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Preface

Greetings,

This text is my reading notes from Principles of Quantum Mechanics, Second
Edition by Shankar, Introductory Quantum Optics, Optical Coherence & Quan-
tum Optics, and Quantum Field Theory in a Nutshell by Zee. A large chunk
of this text will be my exploration of massive gravity, which pulls concepts
from general relativity/classical field theory to quantum field theory (hence my
study of some Zee’s chapters). In particular, I will be following Kurt Hinter-
bichler’s Theoretical aspects of massive gravity as a guide. This paper gives a
near-complete development of massive gravity up to now and points to a num-
ber of relevant sources. Additional material comes from my class notes, my
comments/interpretations/solutions, and other books/articles/notes.

Enjoy!
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8 PART 1. QUANTUM MECHANICS

1.1 Mathematical Introduction

1.1.1 Linear Vector Spaces

We should familiar with defining characteristics of linear vector spaces at this
point. Here are some important definitions/theorems again:

Definition 1.1.1. A linear vector space V is a collection of objects called
vectors for which there exists

1. A definite rule for summing, and

2. A definite rule for scaling, with the following features:

• Closed under addition: for x, y ∈ V, x+ y ∈ V.

• Closed under scalar multiplication: x ∈ V, then ax ∈ V for some
scalar a.

• Scalar multiplication is distributive.

• Scalar multiplication is associative.

• Addition is commutative.

• Addition is associative.

• There exists a (unique) null element in V.

• There exists a (unique) additive inverse.

Vector spaces are defined over some field. The field can be real numbers,
complex numbers, or it can also be finite. As for good practice, we will begin
to label vectors with Dirac bra-ket notation. So, for instance, |v〉 ∈ V denotes
vector v ∈ V. Basic manipulations of these vectors are intuitive:

1. |0〉 is unique, and is the null element.

2. 0 |V 〉 = |0〉.

3. |−V 〉 = − |V 〉.

4. |−V 〉 is a unique additive inverse of |V 〉.

The reasons for choosing to use the Dirac notation will become clear later
on. Another important basic concept is linear (in)dependence. Of course, there
are a number of equivalent statement for linear independence. We shall just
give one here:

Definition 1.1.2. A set of vectors is said to be linearly independent if the only
linear relation

n∑
i=1

ai |i〉 = |0〉 (1.1)

is the trivial one where the components ai = 0 for any i.
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The next two basic concepts are dimension and basis.

Definition 1.1.3. A vector space V has dimension n if it can accommodate
a maximum of n linearly independent vectors. We denote this n-dimensional
vector space as Vn.

We can show that

Theorem 1.1.1. Any vector |v〉 ∈ Vn can be written (uniquely) as a linear
combination of any n linearly independent vectors.

Definition 1.1.4. A set of n linearly independent vectors in a n-dimensional
space is called a basis. So if |1〉 , . . . , |n〉 form a basis for Vn, then any |v〉 ∈ V
can be written uniquely as

|v〉 =

n∑
i=1

ai |i〉 . (1.2)

It is nice to remember the following:

Linear Independence = Basis + Span (1.3)

When a collection of vectors span a vector space V, it just means that any
|v〉 ∈ V can be written as a linear combination of (some of) these vectors.

The algebra of linear combinations is quite intuitive. If |v〉 =
∑
i ai |i〉 and

|w〉 =
∑
i bi |i〉 then

1. |v + w〉 =
∑
i(ai + bi) |i〉.

2. c |v〉 = c
∑
i ai |i〉 =

∑
i cai |i〉.

A linear algebra text will of course provide a much better coverage of these
topics.

