Introductory Topics in
 Complex Analysis

Huan Q. Bui
Colby College
PHYSICS \& MATHEMATICS
Statistics

Class of 2021

February 19, 2021

Contents

1 de Moivre's Formula 4
2 Roots \& Things 4
3 Regions of the Complex Plane 4
4 Limits 5
5 Limits obtained via an admissible path 6
6 Existence of Limits 6
7 Connect to multi-variable calculus 6
8 Limit facts 6
9ϵ-neighborhood of ∞ 7
10 Limit facts involving ∞ 8
11 Continuity \& 3 Theorems 8
12 Differentiability 9
13 Differentiability Facts 9
14 The Chain Rule 10
15 The Cauchy-Riemann Equations 11
16 Analytic Functions: Differentiable on a Ball 11
17 Analytic Functions: Familiar, but Weird 12
18 Cauchy-Riemann Theorem for Analytic Functions 12
19 Analytic Function Facts 13
20 Harmonic Functions 13
21 Harmonic Conjugates 14
22 The Exponential Function 14
23 The Complex Logarithm 14
24 Branches 14
25 Contours 15
26 Contour Integrals 15
27 Lemma on Modulus \& Contours 15
28 Bound on Modulus of Contour Integrals 16
29 TFAE 17
30 Cauchy-Goursat Theorem 20
31 Simply-connected domain 20
32 Multiply-connected domain 20
33 Cauchy-Goursat Theorem for simply-connected domain 20
34 Corollary to Cauchy-Goursat for simply-connected domain 21
35 Cauchy-Goursat Theorem for multiply-connected regions 21
36 Principle of Path Deformation (Corollary to Cauchy-Goursat) 22
37 Cauchy's Integral Formula 22
38 Cauchy's Integral Formula for First-Order Derivative 23
39 Cauchy's Integral Formula for Higher-Order Derivatives 25
40 Analyticity of Derivatives 25
41 Analyticity of Derivatives on a Domain 25
42 Infinite Differentiability 25
43 Hörmander's Theorem 25
44 Morera's Theorem 26
45 Cauchy's Inequality 26
46 Liouville's Theorem 26
47 The Fundamental Theorem of Algebra 27
48 Corollary to The Fundamental Theorem of Algebra 27
49 The Maximum Modulus Principle 1 28
50 The Maximum Modulus Principle 2 28
51 Convergence of Sequences 29
52 Real and Imaginary parts of a convergent sequence 29
53 Cauchy sequences 29
54 Cauchy and Convergence 29
55 Series 30
56 Convergence of Series 30
57 Taylor's Theorem 31
58 Laurent's Theorem 33
59 More results about series 36
60 Residues 37
61 The Residue Theorem 37
62 Classification of Singularities 38
63 Residues with Φ theorem 39
64 Residues with p-q theorem 40
65 What happens near singularities? 41
66 Removable singularity - Boundedness - Analyticity (RBA) 41
67 The converse of RBA 41
68 Casorati-Weierstrass Theorem 41

1 de Moivre's Formula

$$
\begin{equation*}
(\cos \theta+\sin \theta)^{n}=\cos n \theta+i \sin n \theta . \tag{1}
\end{equation*}
$$

2 Roots \& Things

All roots of $z=r_{0} e^{i \theta}$ are of the form

$$
\begin{equation*}
z_{r}=r_{0}^{1 / n} \exp \left(\frac{\theta_{0}}{n}+\frac{2 k \pi}{n}\right) \tag{2}
\end{equation*}
$$

where $k=0,1,2, \ldots$

3 Regions of the Complex Plane

© The ϵ-neighborhood of z_{0} is the set of points

$$
\begin{equation*}
\mathcal{B}_{\epsilon}\left(z_{0}\right):=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<\epsilon\right\} . \tag{3}
\end{equation*}
$$

© The deleted ϵ-neighborhood (nbh) of z_{0} is the set

$$
\begin{equation*}
\mathcal{B}_{\epsilon}\left(z_{0}\right) \backslash\left\{z_{0}\right\}=\left\{z \in \mathbb{C}: 0<\left|z-z_{0}\right|<\epsilon\right\} . \tag{4}
\end{equation*}
$$

© z_{0} is an interior point of $S \subset \mathbb{C}$ if some ϵ-nbh is completely contained in S, i.e.,

$$
\begin{equation*}
\exists \mathcal{B}_{\epsilon}\left(z_{0}\right) \text { s.t. } \mathcal{B}_{\epsilon}\left(z_{0}\right) \subset S \tag{5}
\end{equation*}
$$

¢ z_{0} is an exterior point of S if $\exists \mathcal{B}_{\epsilon}\left(z_{0}\right)$ which does not intersect S.
4 If z_{0} is neither an interior nor an exterior point of S then it is called a boundary point of S. The set of boundary points of S is called the boundary of S.

中 z_{0} is a boundary point of $S \Longleftrightarrow \forall \epsilon>0, \mathcal{B}_{\epsilon}\left(z_{0}\right)$ contains at least one point in S and at least one point in S^{c}.
© A set \mathcal{O} is called open if it contains none of its boundary points.
© A set C is called closed if it contains all of its boundary points.
© The closure of a set S is the set $\operatorname{cl}(S)=S \cup \partial S$.
$\boldsymbol{\top}$ Let $\mathcal{O} \subset \mathbb{C} . \mathcal{O}$ is open $\Longleftrightarrow \forall z \in \mathcal{O}, \exists \epsilon>0, \mathcal{B}_{\epsilon}(z) \subset \mathcal{O}$.
© A set S is called path connected if $\forall z_{1}, z_{2} \in S$, there exists a continuous function $\gamma:[0,1] \rightarrow \mathbb{C}$ such that $\gamma(0)=z_{1}, \gamma(1)=z_{2}$ and $\gamma(t) \in S \forall t \in[0,1]$.
© A set S is bounded if $\exists R>0$ such that $S \subset \mathcal{B}_{R}(0)$.
4 A point z_{0} is called an accumulation point of a set S if $\forall \epsilon>0$,

$$
\begin{equation*}
\mathcal{B}_{\epsilon}\left(z_{0}\right) \backslash\left\{z_{0}\right\} \cap S \neq \emptyset \tag{6}
\end{equation*}
$$

i.e. every deleted nbh of z_{0} contains at least an element of S
© A set is closed if and only if it contains all of its accumulation points.

4 Limits

4 Let f be a function defined on some punctured nbh of z_{0}. We say that the limit of f is w_{0} as z approaches z_{0} and write

$$
\begin{equation*}
\lim _{z \rightarrow z_{0}} f(z)=w_{0} \tag{7}
\end{equation*}
$$

if $\forall \epsilon>0, \exists \delta>0$ such that

$$
\begin{equation*}
\left|f(z)-w_{0}\right|<\epsilon \text { whenever } 0<\left|z-z_{0}\right|<\delta \tag{8}
\end{equation*}
$$

for $z \in \operatorname{dom}(f)$.
© Proposition: Limits are unique.
Proof. Assume that

$$
\begin{align*}
\lim _{z \rightarrow z_{0}} f(z) & =w_{0} \\
\lim _{z \rightarrow z_{0}} f(z) & =w_{1} . \tag{9}
\end{align*}
$$

Given $\epsilon>0$, choose $\delta_{0}, \delta_{1}>0$ such that

$$
\begin{align*}
& \left|f(z)-w_{0}\right|<\epsilon \text { whenever } 0<\left|z-z_{0}\right|<\delta_{0} \\
& \left|f(z)-w_{1}\right|<\epsilon \text { whenever } 0<\left|z-z_{0}\right|<\delta_{1} . \tag{10}
\end{align*}
$$

Consider $\delta=\min \left\{\delta_{0}, \delta_{1}\right\}$. Then, we have for some z such that $0<\left|z-z_{0}\right|<\delta$,

$$
\begin{equation*}
\left|f(z)-w_{0}\right|<\epsilon \text { and }\left|f(z)-w_{1}\right|<\epsilon \tag{11}
\end{equation*}
$$

For this particular z,

$$
\begin{align*}
\left|w_{0}-w_{1}\right| & =\left|f(z)-w_{0}-f(z)+w_{1}\right| \\
& \leq\left|f(z)-w_{0}\right|+\left|f(z)-w_{1}\right| \\
& <\epsilon+\epsilon \\
& =2 \epsilon . \tag{12}
\end{align*}
$$

So, for any $\epsilon>0,\left|w_{1}-w_{0}\right|<2 \epsilon$. This means $w_{0}=w_{1}$.

5 Limits obtained via an admissible path

If $\lim _{z \rightarrow z_{0}} f(z)=w_{0}$, then given any continuous function γ satisfying

1. $\gamma:[0,1] \rightarrow \mathbb{R}^{2} \equiv \mathbb{C}$ is continuous
2. $\gamma(t) \neq z_{0} \forall t>0, \gamma(t) \in \operatorname{dom}(f) \forall t>0$
3. $\gamma(0)=z_{0}$
then $\lim _{t \rightarrow 0^{+}} f(\gamma(t))=w_{0}$. Any path satisfying the three conditions above is said to be admissible for f near z_{0}, or simply admissible.

6 Existence of Limits

If given any two admissible paths γ_{0}, γ_{1} we have

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} f\left(\gamma_{0}(t)\right) \neq \lim _{t \rightarrow 0^{+}} f\left(\gamma_{1}(t)\right) \tag{13}
\end{equation*}
$$

then $\lim _{z \rightarrow z_{0}} f(z)$ does not exist.

7 Connect to multi-variable calculus

Suppose that $f(z)=u(x, y)+i v(x, y)$ and $z_{0}=x_{0}+i y_{0}$. Then

$$
\lim _{z \rightarrow z_{0}} f(z)=w_{0}=a_{0}+i b_{0} \Longleftrightarrow\left\{\begin{array}{l}
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} u(x, y)=a_{0} \tag{14}\\
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} v(x, y)=b_{0}
\end{array}\right.
$$

8 Limit facts

Suppose that $\lim _{z \rightarrow z_{0}} f(z)=w_{0}$ and $\lim _{z \rightarrow z_{0}} F(z)=W_{0}$, then

1. $\lim _{z \rightarrow z_{0}} f(z)+F(z)=w_{0}+W_{0}$.
2. $\lim _{z \rightarrow z_{0}} f(z) F(z)=w_{0} W_{0}$.
3. If $W_{0} \neq 0$ then $\lim _{z \rightarrow z_{0}} f(z) / F(z)=w_{0} / W_{0}$.

Proof. We will prove the second statement. Let $z_{0}=x_{0}+i y_{0}$ and $f(z)=u+i v$ and $F(z)=U+i V$. Then

$$
\begin{equation*}
f(z) F(z)=(u U-v V)+i(u V+v U) \tag{15}
\end{equation*}
$$

Since the limits of f, F at z_{0} are given, we have

$$
\begin{align*}
& \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} u=u_{0} \\
& \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} v=U_{0} \\
& \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} U=v_{0} \\
& \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} V=V_{0} . \tag{16}
\end{align*}
$$

Applying to the algebra of limits for $\mathbb{R}^{2} \rightarrow \mathbb{R}$, we have

$$
\begin{equation*}
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}(u U-v V)=u_{0} U_{0}-v_{0} V_{0}=\operatorname{Re}\left(w_{0} W_{0}\right) \tag{17}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}(u V+v U)=u_{0} V_{0}+v_{0} U_{0}=\operatorname{Im}\left(w_{0} W_{0}\right) \tag{18}
\end{equation*}
$$

So, by the previous theorem, $\lim _{z \rightarrow z_{0}} f(z) F(z)=w_{0} W_{0}$.

