0)n−m + (Taylor)

=

m∑
k=1

φ(n−k)(z0)

(m− k)!
(z − z0)k + (Taylor), (k = m− n). (171)

And so z0 is a pole of order m, since φ(0)(z0) 6= 0. And of course, we get for free

Resz=z0 f(z) =
φ(m−1)(z0)

(m− 1)!
. (172)

(←) Conversely, assume that f has a pole at z0 or order m. Then

f(z) =

∞∑
n=0

an(z − z0)n +

∞∑
n=1

bn
(z − z0)n

+ 0 . . .

=
1

(z − z0)m

[ ∞∑
n=0

an(z − z0)n+m +

∞∑
n=1

bn
(z − z0)n−m

]

:=
φ(z)

(z − z0)m
(173)
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where φ(z) is defined to be the expression in the square brackets. With this, we
see that φ(z) is analytic at z0 and φ(z0) = 0 + bm 6= 0 by hypothesis.

64 Residues with p-q theorem

Let p, q be analytic at z0. If p(z0) 6= 0, q′(z0) 6= 0, and p′(z0) = 0 then

f(z) =
p(z)

q(z)
(174)

has a simple pole of z0 and

Resz=z0 f(z) = Resz=z0
p(z)

q(z)
=

p(z0)

q′(z0)
. (175)

Proof. Since q′(z0) 6= 0, q has a simple zero at z0. So 1/q has a simple pole at
z0 and

Resz=z0
1

q
=

1

q′(z0)
. (176)

Since p(z0) 6= 0, we know that

Resz=z0
p

q
= p(z0) Resz=z0

1

q
=

p(z0)

q′(z0)
. (177)

Proof. This proof should be more elaborate than the previous proof:
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65 What happens near singularities?

If z0 is a pole of order m for f , then

lim
z→z0

f(z) =∞. (178)

66 Removable singularity - Boundedness - An-
alyticity (RBA)

If z0 is a removable singularity for f then f is bounded and analytic on a
punctured nbh of z0.

67 The converse of RBA

Let f be analytic on 0 < |z − z0| < δ for some δ > 0. If f is also bounded on
0 < |z − z0| < δ, then if z0 is a singularity for f , it must be removable.

Proof. By assumption, f has a Laurent series representation of the form

f(z) =

∞∑
n=0

an(z − z0)n +

∞∑
n=1

bn
(z − z0)n

(179)

where bn in particular is given by

bn =
1

2πi

˛
C

f(z)

(z − z0)−n+1
dz (180)

where C is a s.c.c.(+) in the annulus of the analyticity. In particular, if 0 < ρ <
δ, and Cρ := {z, |z − z0| = ρ}, (+) then

|bn| =

∣∣∣∣∣ 1

2πi

˛
Cρ

f(z)

(z − z0)−n+1
dz

∣∣∣∣∣ (181)

and if M is such that f(z) ≤M∀0 < |z − z0| < δ then

|bn| ≤
1

2π

M

ρ−n+1
2πρ = Mρn. (182)

Since this is valid ∀ρ < δ, we must have that bn = 0∀n.

68 Casorati-Weierstrass Theorem

Let f have an essential singularity at z0. Then ∀w0 ∈ C and ε > 0,

|f(z)− w0| < ε (183)
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for some z ∈ Bδ(z0)∀δ0.
⇐⇒ f is arbitrarily close to every complex number on every nbh of z0.
⇐⇒ ∀δ > 0, f(Bδ(z0) \ {z0}) is dense on C.
⇐⇒ f gets close to every single point in a ball for any ball.
⇐⇒ If z0 is an essential singularity for f then f attains, except for at most one
value, every complex number an infinite number of time on every nbh of z0.

Proof. Assume to reach a contradiction that ∃w0 ∈ C, ε, δ > 0 s.t.

|f(z)− w0| ≥ ε∀0 < |z − z0| < δ, (184)

i.e., f does not get close to some value w0 in some nbh of z0 of radius δ. Then,
consider

g(z) =
1

f(z)− w0
(185)

which is bounded and analytic on the punctured disk 0 < |z − z0| < δ. At
worst, z0 is a removable singularity for g. Also note that g(z) is not identically
zero since f is not constant (as f has a singularity). With this,

g(z) =

∞∑
k=0

ak(z − z0)k, (186)

which allows us to extend g to z0. Let m = min(k = 0, 1, 2, . . . ) such that
ak 6= 0, which exists because g 6= 0. Then

g(z) = (z − z0)m
∞∑
k=0

ak(z − z0)k−m = (z − z0)m
∞∑
k=0

ak+m(z − z0)k. (187)

Call the sum h(z), which h(z0) = am 6= 0. So, in Bδ(z0) \ {z0}, we have

f(z) = w0 +
1

g(z)
. (188)

If g(z0) 6= 0 ⇐⇒ m = 0, then this formula allows s to extend f to z0, which is
then analytic, which makes z0 a removable singularity. This is a contradiction.
If g(z0) = 0, then because m ≥ 1 (by definition) and

f(z) = w0 +
1

g(z)
=

w0g(z) + 1

(z − z0)mh(z)
:=

φ(z)

(z − z0)m
. (189)

We see that φ(z0) 6= 0, and φ(z) is analytic. So, z0 is a pole of order m of f .
This is also a contradiction.
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