1.1.2 Inner Product Spaces

A generalization of the familiar dot product is the inner product or the scalar
product. An inner product between two vectors |v〉 and |w〉 is denoted 〈v|w|v|w〉.
An inner product has to satisfy the following properties:

1. Conjugate symmetry (or skew-symmetry):〈v|w〉 = 〈w|v〉∗.

2. Positive semi-definiteness: 〈v|v〉 ≥ 0.

3. Linearity in ket: 〈v|aw + bz〉 = a 〈v|w〉+ b 〈v|z〉.

4. Conjugate-linearity in bra: 〈av + bz|w〉 = ā 〈v|w〉+ b̄ 〈z|w〉.

Definition 1.1.5. An inner product space is a vector space with an inner
product.
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Definition 1.1.6. 〈v|w〉 = 0 ⇐⇒ |v〉 ⊥ |w〉.

Definition 1.1.7. The norm (or length) of |v〉 is defined as

‖v‖ =
√
〈v|v〉. (1.4)

Unit vectors have unit norm. Unit vectors are said to be normalized.

Definition 1.1.8. A set of basis vectors all of unit norm, which are pairwise
orthogonal will be called an orthonormal basis or ONB.

Let |v〉 =
∑
i ai |i〉 and |w〉 =

∑
i bi |j〉, then

〈v|w〉 =
∑
i

a∗i bi 〈i|j〉 . (1.5)

Theorem 1.1.2. Gram-Schmidt: Given a linearly independent basis, we can
form linear combinations of the basis vectors to obtain an orthonormal basis.

Suppose that the Gram-Schmidt process gives us an ONB then we have

〈i|j〉 = δij . (1.6)

As a result,

〈v|w〉 =
∑
i

v∗iwi. (1.7)

Alternatively, we can think this as doing the standard inner products of vectors
whose entries are the components of the vectors |v〉, |w〉 in the basis:

|v〉 →


v1

v2

...
vn

 |w〉 →


w1

w2

...
wn

 =⇒ 〈v|w〉 =
[
v∗1 v∗2 . . . v∗n

]

w1

w2

...
wn

 . (1.8)

We can also easily see that

〈v|v〉 =
∑
i

|vi|2 ≥ 0. (1.9)

1.1.3 Dual Spaces and Dirac Notation

Here we deal with some technical details involving the ket (the column vectors)
and the bra (the row vectors). Column vectors are concrete manifestations of
an abstract vector |v〉 in a basis, and we can work backward to go from the
column vectors to the kets. We can do a similar thing with the bra vectors -
since there’s nothing special about writing the entries is a column versus in a
row. However, we will do the following. We know that associated with every ket
|v〉 is a column vector. So let its adjoint, which is a row vector, be associated
with the bra, called 〈v|. Now, we have two vector spaces, the space of kets and
the dual space of bras. There is a basis of vectors |i〉 for expanding kets and a
similar basis 〈i| for expanding bras.
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Expansion of Vectors in an ONB

It is extremely useful for us to be able to express a vector in an ONB. Suppose
we have a vector |v〉 in an ONB |i〉. Then, let |v〉 be written as

|v〉 =
∑
i

vi |i〉 . (1.10)

To find the components vi, we take the inner product of |v〉 with |j〉:

〈j|v〉 =
∑
i

vi 〈j|i〉 =
∑
i

viδij = vj . (1.11)

With this, we can rewrite the vector |v〉 in the basis |i〉 as

|v〉 =
∑
i

|i〉 〈i|v〉 . (1.12)

Adjoint Operations

Here is a few details regarding taking the adjoints of vectors. Suppose that

|v〉 =
∑
i

vi |i〉 =
∑
i

|i〉 〈i|v〉 . (1.13)

Then,

〈v| =
∑
i

|i〉 v∗i . (1.14)

Now, because vi = 〈i|v〉, we have v∗i = 〈v|i〉. Thus,

〈v| =
∑
i

〈v|i〉 〈i| . (1.15)

In plain words, the rule for taking the adjoint is the following. To take the
adjoint of an equation involving bras and kets and coefficients, reverse the order
of all factors, exchanging bras and kets and complex conjugating all coefficients.