$9 \quad \epsilon$-neighborhood of ∞

© Given $\epsilon>0$, we call the set $\mathcal{B}_{\epsilon}(\infty)=\{z \in \mathbb{C}:|z|>1 \epsilon\}$ the ϵ-nbh of ∞.
© Given $z_{0} \in \mathbb{C}$ and f defined on a nbh of z_{0}, we say that the limit of f as $z \rightarrow z_{0}$ is ∞ and write

$$
\begin{equation*}
\lim _{z \rightarrow z_{0}} f=\infty \tag{19}
\end{equation*}
$$

if $\forall \epsilon>0, \delta>0$ s.t. $f(z) \in \mathcal{B}_{\epsilon}(\infty)$ whenever $z \in \operatorname{dom}(f)$ and $z \in \delta-\operatorname{nbh}$ of z_{0}, i.e., $\forall \epsilon>0, \exists \delta>0$ s.t. $|f(z)|>1 / \epsilon$ whenever $0<\left|z-z_{0}\right|<\delta$.
© Additionally, we say $\lim _{z \rightarrow \infty} f(z)=w_{0}$ for $w_{0} \in \mathbb{C}$ if $\forall \epsilon>0, \exists \delta>0$ s.t. $f(z)$ lines in the ϵ-nbh of w_{0} whenever $z \in$ the δ-nbh of ∞, i.e., $\forall \epsilon>0, \exists \delta>0$ s.t. $\left|f(z)-w_{0}\right|<\epsilon$ whenever $|z|>1 / \delta$.
© Further, we say that the limit of f as $z \rightarrow \infty$ is ∞ if $\forall \epsilon>0, \exists \mathcal{B}_{\delta}(\infty)$ s.t. $f(z) \in \mathcal{B}_{\epsilon}(\infty)$ whenever $z \in \mathcal{B}_{\delta}(\infty)$.

10 Limit facts involving ∞

Let $z_{0}, w_{0} \in \mathbb{C}$, then

$$
\begin{align*}
& \lim _{z \rightarrow z_{0}} f(z)=\infty \Longleftrightarrow \lim _{z \rightarrow z_{0}} \frac{1}{f(z)}=0 \\
& \lim _{z \rightarrow \infty} f(z)=w_{0} \Longleftrightarrow \lim _{z \rightarrow 0} f\left(\frac{1}{z}\right)=w_{0} \\
& \lim _{z \rightarrow \infty} f(z)=\infty \Longleftrightarrow \lim _{z \rightarrow 0} \frac{1}{f\left(\frac{1}{z}\right)}=0 \tag{20}
\end{align*}
$$

Proof. We will prove (3). Suppose that $\lim _{z \rightarrow \infty} f(z)=\infty$. Let $\epsilon>0$ be given. Then $\exists \delta>0$ s.t. $|f(z)|>1 / \epsilon$ whenever $|z|>1 / \delta$. Then $1 /|f(z)|<\epsilon$ whenever $|z|>1 / \delta \Longleftrightarrow|w|=1 /|z|<\delta$. Thus, for any $0<|w|<\delta$, we have that

$$
\begin{equation*}
\left|\frac{1}{f(1 / w)}\right|=\frac{1}{|f(z)|}<\epsilon \tag{21}
\end{equation*}
$$

as long as $w=1 / z$, i.e., $\forall \epsilon>0, \exists \delta>0$ s.t. $|1 / f(1 / z)|<\epsilon$ whenever $|z|<\delta$. The converse is gotten by reversing the steps.

11 Continuity \& 3 Theorems

©Let f be defined on a full nbh of z_{0}. We say that f is continuous at z_{0} if the following hold:

1. $\lim _{z \rightarrow z_{0}} f(z)$ exists.
2. $f\left(z_{0}\right)$ exists.
3. $\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)$.
© Compositions of continuous functions: Suppose that f is continuous at z_{0} and g is continuous at $f\left(z_{0}\right)=w_{0}$ then $g \circ f\left(z_{0}\right)$ is continuous at z_{0}.

Proof. Let $\epsilon>0$ be given, then $\exists \gamma>0$ s.t. $\left|g(w)-g\left(w_{0}\right)\right|<\epsilon$ whenever $\left|w-w_{0}\right|<\gamma$. Given this $\gamma, \exists \delta>0$ s.t. $\left|f(z)-f\left(z_{0}\right)\right|<\gamma$ whenever $\left|z-z_{0}\right|<\delta$. So, whenever $\left|z-z_{0}\right|<\delta,\left|f(z)-f\left(z_{0}\right)\right|<\gamma$ and so $\left|g(w)-g\left(w_{0}\right)\right|<\epsilon$.
$\boldsymbol{*}$ If a continuous function is nonzero at a point then it is nonzero near that point: Suppose that f is continuous at z_{0} and $\left|f\left(z_{0}\right)\right| \neq 0, \exists \delta>0$ such that $f(z) \neq$ $0 \forall z \in \mathcal{B}_{\delta}\left(z_{0}\right)$.

Proof. Choose $\epsilon=\left|f\left(z_{0}\right) / 2\right|>0$. Then $\exists \delta>0$ such that $\left|f(z)-f\left(z_{0}\right)\right|<\epsilon=$ $\left|f\left(z_{0}\right) / 2\right| \forall\left|z-z_{0}\right|<\delta$. Then, for all such z, we have that

$$
\begin{align*}
\left|f\left(z_{0}\right)\right| & =\left|f\left(z_{0}\right)+f(z)-f(z)\right| \\
& \leq\left|f\left(z_{0}\right)-f(z)\right|+|f(z)| \\
& \leq \frac{\left|f\left(z_{0}\right)\right|}{2}+|f(z)| . \tag{22}
\end{align*}
$$

So, $\forall z \in \mathcal{B}_{\delta}\left(z_{0}\right)$, we have $\left|f\left(z_{0}\right)\right| / 2 \leq|f(z)|$.
© Continuous functions on a closed and bounded set is bounded: Let R be a closed and bounded subset of the complex plane. Let f be continuous on R. Then $\exists M \geq 0$ such that

$$
\begin{equation*}
|f(z)| \leq M \forall z \in R \tag{23}
\end{equation*}
$$

and $\exists z_{0} \in R$ at which $\left|f\left(z_{0}\right)\right|=M$.

12 Differentiability

©Let f be defined in a nbh of z_{0}. The derivative of f at z_{0} is the limit

$$
\begin{equation*}
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} \tag{24}
\end{equation*}
$$

and it is defined whenever this limit exists. When this limit exists, we say f is differentiable at z_{0}.
© If f is differentiable at z_{0}, it is continuous at z_{0}.
Proof. Since the limit of the difference quotient exists,

$$
\begin{align*}
\lim _{z \rightarrow z_{0}} f(z)-f\left(z_{0}\right) & =\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}\left(z-z_{0}\right) \\
& =\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} \lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) \\
& =f^{\prime}\left(z_{0}\right) \cdot 0 \\
& =0 \tag{25}
\end{align*}
$$

Thus, $\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)$, and so f is continuous at z_{0}.

13 Differentiability Facts

Let f, g be differentiable at z_{0} then

$$
\left\{\begin{array}{l}
D_{z}(f+g)\left(z_{0}\right)=f^{\prime}\left(z_{0}\right)+g^{\prime}\left(z_{0}\right) \\
D_{z} c f\left(z_{0}\right)=c f^{\prime}\left(z_{0}\right) \\
D_{z} f\left(z_{0}\right) g\left(z_{0}\right)=f^{\prime}\left(z_{0}\right) g\left(z_{0}\right)+f\left(z_{0}\right) g^{\prime}\left(z_{0}\right)
\end{array}\right.
$$

If, additionally, $g\left(z_{0}\right) \neq 0$, then f / g is differentiable at z_{0} and

$$
\begin{equation*}
D_{z} \frac{f}{g}\left(z_{0}\right)=\frac{f^{\prime}\left(z_{0}\right) g\left(z_{0}\right)-f\left(z_{0}\right) g^{\prime}\left(z_{0}\right)}{g^{2}\left(z_{0}\right)} \tag{26}
\end{equation*}
$$

Proof. We shall prove the product rule:

$$
\begin{align*}
& \lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right) g\left(z_{0}+\Delta z\right)-f\left(z_{0}\right) g\left(z_{0}\right)}{\Delta z} \\
= & \lim _{\Delta z \rightarrow 0} \frac{1}{\Delta z}\left[\left(f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)\right) g\left(z_{0}+\Delta z\right)+f\left(z_{0}\right) g\left(z_{0}+\Delta z\right)-f\left(z_{0}\right) g\left(z_{0}\right)\right] \\
= & \lim _{\Delta z \rightarrow 0} \frac{1}{\Delta z}\left[\Delta f g\left(z_{0}+\Delta z\right)+f\left(z_{0}\right) \Delta g\right] \\
= & g\left(z_{0}\right) f^{\prime}\left(z_{0}\right)+g^{\prime}\left(z_{0}\right) f\left(z_{0}\right), \tag{27}
\end{align*}
$$

where $g\left(z_{0}+\Delta z\right)$ exists by continuity.

14 The Chain Rule

Let f be differentiable at z_{0} and g be differentiable at $w_{0}=f\left(z_{0}\right)$. Then $F(z)=g \circ f(z)=g(f(z))$ is differentiable at z_{0} and $F^{\prime}\left(z_{0}\right) \equiv D_{z} g \circ f\left(z_{0}\right)=$ $g^{\prime}\left(f\left(z_{0}\right)\right) f^{\prime}\left(z_{0}\right)$.

Proof. On a nbh of w_{0}, define $\phi: N \rightarrow \mathbb{C}$ by

$$
\phi(w)=\left\{\begin{array}{l}
\frac{g(w)-g\left(w_{0}\right)}{w-w_{0}}-g^{\prime}\left(w_{0}\right) \quad w \neq w_{0} \tag{28}\\
0 \quad w=w_{0}
\end{array} .\right.
$$

Observe that because g is differentiable, $\lim _{w \rightarrow w_{0}} \phi(w)=0$. It follows that ϕ is continuous on its domain. Also, for $w \in N$,

$$
\begin{equation*}
\left(w-w_{0}\right) \phi(w)=\left(g(w)-g\left(w_{0}\right)\right)-g^{\prime}\left(w_{0}\right)\left(w-w_{0}\right) \tag{29}
\end{equation*}
$$

Given the continuity of f at z_{0}, we can choose $\delta>0$ such that for $z \in \mathcal{B}_{\delta}\left(z_{0}\right)$ we have $f(z)=w \in N=\mathcal{B}_{\epsilon}\left(w_{0}\right)$ because

$$
\begin{equation*}
\left|f(z)-f\left(z_{0}\right)\right|=\left|w-w_{0}\right|<\epsilon \tag{30}
\end{equation*}
$$

whenever $\left|z-z_{0}\right|<\delta$. So, $\forall z \in \mathcal{B}_{\delta}\left(z_{0}\right)$, we have that $\phi(f(z))$ makes sense. Also, for these values of $z \neq z_{0}$,

$$
\begin{align*}
\frac{F(z)-F\left(z_{0}\right)}{z-z_{0}} & =\frac{g(f(z))-g\left(f\left(z_{0}\right)\right)}{z-z_{0}} \\
& =\frac{g(w)-g\left(w_{0}\right)}{z-z_{0}} \\
& =\frac{\left(w-w_{0}\right) \phi(w)+g^{\prime}\left(w_{0}\right)\left(w-w_{0}\right)}{z-z_{0}} \\
& =\frac{\left(f(z)-f\left(z_{0}\right)\right) \phi(f(z))+g^{\prime}\left(f\left(z_{0}\right)\right)\left(f(z)-f\left(z_{0}\right)\right)}{z-z_{0}} . \tag{31}
\end{align*}
$$

Because $\phi(f(z))$ is continuous, $g^{\prime}\left(z_{0}\right)$ is simply a constant, and f is differentiable at z_{0}, we can easily see that

$$
\begin{equation*}
\lim _{z \rightarrow z_{0}} \frac{F(z)-F\left(z_{0}\right)}{z-z_{0}}=f^{\prime}\left(z_{0}\right) \phi\left(f\left(z_{0}\right)\right)+g^{\prime}\left(f\left(z_{0}\right)\right) f^{\prime}\left(z_{0}\right) \tag{32}
\end{equation*}
$$

But $\phi\left(f\left(z_{0}\right)\right)=\phi\left(w_{0}\right)=0$ by definition, so we have

$$
\begin{equation*}
F^{\prime}\left(z_{0}\right)=g^{\prime}\left(f\left(z_{0}\right)\right) f^{\prime}\left(z_{0}\right) \tag{33}
\end{equation*}
$$

15 The Cauchy-Riemann Equations

Let $f(z)=u(x, y)+i v(x, y)$ be defined on a nbh of $z_{0}=x_{0}+i y_{0}$. Suppose that

1. u, v have partial derivative on a nbh of z_{0}.
2. All first order partial derivative are continuous on this nbh of z_{0} and the C-R equations:

$$
\begin{equation*}
u_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right) ; \quad u_{y}\left(x_{0}, y_{0}\right)=-v_{x}\left(x_{0}, y_{0}\right) \tag{34}
\end{equation*}
$$

are satisfied.
Then f is differentiable at z_{0} and

$$
\begin{equation*}
f^{\prime}\left(z_{0}\right)=u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right) \tag{35}
\end{equation*}
$$

Proof. The proof is not that bad, but it is quite technical. So I won't try to reproduce it here.

16 Analytic Functions: Differentiable on a Ball

© A function f is analytic at a point $z \in \mathbb{C}$ if it is differentiable on same nbh f z_{0}, i.e., at every point in $\mathcal{B}_{\delta}\left(z_{0}\right)$ for some $\delta>0$.
$\boldsymbol{\uparrow} f$ is said to be analytic on an open set \mathcal{O} if it is analytic at each $z \in \mathcal{O}$.
↔ If f is analytic on a set S, we say it is analytic on an open set $\mathcal{O} \subset S$.
@ Vocabulary: Analytic \equiv Holomorphic.
© A function f is said to be entire if it is analytic on \mathbb{C}.
$\boldsymbol{\oplus}$ If $z_{0} \in \mathbb{C}$ is such that f is analytic at every point in a nbh centered at z_{0} but not at z_{0} (i.e., analytic on $\left.\mathcal{B}_{\delta}\left(z_{0}\right) \backslash\left\{z_{0}\right\}\right)$ we say z_{0} is a singular point for f.
© Suppose f, g are analytic on an open set \mathcal{O} then $f \pm g, f g$ are also analytic on \mathcal{O}. If $g(z) \neq 0 \forall z \in \mathcal{O}$ then f / g is also analytic on \mathcal{O}.
© The set of analytic functions on an open set \mathcal{O} form a commutative ring, denoted $\operatorname{Hol}(\mathcal{O})$.

17 Analytic Functions: Familiar, but Weird

Suppose \mathcal{D} is a domain (open, nonempty, path connected) and f is analytic on \mathcal{D}. If $f^{\prime}(z)=0 \forall z \in \mathcal{D}$ then f is constant on \mathcal{D}.

Proof. Given $z_{0}, z_{1} \in \mathcal{D}, \exists$ a path $\gamma(t):[0,1] \rightarrow \mathcal{D}$ such that $\gamma(0)=z_{0}, \gamma(1)=$ z_{1}, and γ is a continuous. Next, consider $h(t)=\operatorname{Re}(f \circ \gamma(t))=u(\gamma(t))$, where $f=u+i v$. By C-R, we have that $f=u+i v$ with u, v both differentiable. And so $h(t)$ is differentiable on $[0,1]$, and by the mulvar chain rule

$$
\begin{equation*}
h^{\prime}(t)=u_{x}(\gamma(t)) \gamma_{1}^{\prime}(t)+u_{y}(\gamma(t)) \gamma_{2}^{\prime}(t) \tag{36}
\end{equation*}
$$

with $\gamma(t)=\left(\gamma_{1}(t), \gamma_{2}(t)\right) \forall t \in[0,1]$. By MVT, $\exists c \in(0,1)$ s.t.

$$
\begin{align*}
h(1)-h(0) & =h^{\prime}(c)(1-0) \\
& =h^{\prime}(c) \\
& =u_{x}(\gamma(c)) \gamma_{1}^{\prime}(c)+u_{y}(\gamma(c)) \gamma_{2}^{\prime}(c) \\
& =u_{x}(\gamma(c)) \gamma_{1}^{\prime}(c)-v_{x}(\gamma(c)) \gamma_{2}^{\prime}(c) \tag{37}
\end{align*}
$$

where the last equality follows from C-R. But we also know that $f^{\prime}=u_{x}+i v_{x}=$ $0 \Longleftrightarrow u_{x}=v_{x}=0$. So $\exists c \in(0,1)$ such that $h(1)-h(0)=0 \Longleftrightarrow h(1)=h(0)$. With this,

$$
\begin{equation*}
\operatorname{Re}\left(f\left(z_{0}\right)\right)=\operatorname{Re}(f(\gamma(0)))=h(0)=h(1)=\operatorname{Re}(f(\gamma(1)))=\operatorname{Re}\left(f\left(z_{1}\right)\right) \tag{38}
\end{equation*}
$$

Similarly we can show $\operatorname{Im}\left(f\left(z_{0}\right)\right)=\operatorname{Im}\left(f\left(z_{1}\right)\right)$. Therefore, $f\left(z_{0}\right)=f\left(z_{1}\right) \forall z_{0}, z_{1} \in$ \mathcal{D}. And so f is constant on \mathcal{D}.

18 Cauchy-Riemann Theorem for Analytic Functions

Let f be a function defined on an open set $\mathcal{O} \subset \mathbb{C}$ men f is analytic on \mathcal{O} if and only if for $f=u+i v$

1. u, v have first-order partial derivatives on all of \mathcal{O}.
2. $u_{x}, u_{y}, v_{x}, v_{y}$ are continuous on all of \mathcal{O}.
3. C-R equations are satisfied, i.e., $u_{x}=v_{y}, u_{y}=-v_{x}$ on all of \mathcal{O}.

19 Analytic Function Facts

© Suppose f, \bar{f} are both analytic on \mathcal{D} then f is constant.
Proof. Using the C-R theorem. Suppose that $f=u+i v$ and $\bar{f}=U+i V$ where $u=U, v=-V$. Because f, \bar{f} are both analytic we have

$$
\begin{align*}
& u_{x}=v_{y} ; u_{y}=-v_{x} \\
& U_{x}=V_{y} ; U_{y}=-V_{x} \tag{39}
\end{align*}
$$

on all of \mathcal{D}. So $u_{x}=U_{x}=V_{y}=-v_{y}=-u_{x} \Longleftrightarrow u_{x}=0$ on all of \mathcal{D}. Similarly, $v_{x}=0$ on all of \mathcal{D}. It follows that $f^{\prime}=u_{x}+i v_{x}=0$ on all of \mathcal{D}. By the previous theorem, we have that f must be constant.
© If $|f(z)|=C \forall z \in \mathcal{D}$ where \mathcal{D} is a domain and f is analytic on \mathcal{D}, then f is constant on \mathcal{D}.

Proof. If $C=0$ then the statement is true. If $C \neq 0$, then

$$
\begin{equation*}
f \overline{(z)} f(z)=|f(z)|^{2}=C^{2}>0 \tag{40}
\end{equation*}
$$

Because $f(z) \neq 0 \forall z \in \mathcal{D}$ and is analytic on all of \mathcal{D},

$$
\begin{equation*}
f \overline{(z)}=\frac{C^{2}}{f(z)} \tag{41}
\end{equation*}
$$

is also analytic. This says that both \bar{f}, f are analytic on \mathcal{D}. Therefore, f must be constant.

20 Harmonic Functions

© A function U is said to be harmonic on a set \mathcal{O} if

$$
\begin{equation*}
\Delta u=u_{x x}+u_{y y} \equiv 0 \tag{42}
\end{equation*}
$$

on \mathcal{O}. This equation is called Laplace's equation.
↔ If $f=u+i v$ is analytic in D and u, v are twice differentiable with continuous partials in \mathcal{D} then u, v are harmonic in \mathcal{D}.

Proof. By C-R, $u_{x}=v_{y} ; u_{y}=-v_{x}$. So, $u_{x x}=v_{y x}=v_{y x}=u_{y y}$. So $\Delta u=0$. Similarly, $\Delta v=0$.

母 If $f=u+i v$ is analytic on a domain \mathcal{D} then u, v are harmonic in \mathcal{D}.

21 Harmonic Conjugates

Given a harmonic function u on \mathcal{D} and another harmonic function v on \mathcal{D}. If u, v satisfy the C-R equations, then we say v is a harmonic conjugate of u. Note that this relation is not symmetric.

4 A function $f=u+i v$ on a domain \mathcal{D} is analytic if and only if v is a harmonic conjugate of u.

Proof. If f is analytic, then u, v satisfying the C-R equation by C-R theorem. So v is a harmonic conjugate of u. Conversely, if v is a harmonic conjugate of u then C-R hold everywhere in D. By C-R theorem, f is analytic on \mathcal{D}.

22 The Exponential Function

This function is so nice there's nothing to say about it.

23 The Complex Logarithm

$\boldsymbol{\phi}$ In general, for $z=r e^{i \theta} \neq 0$.

$$
\begin{equation*}
\log (z)=\ln (|z|)+i(\theta+2 \pi n) \tag{43}
\end{equation*}
$$

where $\theta=\arg (z)$.
© The principal value of \log is given by

$$
\begin{equation*}
\log (z)=\ln (|z|)+i \theta_{-\pi} \tag{44}
\end{equation*}
$$

where $\theta_{-\pi}=\operatorname{Arg}(z) \in(-\pi, \pi]$.
© $\log (z)=\ln (1)+i \pi=i \pi$.
4 Some properties for complex log don't work the way we expect: e.g. sum of logs is not the same as the log of powers. Tip: double-check everything and use only the "safe" properties.

24 Branches

© Given $\alpha \in \mathbb{R}$, define the α-branch of \log by

$$
\begin{equation*}
\log _{\alpha}(z)=\ln |z|+i \theta_{\alpha} \tag{45}
\end{equation*}
$$

where θ_{α} is the argument of $z \neq 0$ which lives between α and $\alpha+2 \pi$.
© $e^{\log _{\alpha}(z)}=z$, but $\log \left(e^{z}\right) \neq z$ in general.
© The $\log _{\alpha}$ function is not continuous. However, if we cut away the α-branch of \log then $\log _{\alpha}$ is not only continuous but also analytic on this restricted domain.

25 Contours

A contour C is a path/curve with parameterization $z \in C^{0}([a, b], \mathbb{C})$ where z is differentiable at all but a finite number of points in $[a, b]$. Everywhere else it is continuously differentiable and non-degenerate. In other words, a contour is smooth arcs pieced together.

26 Contour Integrals

Suppose C is a contour with parameterization $z \in C^{0}([a, b], \mathbb{C})$ and $f: \mathcal{O} \subset$ $\mathbb{C} \rightarrow \mathbb{C}$. We define the contour integral of f along \mathbb{C} (direction matters) as

$$
\begin{equation*}
\int_{C} f(z) d z=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t \tag{46}
\end{equation*}
$$

This makes sense because z^{\prime} exists everywhere except a finite number of points which don't contribute to the integral. In addition, the contour integral is independent of parameterization up to direction of integration.