Gram-Schmidt process

Again, the Gram-Schmidt process lets us convert a linearly independent basis
into an orthonormal one. For a two-dimensional case, procedure is the following:

1. Rescale the first by its own length, so it becomes a unit vector. This is
the first (orthonormal) unit vector.

2. Subtract from the second vector its projection along the first, leaving
behind only the part perpendicular to the first. (Such a part will remain
since by assumption the vectors are nonparallel).
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3. Rescale the left over piece by its own length. We now have the second
basis vector: it s orthogonal to the first and of unit length.

In general, let |I〉 , |II〉 , . . . be a linearly independent basis. The first vector
of the orthonormal basis will be

|1〉 =
|I〉
‖|I〉‖

. (1.16)

For the second vector in the basis, consider

|2′〉 = |II〉 − |1〉 〈1|II〉 . (1.17)

We can see that |2′〉 is orthogonal to |1〉:

〈1|2′〉 = 〈1|II〉 − 〈1|1〉 〈1|II〉 = 0. (1.18)

So dividing |2′〉 by its norm gives us, |2〉, the second element in the ONB. To
find the third element in the ONB, we have to first make sure it is orthogonal
to both |I〉 and |II〉, so let us consider

|3′〉 = |III〉 − |1〉 〈1|III〉 − |2〉 〈2|III〉 . (1.19)

Once again we have |3′〉 orthogonal to both |1〉 and |2〉. Normalizing |3′〉 gives
us |3〉, the third element in the ONB. We can now see how this process continues
to the last element.

Schwarz and Triangle Inequality

Just two small yet very important details:

Theorem 1.1.3. Schwarz Inequality:

|〈v|w〉| ≤ ‖v‖‖w‖ (1.20)

Theorem 1.1.4. Triangle Inequality:

‖v + w‖ ≤ ‖v‖+ ‖w‖. (1.21)

1.1.4 Subspaces, Sum and Direct Sum of Subspaces

I’m not too happy with the definitions given by Shankar’s book. He also uses
the notation for direct sum to indicate vector space addition, which is very
confusing. Any linear algebra textbook would provide better definitions. For
equivalent statements about directness of vector space sums, check out my Ma-
trix Analysis notes.

https://huanqbui.com/LaTeX%20projects/Matrix_Analysis/HuanBui_MatrixAnalysis.pdf
https://huanqbui.com/LaTeX%20projects/Matrix_Analysis/HuanBui_MatrixAnalysis.pdf
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1.1.5 Linear Operators

Again, a rigorous definition of an operator can be found in almost any linear
algebra textbook. But here,we can simply think of an operator as just some
linear transformation from a vector space to itself. Say, if Ω is some operator
that sends |v〉 to |v′〉, we write

Ω |v〉 = |v′〉 . (1.22)

By definition, |v〉 and |v′〉 are contained in the same vector space. Now, we note
that Ω can also act on bras:

〈v|Ω = 〈v′| . (1.23)

But of course the order of writing things is different, and once again, 〈v| and
〈v′| are contained in the same (dual) space.

Next, because Ω is linear, we have the following familiar rules:

Ωα |vi〉 = αΩ |vi〉 . (1.24)

Ω{α |vi〉+ β |vj〉} = αΩ |vi〉+ βΩ |vj〉 . (1.25)

〈vi|αΩ = 〈vi|Ωα (1.26)

{〈vi|α+ 〈vj |β}Ω = α 〈vi|Ω + β 〈vj |Ω. (1.27)

One of the nice features of linear operators is that the action of an operator
is completely determined by what it does to the basis vectors. Suppose

|v〉 =
∑
i

vi |i〉 (1.28)

and

Ω |i〉 = |i′〉 , (1.29)

then

Ω |v〉 =
∑
i

Ωvi |i〉 =
∑
i

viΩ |i〉 =
∑
i

vi |i′〉 . (1.30)

The next point of interest is products of operators. As we might have seen,
operators don’t always commute. A product of operators applied to a vector
just means operators are applied in sequence. The commutator of two operators
Ω,Λ is defined as