27 Lemma on Modulus \& Contours

Let $w \in C^{0}([a, b], \mathbb{C})$ then

$$
\begin{equation*}
\left|\int_{a}^{b} w(t) d t\right| \leq \int_{a}^{b}|w(t)| d t \tag{47}
\end{equation*}
$$

Proof. This is essentially the triangle inequality. Let

$$
\begin{equation*}
r_{0}=\left|\int_{a}^{b} w d t\right| \tag{48}
\end{equation*}
$$

If $r_{0}=0$ then the statement is obvious. Now suppose $r_{0}>0$. In this case,
$\exists \theta_{0} \in \mathbb{R}$ such that

$$
\begin{align*}
\int_{a}^{b} w d t=r_{0} e^{i \theta_{0}} \Longrightarrow r_{0} & =e^{-i \theta_{0}} \int_{a}^{b} w d t \\
& =\int_{a}^{b} w e^{-i \theta_{0}} d t \in \mathbb{R} \\
& =\operatorname{Re}\left(\int_{a}^{b} w e^{-i \theta_{0}} d t\right) \\
& =\int_{a}^{b} \operatorname{Re}\left(w e^{-i \theta_{0}}\right) d t \tag{49}
\end{align*}
$$

But

$$
\begin{equation*}
\operatorname{Re}\left(w e^{-i \theta_{0}}\right) \leq\left|\operatorname{Re}\left(w e^{-i \theta_{0}}\right)\right| \leq\left|e^{-i \theta_{0}} w\right|=|w| \forall t \in[a, b] \tag{50}
\end{equation*}
$$

And so

$$
\begin{equation*}
\left|\int_{a}^{b} w d t\right|=r_{0} \leq \int_{a}^{b}|w| d t \tag{51}
\end{equation*}
$$

28 Bound on Modulus of Contour Integrals

Let C be a contour and let $f: \operatorname{Dom}(f) \rightarrow \mathbb{C}$ be piecewise continuous on C. If $|f(z)| \leq M \forall z \in \mathbb{C}$, then

$$
\begin{equation*}
\left|\int_{C} f(z) d z\right| \leq M \mathcal{L}(C) \tag{52}
\end{equation*}
$$

where $\mathcal{L}(C)$ is the arclength of C.
Proof. This result follows from the previous lemma. Let $z(t):[a, b] \rightarrow \mathbb{C}$ be a parameterization, then

$$
\begin{align*}
\left|\int_{C} f d z\right| & =\left|\int_{a}^{b} f(z(t)) z^{\prime}(t) d t\right| \\
& \leq \int_{a}^{b}\left|f(z(t)) z^{\prime}(t)\right| d t \\
& \leq \int_{a}^{b}|f(z(t))|\left|z^{\prime}(t)\right| d t \\
& \leq M \int_{a}^{b}\left|z^{\prime}(t)\right| d t \\
& =M \mathcal{L}(C) \tag{53}
\end{align*}
$$

29 TFAE

Let f be continuous on \mathcal{D}. The following are equivalent (TFAE):

1. $f(z)$ has an antiderivative $F(z)$ throughout \mathcal{D}.
2. Given any $z_{1}, z_{2} \in \mathcal{D}$ and contours $C_{1}, C_{2} \subset \mathcal{D}$ both going from z_{1} to z_{2},

$$
\begin{equation*}
\oint_{C_{1}} f(z) d z=\oint_{C_{2}} f(z) d z . \tag{54}
\end{equation*}
$$

In other words, the integral is independent of contour.
3. Given any close contour $C \subset \mathcal{D}$,

$$
\begin{equation*}
\int_{C} f(z) d z=0 \tag{55}
\end{equation*}
$$

In the case that one (and hence every) condition is satisfied, we have that for any $z_{1}, z_{2} \in \mathcal{D}$ and contour C from $z_{1} \rightarrow z_{2} \subset \mathcal{D}$,

$$
\begin{equation*}
\int_{C} f(z) d z=F\left(z_{2}\right)-F\left(z_{1}\right) \tag{56}
\end{equation*}
$$

where F 's existence is guaranteed by (1).
Proof. (2 $\Longleftrightarrow 3)$ Suppose (2) is valid and let C be a closed contour in \mathcal{D}. Then C contains 2 points z_{1}, z_{2} and we can divide C into 2 pieces $C_{1}+C_{2}$ where $C_{1}: z_{1} \rightarrow z_{2}$ and $C_{2}: z_{2} \rightarrow z_{1}$.

Note that by reversing the direction of C_{2}, we ave both C_{1} and $-C_{2}$ go from z_{1} to z_{2} and stay inside of \mathcal{D}. Thus,

$$
\begin{equation*}
\oint_{C} f d z=\int_{C_{1}} f d z-\int_{-C_{2}} f d z \tag{57}
\end{equation*}
$$

By (2), we have that

$$
\begin{equation*}
\int_{C_{1}} f d z=\int_{C_{2}} f d z \tag{58}
\end{equation*}
$$

This means

$$
\begin{equation*}
\oint_{C} f(z) d z=0 \tag{59}
\end{equation*}
$$

So (2) $\Longrightarrow(3)$.
Now, assume (3) is true and let $z_{0}, z_{1} \in \mathcal{D}$. Let $C_{1}, C_{2} \subset \mathcal{D}$ be contours going from z_{0} to z_{1}. We observe that $C:=C_{1}-C_{2}$ is a s.c.c. in \mathcal{D}. So by (3),

$$
\begin{equation*}
0=\oint_{C} f d z=\int_{C_{1}-C_{2}} f d z=\int_{C_{1}} f d z-\int_{C_{2}} f d z \tag{60}
\end{equation*}
$$

$(1 \Longleftrightarrow 2)$ Assume (1) is true. Let $z_{0}, z_{1} \in \mathcal{D}$ and let C be a contour from $z_{0} \rightarrow z_{1}$, i.e., $C: z(t) \in C([a, b], \mathbb{C})$ piecewise differentiable, $z(a)=z_{0}$ and $z(b)=z_{1}$. As F is an antiderivative of f, for all $t \in[a, b]$ for which $z^{\prime}(t)$ exists the chain rule gives

$$
\begin{equation*}
\frac{d}{d t} F(z(t))=F^{\prime}(z(t)) z^{\prime}(t)=f(z(t)) z^{\prime}(t) \tag{61}
\end{equation*}
$$

So,

$$
\begin{equation*}
\oint_{C} f d z=\sum_{k=1}^{n} \int_{a_{k}}^{b_{k}} f(z(t)) z^{\prime}(t) d t=\sum_{k=1}^{n} \int_{a_{k}}^{b_{k}} \frac{d}{d t} F(z(t)) d t \tag{62}
\end{equation*}
$$

where a_{k}, b_{k} are points at which z fails to be differentiable, $a_{1}=a, b_{n}=b$. By the fundamental theorem of calculus,

$$
\begin{align*}
\oint_{C} f d z & =\sum_{k=1}^{n} \int_{a_{k}}^{b_{k}} \frac{d}{d t} F(z(t)) d t \\
& =\sum_{k=1}^{n} F\left(z\left(b_{k}\right)\right)-F\left(z\left(a_{k}\right)\right) \\
& =F(b)-F(a)=F\left(z_{1}\right)-F\left(z_{0}\right) . \tag{63}
\end{align*}
$$

So, given any 2 contours $C_{1}, C_{2} \in \subset \mathcal{D}$ from $z_{0} \rightarrow z_{1}$, we have

$$
\begin{equation*}
\int_{C_{1}} f d z=F\left(z_{1}\right)-F\left(z_{0}\right)=\int_{C_{2}} f d z \tag{64}
\end{equation*}
$$

Now, assume (2) is true. We need to construct an antiderivative F. Let $z_{0} \in \mathcal{D}$ and define $F: \mathcal{D} \rightarrow \mathbb{C}$ by

$$
\begin{equation*}
F(z)=\int_{C_{z}} f(w) d w \tag{65}
\end{equation*}
$$

where C_{z} is a contour from $z_{0} \rightarrow z_{1}$. Since \mathcal{D} is a domain, it is a path connected, and so for each z, a path C_{z} exists. By (2) this is not dependent on the choice of contour C_{z}. So F is well-defined. We wish to show that $F(z)$ is differentiable and its derivative is f.

Let $z \in \subset \mathcal{D}$ and choose $\epsilon>0$. Given th continuity of f, let δ be chosen so that
1.

$$
\begin{equation*}
|f(w)-f(z)|<\frac{\epsilon}{2} \forall|w-z|<\delta \tag{66}
\end{equation*}
$$

2. $\mathcal{B}_{\delta}(z) \subset \mathcal{D}$ (or \mathcal{D} is open.)

Given a $\Delta z \in \mathbb{C}$ such that $\Delta z<\delta$, we consider a path $C_{z, \Delta z}$ defined by $w(t)=z+t \Delta z, t \in[0,1]$. We have that $C_{z}+C_{z, \Delta z}$ is a contour in \mathcal{D} from $z_{0} \rightarrow z+\Delta z$. Then,

$$
\begin{align*}
\frac{1}{\Delta z}(F(z+\Delta z)-F(z)) & =\frac{1}{\Delta z}\left(\int_{C_{z}+C_{z, \Delta z}} f(w) d w-\int_{C_{z}} f(w) d w\right) \\
& =\frac{1}{\Delta z} \int_{C_{z, \Delta z}} f(w) d w \\
& =\frac{1}{\Delta z} \int_{0}^{1} f(z+t \Delta z)(z+t \Delta z)^{\prime} d t \\
& =\int_{0}^{1} f(z+t \Delta z) d t \tag{67}
\end{align*}
$$

So, for $|\Delta z|<\delta$,

$$
\begin{align*}
\left|\frac{F(z+\Delta z)-F(z)}{\Delta z}-f(z)\right| & =\left|\int_{0}^{1} f(z+t \Delta z) d t-f(z)\right| \\
& =\left|\int_{0}^{1}[f(z+t \Delta z)-f(z)] d t\right| \\
& \leq \int_{0}^{1}|f(z+t \Delta z)-f(z)| d t \\
& \leq \int_{0}^{1} \frac{\epsilon}{2} d t \\
& \leq \frac{\epsilon}{2} \\
& <\epsilon \tag{68}
\end{align*}
$$

by choice of δ. So, we have shown that given $z \in \mathcal{D}$ and $\epsilon>0$, there exists $\delta>0$ such that

$$
\begin{equation*}
\left|\frac{F(z+\Delta z)-F(z)}{\Delta z}-f(z)\right|<\epsilon \tag{69}
\end{equation*}
$$

whenever $|\Delta z|<\delta$. So, F is differentiable at z and $F^{\prime}(z)=f(z)$.

30 Cauchy-Goursat Theorem

Suppose that C is a simple closed contour and f is analytic on the interior of C and all points of C then

$$
\begin{equation*}
\oint_{C} f(z) d z=0 \tag{70}
\end{equation*}
$$

Proof. The proof involves slicing the interior of C into squares and partial squares. I won't try to reproduce it here.

31 Simply-connected domain

A domain \mathcal{D} is called simply-connected if every simple closed contour $C \subset \mathcal{D}$ contains only points of \mathcal{D} and its interior, i.e., every simple closed contour is contractible to a point.

32 Multiply-connected domain

A multiply-connected domain \mathcal{D} is a dmain which is not simply-connected. (very imaginative)

33 Cauchy-Goursat Theorem for simply-connected domain

Let \mathcal{D} be a simply connected domain. f is analytic in \mathcal{D}. For all closed contour $C \subset \mathcal{D}$,

$$
\begin{equation*}
\oint_{C} f(z) d z=0 \tag{71}
\end{equation*}
$$

Proof. Notice that we C need not be simple. Consider the figure

Let C be a closed contour in \mathcal{D} with a finite number of self-intersections. Given that C only has n interactions, we can split C into a finite number m
of simple closed contour C_{j}. Also, given \mathcal{D} is simply connected, the interior of each C_{j} lives in \mathcal{D}. By the previous theorem, we have

$$
\begin{equation*}
\oint_{C_{j}} f(z) d z=0 \forall j=1,2,3, \cdots \Longrightarrow \oint_{C} f(z) d z=\oint_{\sum C_{j}} f(z) d z=0 . \tag{72}
\end{equation*}
$$

34 Corollary to Cauchy-Goursat for simply-connected domain

If f is analytic on a simply connected domain in \mathcal{D} then f has an antiderivative F everywhere in \mathcal{D}.

Proof. TFAE.

35 Cauchy-Goursat Theorem for multiply-connected regions

Suppose that

1. C is a s.c.c. $(+)$.
2. $C_{j}, j=1,2, \ldots, n$ are s.c.c.(-), all disjoint and all live in the interior of C.

If f is analytic on $C, C_{j} \forall j$ and the region between C, C_{j} (enclosed by C but outside of C_{j}) then

$$
\begin{equation*}
\oint_{C} f(z) d z+\sum_{j=1}^{n} \oint_{C_{j}} f(z) d z=0 \tag{73}
\end{equation*}
$$

Proof. The proof follows from the this figure

36 Principle of Path Deformation (Corollary to Cauchy-Goursat)

Let C_{1} and C_{2} be simple closed curves and C_{2} encloses C_{1}. Both are (+) oriented. Then if f is analytic on the region between C_{1}, C_{2} then

$$
\begin{equation*}
\int_{C_{1}} f(z) d z=\int_{C_{2}} f(z) d z \tag{74}
\end{equation*}
$$

Proof. Consider the following suggestive figure:

37 Cauchy's Integral Formula

Let C be a s.c.c. $(+)$ and let f be analytic on C and its interior. If z_{0} lives interior to C then

$$
\begin{equation*}
f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{z-z_{0}} d z . \tag{75}
\end{equation*}
$$

Proof. Let $\delta<1$ be small enough such that $\left|z-z_{0}\right|<\delta$ so that C encloses z. Since the quotient $f(z) /\left(z-z_{0}\right)$ is analytic in the region exterior to $\mathcal{B}_{\delta}\left(z_{0}\right)$ and interior to C, we have that

$$
\begin{equation*}
\oint_{C} \frac{f(z)}{z-z_{0}} d z=\oint_{C_{\rho}} \frac{f(z)}{z-z_{0}} d z \tag{76}
\end{equation*}
$$

where $\rho<\delta$ and C_{ρ} is a $(+)$ circle centered at z_{0} of radius ρ. The equality is guaranteed by the principle of deformation of path.

Now, consider

$$
\begin{align*}
\mathcal{E} & =\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{z-z_{0}}-f\left(z_{0}\right) \\
& =\frac{1}{2 \pi i} \oint_{C_{\rho}} \frac{f(z)}{z-z_{0}}-\frac{f\left(z_{0}\right)}{2 \pi i} \oint_{C_{\rho}} \frac{1}{z-z_{0}} d z \\
& =\frac{1}{2 \pi i}\left(\oint_{C_{\rho}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z\right) \tag{77}
\end{align*}
$$

Given that $f(z)$ is continuous at $z_{0}, \forall \epsilon>0, \exists \rho>0$ s.t. $\left|f(z)-f\left(z_{0}\right)\right|<\epsilon$ whenever $\left|z-z_{0}\right|<2 \rho<\delta$. Since $\left|z-z_{0}\right|=\rho<2 \rho$ on C_{ρ}, we have

$$
\begin{equation*}
\left|\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}\right|=\frac{1}{\rho}\left|f(z)-f\left(z_{0}\right)\right|<\frac{\epsilon}{\rho} \text { on } C_{\rho} . \tag{78}
\end{equation*}
$$

So,

$$
\begin{equation*}
|\mathcal{E}| \leq \frac{1}{2 \pi} \frac{\epsilon}{\rho} \mathcal{L}\left(C_{\rho}\right)=\epsilon \tag{79}
\end{equation*}
$$

So, given any $\epsilon>0,|\mathcal{E}| \leq \epsilon$. This says that

$$
\begin{equation*}
\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{z-z_{0}} d z=f\left(z_{0}\right) \tag{80}
\end{equation*}
$$

38 Cauchy's Integral Formula for First-Order Derivative

Let C s.c.c. $(+)$ and let f be analytic on the interior of C and on C. Then if $z_{0} \in \operatorname{int}(C)$ then

$$
\begin{equation*}
f^{\prime}\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z \tag{81}
\end{equation*}
$$

Proof. Let $M=\max |f(z)|$ where $z \in C$. Given $z_{0} \in \operatorname{int}(C)$, let $d=\min \left|z-z_{0}\right|>$ 0 where $z \in C$. Let $h=\Delta z$ is such that $|h|=|\Delta z|<d$. Using Cauchy's integral formula,

$$
\begin{equation*}
f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{z-z_{0}} d z \tag{82}
\end{equation*}
$$

Because $|h|<d, z_{0}+h \in \operatorname{int}(C)$. So,

$$
\begin{equation*}
f\left(z_{0}+h\right)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{z-\left(z_{0}+h\right)} d z \tag{83}
\end{equation*}
$$

Now, observe that

$$
\begin{align*}
\mathcal{E} & =\frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h}-\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z \\
& =\frac{1}{h} \frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{z-\left(z_{0}+h\right)} d z-\frac{1}{h} \frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{z-z_{0}} d z-\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z \\
& =\ldots \\
& =\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{2}} \frac{h}{z-\left(z_{0}+h\right)} d z \tag{84}
\end{align*}
$$

for all $z \in \operatorname{int}(C), d \leq\left|z-z_{0}\right|$. So,

$$
\begin{equation*}
\frac{1}{\left|z-z_{0}\right|^{2}} \leq \frac{1}{d^{2}} \tag{85}
\end{equation*}
$$

Also, $0 \leq d-|h| \leq\left|z-\left(z_{0}+h\right)\right| \forall|h|<d$. So for all $z \in C$, whenever $|h|<d$,

$$
\begin{equation*}
\left|\frac{f(z)}{\left(z-z_{0}\right)^{2}} \frac{h}{z-\left(z_{0}+h\right)}\right| \leq \frac{M|h|}{d^{2}(d-|h|)} \tag{86}
\end{equation*}
$$

So, whenever $|h|<d$, we have

$$
\begin{equation*}
|\mathcal{E}| \leq \frac{1}{2 \pi} \frac{M|h|}{d^{2}(d-|h|)} \mathcal{L}(C)=\frac{M|h|}{2 \pi d^{2}(d-|h|)} \mathcal{L}(C) \tag{87}
\end{equation*}
$$

Let $\epsilon>0$ be given and choose

$$
\begin{equation*}
\delta=\min \left[\frac{d}{2}, \frac{\pi d^{3}}{M \mathcal{L}(C)}\right] \tag{88}
\end{equation*}
$$

then whenever $|h|<\delta \leq \frac{d}{2}<d$,

$$
\begin{equation*}
\frac{1}{d-|h|} \leq \frac{1}{d / 2} \tag{89}
\end{equation*}
$$

With this,

$$
\begin{equation*}
\mathcal{E} \leq \frac{M|h|}{2 \pi d^{3} / 2} \mathcal{L}(C)<\frac{M \mathcal{L}(C)}{\pi d^{3}} \frac{\pi d^{3} \epsilon}{M \mathcal{L}(C)}=\epsilon \tag{90}
\end{equation*}
$$

So,

$$
\begin{equation*}
f^{\prime}\left(z_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h}=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z . \tag{91}
\end{equation*}
$$

39 Cauchy's Integral Formula for Higher-Order Derivatives

Let C be s.c.c. $(+)$ and f analytic on C and its interior. Then $\forall z_{0} \in \operatorname{int}(C)$, and $n \in \mathbb{N}, f$ is n-times differentiable at z_{0} and

$$
\begin{equation*}
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z . \tag{92}
\end{equation*}
$$

40 Analyticity of Derivatives

If f is analytic at z_{0} then f has derivatives of all orders which are also analytic at z_{0}.

Proof. We simply applying the preceding theorem.

41 Analyticity of Derivatives on a Domain

If \mathcal{D} is a domain and f is analytic on \mathcal{D} then f has derivatives of all orders and each derivative is analytic on \mathcal{D}. This means f is infinitely differentiable on \mathcal{D}.

42 Infinite Differentiability

Let $f(z)=u(x, y)+i v(x, y)$ be analytic at $z_{0}=\left(x_{0}, y_{0}\right)$. Then u, v have continuous partial derivatives of all orders at z_{0}. Further, if $f=u+i v$ is analytic on \mathcal{D}, then u, v are infinitely differentiable in \mathcal{D}, i.e., $u, v \in C^{\infty}(\mathcal{D})$.

Proof. The proof follows from Cauchy-Riemann theorem and equations.

43 Hörmander's Theorem

If u is harmonic in a domain \mathcal{D} then u is smooth $\Longleftrightarrow u \in C^{\infty}(\mathcal{D})$.
Proof. If u is harmonic then u has a harmonic conjugate v. Then $f=u+i v$ is analytic, etc.

44 Morera's Theorem

Let f be continuous on \mathcal{D}. If for all closed $C \subset \mathcal{D}$,

$$
\begin{equation*}
\oint_{C} f(z) d z=0 \tag{93}
\end{equation*}
$$

then f is analytic on \mathcal{D}.
Proof. The proof follows from TFAE. By TFAE, f has an antiderivative F throughout \mathcal{D}. But F is analytic because $f^{\prime}=F$. This means F 's derivatives are analytic throughout \mathcal{D} as well. So, f is analytic throughout \mathcal{D}.

45 Cauchy's Inequality

Let f be analytic on and inside a $(+)$ circle C with center z_{0} and radius R. Let $M_{R}=\max [|f(z)|], z \in C_{R}$. Then $\forall n \in \mathbb{N}$,

$$
\begin{equation*}
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!M_{R}}{R^{n}} \tag{94}
\end{equation*}
$$

Proof. This follows from Cauchy's integral formula and the triangle inequality:

$$
\begin{align*}
\left|f^{(n)}\left(z_{0}\right)\right| & =\left|\frac{n!}{2 \pi i} \oint_{C_{R}} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z\right| \\
& \leq \frac{n!}{2 \pi} \frac{M_{R}}{R^{n+1}}(2 \pi R) \\
& =\frac{n!M_{R}}{R^{n}} \tag{95}
\end{align*}
$$

46 Liouville's Theorem

If f is bounded and entire and f is constant.
Proof. Let $M \geq 0$ for which $|f(z)| \leq M \forall z \in \mathbb{C}$. Given any $z_{0} \in \mathbb{C}, f$ is analytic on every neighborhood of z_{0} and so $\forall R>0$,

$$
\begin{equation*}
\left|f^{\prime}\left(z_{0}\right)\right| \leq \frac{1!M_{R}}{R} \tag{96}
\end{equation*}
$$

where $M_{R}=\max |f(z)| \leq M$ where $z \in C_{R}\left(z_{0}\right)$. So, for any $z_{0} \in \mathbb{C}, R>0$,

$$
\begin{equation*}
\left|f^{\prime}\left(z_{0}\right)\right| \leq \frac{M}{R} \tag{97}
\end{equation*}
$$

This shows $f^{\prime}\left(z_{0}\right)=0 \forall z_{0} \in \mathbb{C}$. So, f is constant because \mathbb{C} is a domain.

47 The Fundamental Theorem of Algebra

If $P(z)$ is a non constant polynomial, i.e.,

$$
\begin{equation*}
P(z)=a_{0}+a_{1} z^{1}+\cdots+a_{n} z^{n} \tag{98}
\end{equation*}
$$

where $a_{n} \neq 0, n=\operatorname{deg}(P)$, then $\exists z_{0} \in \mathbb{C}$ at which $P\left(z_{0}\right)=0$.
Proof. Let

$$
\begin{equation*}
w=\frac{a_{0}}{z^{n}}+\frac{a_{1}}{z^{n-1}}+\cdots+\frac{a_{n-1}}{z} \tag{99}
\end{equation*}
$$

and note that

$$
\begin{equation*}
P(z)=\left(w+a_{n}\right) z^{n} . \tag{100}
\end{equation*}
$$

We observe that z^{k} from $k \in\{1,2,3, \ldots\}$ has $1 / z^{k} \rightarrow 0$ has $z \rightarrow \infty$. So, given $\epsilon=\left|a_{n}\right| / 2$, there exists $R>0$ for which

$$
\begin{equation*}
|w| \leq \frac{\left|a_{n}\right|}{2} \forall|z|>R \tag{101}
\end{equation*}
$$

So, for $|z|>R$,

$$
\begin{equation*}
\left|w+a_{n}\right| \geq\left||w|-\left|a_{n}\right|\right|=\left|a_{n}\right|-|w| \geq \frac{\left|a_{n}\right|}{2} \tag{102}
\end{equation*}
$$

So,

$$
\begin{equation*}
\left|\frac{1}{P(z)}\right|=\frac{1}{\left|w+a_{n}\right|\left|z^{n}\right|} \leq \frac{2}{\left|a_{n}\right|} \frac{1}{\left|z^{n}\right|} \leq \frac{2}{\left|a_{n}\right|} \frac{1}{R^{n}} \tag{103}
\end{equation*}
$$

where $|z|>R$. Now, suppose that $P(z) \neq 0 \forall z \in \mathbb{C}$ to get a contradiction. Since $P(z)$ is never vanishes, $f(z)=1 / P(z)$ is entire. Since, in particular, $f(z)$ is continuous, it is bounded on all closed bounded set. So, $\exists M>0$ such that $|f(z)| \leq M \forall z,|z| \leq R$. So, by what we've just shown

$$
\begin{equation*}
\left|\frac{1}{P(z)}\right| \leq \max \left[M, \frac{2}{\left|a_{n}\right| R^{n}}\right] \tag{104}
\end{equation*}
$$

So, we have $f(z)$ is bounded and entire. By Liouville's theorem, $1 / P(z)$ must be constant. This is a contradiction.

48 Corollary to The Fundamental Theorem of Algebra

If $P(z)$ has degree n, then there exists $c \in \mathbb{C}$ and $z_{1}, z_{2}, \ldots, z_{n} \in \mathbb{C}$ such that

$$
\begin{equation*}
P(z)=c\left(z-z_{1}\right) \ldots\left(z-z_{n}\right) \tag{105}
\end{equation*}
$$

49 The Maximum Modulus Principle 1

Suppose that an analytic function f has $|f(z)|$ maximized at z_{0} in some nbh $\mathcal{B}_{\epsilon}\left(z_{0}\right)$ for some $\epsilon>0$. Then $f(z)$ is constant on $\mathcal{B}_{\epsilon}\left(z_{0}\right)$.
Proof. Take $0<\rho<\epsilon$ and by invoking Cauchy's integral formula, we have

$$
\begin{align*}
f\left(z_{0}\right) & =\frac{1}{2 \pi i} \oint_{C_{\rho}} \frac{f(z)}{z-z_{0}} d z \\
& =\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{f\left(z_{0}+\rho e^{i t}\right)}{z_{0}+\rho e^{i t}-z_{0}} i \rho e^{i t} d t \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+\rho e^{i t}\right) d t \tag{106}
\end{align*}
$$

So

$$
\begin{align*}
\left|f\left(z_{0}\right)\right| & =\frac{1}{2 \pi}\left|\int_{0}^{2 \pi} f\left(z_{0}+\rho e^{i t}\right) d t\right| \\
& \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \underbrace{\left|f\left(z_{0}+\rho e^{i t}\right)\right|}_{\leq\left|f\left(z_{0}\right)\right|} d t \\
& \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(z_{0}\right)\right| d t=\left|f\left(z_{0}\right)\right| \tag{107}
\end{align*}
$$

This says

$$
\begin{equation*}
\left|f\left(z_{0}\right)\right|=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(z_{0}+\rho e^{i t}\right)\right| d t \tag{108}
\end{equation*}
$$

so

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} \underbrace{\left|f\left(z_{0}\right)\right|-\left|f\left(z_{0}+\rho e^{i t}\right)\right|}_{\geq 0} d t \tag{109}
\end{equation*}
$$

This says $\forall t \in[0,2 \pi]$ and $\forall \rho<\epsilon$

$$
\begin{equation*}
\left|f\left(z_{0}\right)\right|=\left|f\left(z_{0}+\rho e^{i t}\right)\right| \tag{110}
\end{equation*}
$$

This is true for all $\rho<\epsilon$, so $|f(z)|=\left|f\left(z_{0}\right)\right|$ for all $z \in \mathcal{B}_{\epsilon}\left(z_{0}\right)$.

50 The Maximum Modulus Principle 2

Let f be analytic and non-constant on a domain \mathcal{D} (open and connected), then $|f(z)|$ cannot be maximized in \mathcal{D}.

Proof. Assume to reach a contradiction that f is maximized at $z_{0} \in \mathcal{D}$. Let $z_{1} \in \mathcal{D}$ be arbitrary. Then by the following figure

we get a contradiction, using the maximum modulus principle 1 , as desired.

51 Convergence of Sequences

Consider a sequence $\left\{z_{n}\right\}=\left(z_{0}, z_{1}, \ldots\right)$ of complex numbers. Write $\left\{z_{n}\right\} \in \mathbb{C}$. We say that the sequence converges if $\exists z \in \mathbb{C}$ for which the following holds: $\forall \epsilon>0, \exists N=N_{\epsilon} \in \mathbb{N}$ s.t.

$$
\begin{equation*}
\left|z-z_{n}\right|<\epsilon \forall n \geq N \tag{111}
\end{equation*}
$$

In this sense, we also say that $\left\{z_{n}\right\}$ converges to z and call z the limit of the sequence:

$$
\begin{equation*}
z=\lim _{n \rightarrow \infty} z_{n} \tag{112}
\end{equation*}
$$

52 Real and Imaginary parts of a convergent sequence

Let $z_{n}=x_{n}+i y_{n}$ be a sequence, then $z_{n} \rightarrow z=x+i y$ if and only if $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ in the sense of real numbers.

53 Cauchy sequences

A sequence $\left\{z_{n}\right\}$ is called a Cauchy sequence if $\forall \epsilon>0, \exists N \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|z_{n}-z_{m}\right|<\epsilon \forall n, m \geq N \tag{113}
\end{equation*}
$$

54 Cauchy and Convergence

A sequence is convergent if and only if it is Cauchy.

55 Series

Consider a sequence $\left\{z_{n}\right\}_{n=0}^{\infty}$ and the series formed with the sequential elements as its terms:

$$
\begin{equation*}
\sum_{n=0}^{\infty} z_{k}=z_{0}+z_{1}+z_{2}+\ldots \tag{114}
\end{equation*}
$$

where, a priori, we don't assume they add to anything. This series convergences if $\left\{S_{N}\right\}$ where

$$
\begin{equation*}
S_{N}=\sum_{n=0}^{N} z_{k} \tag{115}
\end{equation*}
$$

is a convergent sequence, i.e.,

$$
\begin{equation*}
S=\lim _{N \rightarrow \infty} S_{N} \tag{116}
\end{equation*}
$$

exists.

56 Convergence of Series

๑ Given $z_{n}=x_{n}+i y_{n}$ then $\sum z_{n}$ converges to $x+i y \Longleftrightarrow \sum x_{n} \rightarrow x$ and $\sum y_{n} \rightarrow y$.
© If $\sum z_{n}$ converges then $\lim _{n \rightarrow \infty} z_{n}=0$. The converse also holds.
Proof. Let $\epsilon>0$ be given. Then that $\sum z_{n}$ converges, $\left\{S_{N}\right\}$ also converges. So, $\left\{S_{N}\right\}$ is Cauchy, so $\exists M \in \mathcal{N}$ such that

$$
\begin{equation*}
\left|S_{n}-S_{m}\right|<\epsilon \tag{117}
\end{equation*}
$$

whenever $n, m \geq M$. Setting $n=m+1$ we have

$$
\begin{equation*}
\left|z_{n}\right|=\left|S_{n+1}-S_{n}\right|<\epsilon \tag{118}
\end{equation*}
$$

© A series $\sum z_{n}$ is said to be absolutely convergent if $\sum\left|z_{n}\right|$ is convergent as a series of real, non-negative numbers.
$\boldsymbol{4}$ If $\sum z_{n}$ is absolute convergent than $\sum z_{n}$ is convergent.
Proof. Here is a sketch of the proof:

$$
\begin{equation*}
\left|S_{N}-S_{M}\right|=\left|\sum_{k=N+1}^{M} z_{k}\right| \leq \sum_{k=N+1}^{M}\left|z_{k}\right| \tag{119}
\end{equation*}
$$

due to the triangle inequality. With this inequality, the Cauchyness of $\sum\left|z_{k}\right|$ implies the Cauchyness of $\sum z_{k}$.
^ The series $\sum_{n=0}^{\infty} z_{n}$ converges to $S \Longleftrightarrow \lim _{N \rightarrow \infty} \rho_{N}=0$ where $\rho_{N}=$ $S-S_{N}=S-\sum_{n=0}^{N} z_{n}$ and S is some number that is to be the sum of the series.
© "Geometric series":

$$
\begin{equation*}
S_{N}=\frac{1-z^{N+1}}{1-z}=\sum_{n=0}^{N} z^{n} \tag{120}
\end{equation*}
$$

© For any $z \in \mathbb{C}$ such that $|z|<1, \sum_{n=0}^{\infty}$ converges and its sum is $1 /(1-z)$.
Proof. For each $N \in \mathcal{N}$,

$$
\begin{equation*}
\rho_{N}=\frac{1}{1-z}-\sum_{n=0}^{N} z^{n}=\frac{1}{1-z}-\frac{1-z^{N+1}}{1-z}=\frac{z^{N+1}}{1-z} \tag{121}
\end{equation*}
$$

Since $|z|<1, \lim _{N \rightarrow \infty} z^{N+1}=0$. So, $\lim _{N \rightarrow \infty} \rho_{N}=0$. So, by one of the previous theorems, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z} \tag{122}
\end{equation*}
$$

57 Taylor's Theorem

Let $f(z)$ be analytic on a disk $\mathcal{B}_{R_{0}}\left(z_{0}\right)$, then for any $z \in \mathcal{B}_{R_{0}}\left(z_{0}\right)$,

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n} \tag{123}
\end{equation*}
$$

Remarks:

1. In particular, the series $\sum_{n=0}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}$ converges.
2. The sum is f.
3. For real functions $h: \mathbb{R} \rightarrow \mathbb{R}$. If h is differentiable on an open set containing x_{0}, it might not be twice differentiable.
4. For infinitely differentiable functions, now the series makes sense, but we might have h being representable by a Taylor series that is infinitely differentiable, but not equal to its Maclaurin series. For example:

$$
h(x)=\left\{\begin{array}{l}
e^{-1 / x^{2}} \quad x \neq 0 \tag{124}\\
0 \quad x=0
\end{array}\right.
$$

Proof. Without loss of generality, assume that $z_{0}=0$ and consider $\mathcal{B}_{R_{0}}\left(z_{0}\right)$ on which f is analytic. Let $z \in \mathcal{B}_{R_{0}}\left(z_{0}\right)$. Let $\left|z_{0}\right|<|z|<R_{0}$, and define a s.c.c. $(+)$ C centered at $z_{0}=0$ of radius R_{0}. Since z lives in the interior of C, Cauchy integral formula says

$$
\begin{equation*}
f(z)=\frac{1}{2 \pi i} \oint_{C} \frac{f(w)}{w-z} d w \tag{125}
\end{equation*}
$$

Since $w \neq 0$, we write

$$
\begin{equation*}
\frac{1}{w-z}=\frac{1}{w} \frac{1}{1-z / w}=\sum_{n=0}^{N} \frac{z^{n}}{w^{n+1}}+\frac{1}{w-z}\left(\frac{z}{w}\right)^{N+1} \tag{126}
\end{equation*}
$$

which is made possible by the fact that

$$
\begin{equation*}
\frac{1}{1-a}=\frac{1-a^{N+1}}{1-a}+\frac{a^{N+1}}{1-a}=\sum_{n=0}^{N} a^{n}+\frac{a^{N+1}}{1-a} \tag{127}
\end{equation*}
$$

Next, by Cauchy's derivative formula,

$$
\begin{equation*}
f^{(n)}(0)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(w)}{(w-0)^{n+1}} d w \tag{128}
\end{equation*}
$$

So we have

$$
\begin{equation*}
a_{n}=\frac{f^{(n)}(0)}{n!}=\frac{1}{2 \pi i} \oint_{C} \frac{f(w)}{(w-0)^{n+1}} d w \tag{129}
\end{equation*}
$$

Next, let the error be

$$
\begin{align*}
\rho_{N} & =f(z)-\sum_{n=0}^{N} a_{n} z^{n} \\
& =\frac{1}{2 \pi i} \oint_{C} \frac{f(w)}{w-z} d w-\sum_{n=0}^{N} \frac{f^{(n)}(0)}{n!}=\frac{1}{2 \pi i} \oint_{C} \frac{f(w)}{(w-0)^{n+1}} z^{n} d w \\
& =\frac{1}{2 \pi i} \oint_{C} f(w)\left[\frac{1}{w-z}-\sum_{n=0}^{N} \frac{z^{n}}{w^{n+1}}\right] d w \\
& =\frac{1}{2 \pi i} \oint_{C} f(w) \frac{(z / w)^{N+1}}{w-z} d w \tag{130}
\end{align*}
$$

Set

$$
\begin{equation*}
d=\min |w-z| \quad z \in C \tag{131}
\end{equation*}
$$

and

$$
\begin{equation*}
M=\max |f(z)| \quad z \in \mathcal{B}_{R_{0}}\left(z_{0}=0\right) \tag{132}
\end{equation*}
$$

then

$$
\begin{align*}
\left|\rho_{N}\right| & =\frac{1}{2 \pi}\left|\oint_{C} f(w) \frac{(z / w)^{N+1}}{w-z} d w\right| \\
& \leq \frac{1}{2 \pi} \frac{|z / w|^{N+1}}{d} M \mathcal{L}(C) \\
& =\frac{M|z / w|^{N+1}}{d} r_{0} \tag{133}
\end{align*}
$$

So, we have shown that given $z \in \mathcal{B}_{R_{0}}(0), \exists|z|<r_{0}<R_{0}$ for which

$$
\begin{equation*}
\left|\rho_{N}\right| \leq M \frac{|z|^{N+1}}{d \cdot r_{0}^{N}}=\left(\frac{M|z|}{d}\right)\left(\frac{|z|}{r_{0}}\right)^{N} \forall N \in \mathbb{N} \tag{134}
\end{equation*}
$$

Since we've chosen $|z|<r_{0}<R_{0},|z| / r_{0}<1$. Given $\epsilon>0, \exists N_{0} \in \mathbb{N}$ for which $\forall N \geq N_{0}$,

$$
\begin{equation*}
\left(\frac{|z|}{r_{0}}\right)^{N}<\frac{\epsilon d}{M|z|} \tag{135}
\end{equation*}
$$

So, for all $N \geq N_{0}$,

$$
\begin{equation*}
\left|\rho_{N}\right| \leq \frac{M|z|}{d}\left(\frac{|z|}{r_{0}}\right)^{N}<\epsilon \tag{136}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
f(z)=\lim _{N \rightarrow \infty} S_{N}=\lim _{N \rightarrow \infty} \sum_{n=0}^{N} a_{n} z^{n}=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^{n} . \tag{137}
\end{equation*}
$$

58 Laurent's Theorem

Let f be analytic on a region \mathcal{D} defined by $R_{1}<\left|z-z_{0}\right|<R_{2}$, and let a simple closed contour C endowed with a positive orientation in this annulus be given. Then, for each $z \in \mathcal{D}$,

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{-n+1}} \tag{138}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{n}=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z \quad b_{n}=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{-n+1}} d z \tag{139}
\end{equation*}
$$

Proof. Without loss of generality, assume $z_{0}=0$. Let C_{1}, C_{2}, s.c.c.(+) be given such that C_{2} encloses $C_{1}, z, C ; C$ encloses C_{1}, and the exterior of C_{1} contains z, C. Also, let γ be a s.c.c. $(+)$ around z, exterior to C_{1} but interior to C_{2}. An appeal to Cauchy-Goursat for multiply-connected domain shows that

$$
\begin{equation*}
\oint_{C_{2}} \frac{f(s)}{s-z} d s-\oint_{C_{1}} \frac{f(s)}{s-z} d s-\oint_{C_{\gamma}} \frac{f(s)}{s-z} d s=0 \tag{140}
\end{equation*}
$$

Next, by Cauchy integral formula,

$$
\begin{align*}
f(z) & =\frac{1}{2 \pi i} \oint_{C_{\gamma}} \frac{f(s)}{s-z} d s \\
& =\oint_{C_{2}} \frac{f(s)}{s-z} d s-\oint_{C_{1}} \frac{f(s)}{s-z} d s \\
& =\oint_{C_{2}} \frac{f(s)}{s-z} d s+\oint_{C_{1}} \frac{f(s)}{z-s} d s \tag{141}
\end{align*}
$$

For the first integral, we can make the following replacement

$$
\begin{align*}
\frac{1}{s-z} & =\frac{1}{s}\left(\frac{1}{1-z / s}\right) \\
& =\sum_{n=0}^{N-1} \frac{z^{n}}{s^{n+1}}+\frac{1}{s-z}\left(\frac{z}{s}\right)^{N} . \tag{142}
\end{align*}
$$

For the second integral, we can make the following replacement (interchanging
the role of s and z)

$$
\begin{align*}
\frac{1}{z-s} & =\frac{1}{z}\left(\frac{1}{1-s / z}\right) \\
& =\sum_{n=0}^{N-1} \frac{s^{n}}{z^{n+1}}+\frac{1}{z-s}\left(\frac{s}{z}\right)^{N} \\
& =\sum_{n=1}^{N} \frac{s^{n-1}}{z^{n}}+\frac{1}{z-s}\left(\frac{s}{z}\right)^{N} \\
& =\sum_{n=1}^{N} \frac{z^{-n}}{s^{-n+1}}+\frac{1}{z-s}\left(\frac{s}{z}\right)^{N} . \tag{143}
\end{align*}
$$

And so we have

$$
\begin{align*}
f(z) & =\frac{1}{2 \pi i} \oint_{C_{2}} f(s)\left[\sum_{n=0}^{N-1} \frac{z^{n}}{s^{n+1}}+\frac{1}{s-z}\left(\frac{z}{s}\right)^{N}\right] z^{n} d z \\
& +\frac{1}{2 \pi i} \oint_{C_{1}} f(s)\left[\sum_{n=1}^{N} \frac{z^{-n}}{s^{-n+1}}+\frac{1}{z-s}\left(\frac{s}{z}\right)^{N}\right] z^{-n} d z \\
& =\sum_{n=0}^{N-1} \underbrace{\left[\frac{1}{2 \pi i} \oint_{C_{2}} \frac{f(s)}{s^{n+1}} d s\right]}_{\alpha_{n}} z^{n}+\sum_{n=1}^{N} \underbrace{\left[\frac{1}{2 \pi i} \oint_{C_{1}} \frac{f(s)}{s^{-n+1}} d s\right]}_{\beta_{n}} z^{-n}+\rho_{N}+\sigma_{N} \tag{144}
\end{align*}
$$

where

$$
\begin{align*}
\rho_{N} & =\frac{1}{2 \pi i} \oint_{C_{2}} \frac{f(s)}{s-z}\left(\frac{z}{s}\right)^{N} d s \tag{145}\\
\sigma_{N} & =\frac{1}{2 \pi i} \oint_{C_{1}} \frac{f(s)}{z-s}\left(\frac{s}{z}\right)^{N} d s \tag{146}
\end{align*}
$$

Now, on C_{2},

$$
\begin{equation*}
\frac{1}{|s-z|} \leq \frac{1}{R_{2}-R} \tag{147}
\end{equation*}
$$

and on C_{1},

$$
\begin{equation*}
\frac{1}{|z-s|} \leq \frac{1}{R-R_{1}} \tag{148}
\end{equation*}
$$

where $R=|z|, R_{1}<R<R_{2}$. Setting $M=\max |f(s)|$ where $s \in C_{1} \cap C_{2}$, by triangle inequality, we have that

$$
\begin{equation*}
\left|\rho_{N}\right|=\frac{1}{2 \pi}\left|\oint_{C_{2}} \frac{f(s)}{s-z}\left(\frac{z}{s}\right)^{N} d s\right| \leq \frac{1}{2 \pi} \frac{M}{R_{2}-R}\left(\frac{R}{R_{2}}\right)^{N} 2 \pi R_{2}=\frac{M}{1-R / R_{2}}\left(\frac{R}{R_{2}}\right)^{N} \tag{149}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\left|\sigma_{N}\right| \leq \frac{M}{1-R_{1} / R}\left(\frac{R_{1}}{R}\right)^{N} \tag{150}
\end{equation*}
$$

We see that $\rho_{N} \rightarrow 0, \sigma \rightarrow 0$ as $N \rightarrow \infty$. It follows (with ϵ 's and N 's similar to those in the proof of Taylor's theorem) that

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} \alpha_{n} z^{n}+\sum_{n=1}^{\infty} \beta_{n} z^{-n} \tag{151}
\end{equation*}
$$

And by corollary to Cauchy-Goursat for multiply-connected regions,

$$
\begin{align*}
\alpha_{n} & =\frac{1}{2 \pi i} \int_{C}() d s=a_{n} \\
\beta_{n} & =\frac{1}{2 \pi i} \int_{C}() d s=b_{n} \tag{152}
\end{align*}
$$

for all n.

59 More results about series

Consider a power series

$$
\begin{equation*}
S(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \tag{153}
\end{equation*}
$$

1. If $S(z)$ converges at some $z_{1} \neq z_{0}$ the $S(z)$ converges on $\mathcal{B}_{R}\left(z_{0}\right)$ where $\left|z_{0}-z_{1}\right| \leq R$.
2. The series converges uniformly and absolutely on every ball \mathcal{B} properly contained in $\mathcal{B}_{R}\left(z_{0}\right)$.
3. On $\mathcal{B}_{R}\left(z_{0}\right), S(z)$ is analytic, $S^{\prime}(z)=\sum_{n=1}^{\infty} n a_{n}\left(z-z_{0}\right)^{n-1}$.
4. If C is a s.c.c. $(+)$ and g is continuous on C and $C \subset \mathcal{B}_{R}\left(z_{0}\right)$ then

$$
\begin{equation*}
\oint_{C} f g d z=\sum_{n=0}^{\infty} \oint_{C} a_{n} g(z)\left(z-z_{0}\right)^{n} d z \tag{154}
\end{equation*}
$$

5. Uniqueness of Laurent series: If $S(z)=\sum_{n \in \mathbb{Z}} c_{n}\left(z-z_{0}\right)^{n}$ converges on an annulus $R_{1} \leq\left|z-z_{0}\right| \leq R_{2}$ then this is precisely the Laurent series of S at z_{0}.

60 Residues

For C a s.c.c. $(+)$, let f have singularities at $z_{1}, z_{2}, \ldots, z_{n}$ enclosed by C. Then all the z_{k} 's are isolated singularities, and there exist punctured disks $\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots, \mathcal{B}_{n}$ inside C which are on-overlapping whose centers contains z_{k} 's, respectively.

Next, suppose that f has an isolated singularity at z_{0}. Then f has a Laurent series expansion on an annulus $0<\left|z-z_{0}\right|<R$ with

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}} \tag{155}
\end{equation*}
$$

Further, for any s.c.c. $(+) C_{k}$,

$$
\begin{equation*}
b_{n}=\frac{1}{2 \pi i} \oint_{C_{k}} \frac{f(z)}{\left(z-z_{0}\right)^{-n+1}} d z \forall n=1,2,3, \ldots \tag{156}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
b_{1}=\frac{1}{2 \pi i} \oint_{C_{k}} f(z) d z \tag{157}
\end{equation*}
$$

We shall call this coefficient of $1 /\left(z-z_{0}\right)$ in the Laurent series expansion the residue of f at z_{0}, denoted

$$
\begin{equation*}
b_{1}:=\operatorname{Res}_{z=z_{0}} f(z) \tag{158}
\end{equation*}
$$

This gives us a way to compute integrals by finding Laurent series expansions.

61 The Residue Theorem

Let C be a s.c.c. $(+)$ and suppose that f is analytic on C and the interior to C except at a finite number of points $z_{1}, z_{2}, \ldots, z_{n}$, all enclosed by C. Then

$$
\begin{equation*}
\oint_{C} f(z) d z=2 \pi i \sum_{k=1}^{n} \operatorname{Res}_{z=z_{k}} f(z) . \tag{159}
\end{equation*}
$$

Proof. Take $C_{1}, C_{2}, \ldots, C_{n}$ to be non-intersecting s.c.c.(+) inside C where each enclosed only the singular point z_{k}, respectively. Then f is analytic on $\operatorname{Int}(C) \backslash$ $\cup^{n} \operatorname{Int} C_{k}$. By Cauchy-Goursat for multiply-connected region,

$$
\begin{equation*}
\oint_{C} f(z) d z=\sum_{k=1}^{n} \oint_{C_{k}} f(z) d z . \tag{160}
\end{equation*}
$$

But for each k, we also have

$$
\begin{equation*}
\oint_{C_{k}} f(z) d z=2 \pi i \operatorname{Res}_{z=z_{k}} f(z) . \tag{161}
\end{equation*}
$$

So,

$$
\begin{equation*}
\oint_{C} f(z) d z=2 \pi i \sum_{k=1}^{n} \operatorname{Res}_{z=z_{k}} f(z) . \tag{162}
\end{equation*}
$$

62 Classification of Singularities

If the principal part of the Laurent series expansion of f is identically zero then z_{0} is said to be a removable singularity.

If z_{0} is an isolated removable singularity for f for $z \neq z_{0}$ but $0<\left|z-z_{0}\right|<R$, then

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+0 \tag{163}
\end{equation*}
$$

At $z=z_{0}$, the left-hand side is a_{0}. So if we define

$$
f_{e x t}(z)=\left\{\begin{array}{l}
f(z) \quad 0<\left|z-z_{0}\right|<R \tag{164}\\
a_{0} \quad z=z_{0}
\end{array}\right.
$$

then

$$
\begin{equation*}
f_{e x t}(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \tag{165}
\end{equation*}
$$

for all z such that $\left|z-z_{0}\right|<R$. This is called an extension of f. We note that $f_{\text {ext }}(z)$ is analytic on $\mathcal{B}_{R}\left(z_{0}\right)$. We have just removed the removable singularity.

When the principal part of f is nonzero and contains a finite number of summands

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}}=\frac{b_{1}}{\left(z-z_{0}\right)}+\ldots \frac{b_{m}}{\left(z-z_{0}\right)^{m}} \tag{166}
\end{equation*}
$$

and $b_{k} \neq 0 \forall k \geq m+1$ then z_{0} is a pole of order m for f. When $m=1, z_{0}$ is called a simple pole.

If the principal part of f is identically zero, then z_{0} is a removable singularity for f, because f can be extended via its valid Taylor-Laurent series expansion to an analytic function on $\mathcal{B}_{R}\left(z_{0}\right)$.
z_{0} is said to be an essential singularity of f it it is not removable or a pole, i.e., the principle part of the Laurent series of f contains an infinite number of non-zero terms.

63 Residues with Φ theorem

Let z_{0} be an isolated singularity of f. Then z_{0} is a pole or order m if and only if \exists a function $\phi(z)$ which is non zero at z_{0}, analytic at z_{0} and for which

$$
\begin{equation*}
f(z)=\frac{\phi(z)}{\left(z-z_{0}\right)^{m}} \tag{167}
\end{equation*}
$$

for $z \in$ a nbh of z_{0}. In this case,

$$
\begin{equation*}
\operatorname{Res}_{z=z_{0}} f(z)=\frac{\phi^{(m-1)}\left(z_{0}\right)}{(m-1)!} \tag{168}
\end{equation*}
$$

Proof. (\rightarrow) Suppose that

$$
\begin{equation*}
f(z)=\frac{\phi(z)}{\left(z-z_{0}\right)^{m}} \tag{169}
\end{equation*}
$$

where $\phi(z)$ is analytic at z_{0} and $\phi\left(z_{0}\right) \neq 0$. Then we have that $\phi(z)$ has a valid Taylor series expansion in $\mathcal{B}_{R}\left(z_{0}\right)$:

$$
\begin{equation*}
\phi(z)=\sum_{n=0}^{\infty} \frac{\phi^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n} \tag{170}
\end{equation*}
$$

With this, we can write $f(z)$ as

$$
\begin{align*}
f(z) & =\frac{1}{\left(z-z_{0}\right)^{m}} \sum_{n=0}^{\infty} \frac{\phi^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n} \\
& =\sum_{n=0}^{\infty} \frac{\phi^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n-m} \\
& =\sum_{n=0}^{m-1} \frac{\phi^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n-m}+(\text { Taylor }) \\
& =\sum_{k=1}^{m} \frac{\phi^{(n-k)}\left(z_{0}\right)}{(m-k)!}\left(z-z_{0}\right)^{k}+(\text { Taylor }), \quad(k=m-n) \tag{171}
\end{align*}
$$

And so z_{0} is a pole of order m, since $\phi^{(0)}\left(z_{0}\right) \neq 0$. And of course, we get for free

$$
\begin{equation*}
\operatorname{Res}_{z=z_{0}} f(z)=\frac{\phi^{(m-1)}\left(z_{0}\right)}{(m-1)!} \tag{172}
\end{equation*}
$$

(\leftarrow) Conversely, assume that f has a pole at z_{0} or order m. Then

$$
\begin{align*}
f(z) & =\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}}+0 \ldots \\
& =\frac{1}{\left(z-z_{0}\right)^{m}}\left[\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n+m}+\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n-m}}\right] \\
& :=\frac{\phi(z)}{\left(z-z_{0}\right)^{m}} \tag{173}
\end{align*}
$$

where $\phi(z)$ is defined to be the expression in the square brackets. With this, we see that $\phi(z)$ is analytic at z_{0} and $\phi\left(z_{0}\right)=0+b_{m} \neq 0$ by hypothesis.

64 Residues with p-q theorem

Let p, q be analytic at z_{0}. If $p\left(z_{0}\right) \neq 0, q^{\prime}\left(z_{0}\right) \neq 0$, and $p^{\prime}\left(z_{0}\right)=0$ then

$$
\begin{equation*}
f(z)=\frac{p(z)}{q(z)} \tag{174}
\end{equation*}
$$

has a simple pole of z_{0} and

$$
\begin{equation*}
\operatorname{Res}_{z=z_{0}} f(z)=\operatorname{Res}_{z=z_{0}} \frac{p(z)}{q(z)}=\frac{p\left(z_{0}\right)}{q^{\prime}\left(z_{0}\right)} \tag{175}
\end{equation*}
$$

Proof. Since $q^{\prime}\left(z_{0}\right) \neq 0, q$ has a simple zero at z_{0}. So $1 / q$ has a simple pole at z_{0} and

$$
\begin{equation*}
\operatorname{Res}_{z=z_{0}} \frac{1}{q}=\frac{1}{q^{\prime}\left(z_{0}\right)} \tag{176}
\end{equation*}
$$

Since $p\left(z_{0}\right) \neq 0$, we know that

$$
\begin{equation*}
\operatorname{Res}_{z=z_{0}} \frac{p}{q}=p\left(z_{0}\right) \operatorname{Res}_{z=z_{0}} \frac{1}{q}=\frac{p\left(z_{0}\right)}{q^{\prime}\left(z_{0}\right)} \tag{177}
\end{equation*}
$$

Proof. This proof should be more elaborate than the previous proof:

65 What happens near singularities?

If z_{0} is a pole of order m for f, then

$$
\begin{equation*}
\lim _{z \rightarrow z_{0}} f(z)=\infty \tag{178}
\end{equation*}
$$

66 Removable singularity - Boundedness - Analyticity (RBA)

If z_{0} is a removable singularity for f then f is bounded and analytic on a punctured nbh of z_{0}.

67 The converse of RBA

Let f be analytic on $0<\left|z-z_{0}\right|<\delta$ for some $\delta>0$. If f is also bounded on $0<\left|z-z_{0}\right|<\delta$, then if z_{0} is a singularity for f, it must be removable.

Proof. By assumption, f has a Laurent series representation of the form

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}} \tag{179}
\end{equation*}
$$

where b_{n} in particular is given by

$$
\begin{equation*}
b_{n}=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{-n+1}} d z \tag{180}
\end{equation*}
$$

where C is a s.c.c. $(+)$ in the annulus of the analyticity. In particular, if $0<\rho<$ δ, and $C_{\rho}:=\left\{z,\left|z-z_{0}\right|=\rho\right\},(+)$ then

$$
\begin{equation*}
\left|b_{n}\right|=\left|\frac{1}{2 \pi i} \oint_{C_{\rho}} \frac{f(z)}{\left(z-z_{0}\right)^{-n+1}} d z\right| \tag{181}
\end{equation*}
$$

and if M is such that $f(z) \leq M \forall 0<\left|z-z_{0}\right|<\delta$ then

$$
\begin{equation*}
\left|b_{n}\right| \leq \frac{1}{2 \pi} \frac{M}{\rho^{-n+1}} 2 \pi \rho=M \rho^{n} \tag{182}
\end{equation*}
$$

Since this is valid $\forall \rho<\delta$, we must have that $b_{n}=0 \forall n$.

68 Casorati-Weierstrass Theorem

Let f have an essential singularity at z_{0}. Then $\forall w_{0} \in \mathbb{C}$ and $\epsilon>0$,

$$
\begin{equation*}
\left|f(z)-w_{0}\right|<\epsilon \tag{183}
\end{equation*}
$$

for some $z \in \mathcal{B}_{\delta}\left(z_{0}\right) \forall \delta 0$.
$\Longleftrightarrow f$ is arbitrarily close to every complex number on every nbh of z_{0}.
$\Longleftrightarrow \forall \delta>0, f\left(\mathcal{B}_{\delta}\left(z_{0}\right) \backslash\left\{z_{0}\right\}\right)$ is dense on \mathbb{C}.
$\Longleftrightarrow f$ gets close to every single point in a ball for any ball.
\Longleftrightarrow If z_{0} is an essential singularity for f then f attains, except for at most one value, every complex number an infinite number of time on every nbh of z_{0}.

Proof. Assume to reach a contradiction that $\exists w_{0} \in \mathbb{C}, \epsilon, \delta>0$ s.t.

$$
\begin{equation*}
\left|f(z)-w_{0}\right| \geq \epsilon \forall 0<\left|z-z_{0}\right|<\delta \tag{184}
\end{equation*}
$$

i.e., f does not get close to some value w_{0} in some nbh of z_{0} of radius δ. Then, consider

$$
\begin{equation*}
g(z)=\frac{1}{f(z)-w_{0}} \tag{185}
\end{equation*}
$$

which is bounded and analytic on the punctured disk $0<\left|z-z_{0}\right|<\delta$. At worst, z_{0} is a removable singularity for g. Also note that $g(z)$ is not identically zero since f is not constant (as f has a singularity). With this,

$$
\begin{equation*}
g(z)=\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k} \tag{186}
\end{equation*}
$$

which allows us to extend g to z_{0}. Let $m=\min (k=0,1,2, \ldots)$ such that $a_{k} \neq 0$, which exists because $g \neq 0$. Then

$$
\begin{equation*}
g(z)=\left(z-z_{0}\right)^{m} \sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k-m}=\left(z-z_{0}\right)^{m} \sum_{k=0}^{\infty} a_{k+m}\left(z-z_{0}\right)^{k} \tag{187}
\end{equation*}
$$

Call the sum $h(z)$, which $h\left(z_{0}\right)=a_{m} \neq 0$. So, in $\mathcal{B}_{\delta}\left(z_{0}\right) \backslash\left\{z_{0}\right\}$, we have

$$
\begin{equation*}
f(z)=w_{0}+\frac{1}{g(z)} \tag{188}
\end{equation*}
$$

If $g\left(z_{0}\right) \neq 0 \Longleftrightarrow m=0$, then this formula allows s to extend f to z_{0}, which is then analytic, which makes z_{0} a removable singularity. This is a contradiction. If $g\left(z_{0}\right)=0$, then because $m \geq 1$ (by definition) and

$$
\begin{equation*}
f(z)=w_{0}+\frac{1}{g(z)}=\frac{w_{0} g(z)+1}{\left(z-z_{0}\right)^{m} h(z)}:=\frac{\phi(z)}{\left(z-z_{0}\right)^{m}} . \tag{189}
\end{equation*}
$$

We see that $\phi\left(z_{0}\right) \neq 0$, and $\phi(z)$ is analytic. So, z_{0} is a pole of order m of f. This is also a contradiction.