ΩΛ− ΛΩ ≡ [Ω,Λ] . (1.31)

In general, [Ω,Λ] is not zero. Suppose three operators Ω,Λ,Θ are involved, then
we have two useful relations:

[Ω,ΛΘ] = Λ [Ω,Θ] + [Ω,Λ] Θ (1.32)

[ΛΩ,Θ] = Λ [Ω,Θ] + [Λ,Θ] Ω. (1.33)

We notice that the form resembles the chain rule in calculus.
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1.1.6 Matrix Elements of Linear Operators

One thing we will hear very often in quantum mechanics is the idea of matrix
elements. The idea, it turns out, is very simple. Suppose we have a basis |i〉,
and an operator Ω such that

Ω |i〉 = |i′〉 . (1.34)

Then, for

|v〉 =
∑
i

vi |i〉 , (1.35)

we have

Ω |v〉 = Ω
∑
i

vi |i〉 =
∑
i

viΩ |i〉 =
∑
i

vi |i′〉 . (1.36)

Because we know Ω and |i〉, |i′〉 is also known, as in its components in the basis
|j〉 (un-primed) are known:

〈j|i′〉 = 〈j|Ω |i〉 ≡ Ωji, (1.37)

where the n2 numbers Ωji are the matrix elements of Ω in this basis. Now, if

Ω |v〉 = |v′〉 (1.38)

then the components of the transformed ket |v′〉 can be expressed in terms of
the components of |v〉 and the matrix elements Ωji:

v′i = 〈i|v′〉 = 〈i|Ω |v〉 = 〈i|Ω
∑
j

vj |j〉 =
∑
j

vj 〈i|Ω |j〉 =
∑
j

Ωijvj . (1.39)

We can see the above equation in matrix form as well:v
′
1
...
v′n

 =

〈1|Ω |1〉 . . . 〈1|Ω |n〉
...

. . .
...

〈n|Ω |1〉 . . . 〈n|Ω |n〉


v1

...
vn

 . (1.40)

The elements of the first column are simply the components of the first trans-
formed basis vector |1′〉 = Ω |1〉 in the given basis. Likewise, the elements of the
jth column represent the image of the jth basis vector after Ω acts on it.

1.1.7 Matrix Elements of Products of Operators

To get the matrix elements of a product of two operators, we do the following.
Suppose we have operators Ω and Λ, then

(ΩΛ)ij = 〈i|ΩΛ |j〉 = 〈i|ΩIΛ |j〉 . (1.41)
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Now, we observe that

I =
∑
k

|k〉 〈k| . (1.42)

So,

(ΩΛ)ij =
∑
k

〈i|Ω |k〉 〈k|Λ |j〉 =
∑
k

ΩikΛkj . (1.43)

1.1.8 The Adjoint of an Operator

Recall that for a scalar α

〈αv| = 〈v|α∗, (1.44)

then we have a similar thing with operators if

Ω |v〉 = |v′〉 (1.45)

then

〈Ωv| = 〈v|Ω†, (1.46)

where Ω† is the adjoint of Ω. The relationship between Ω† and Ω can be seen
in a basis. We consider the matrix elements of Ω† in a basis:

(Ω†)ij = 〈i|Ω† |j〉 = 〈Ωi|j〉 = 〈j|Ωi〉∗ = 〈j|Ω |i〉∗ = Ω∗ji. (1.47)

We see that

Ω†ij = Ω∗ji, (1.48)

i.e., in matrix form, Ω† is the conjugate transpose of Ω.
The rule for taking adjoins of equations is rather simple: When a product of

operators, bras, kets, ad explicit numerical coefficients is encountered, reverse
the order of all factors and make the substitution Ω↔ Ω†, |〉 ↔ 〈|, a↔ a∗.

1.1.9 Hermitian, Anti-Hermitian, and Unitary Operators

Definition 1.1.9. An operator Ω is Hermitian ⇐⇒ Ω = Ω†.

Definition 1.1.10. An operator Ω is anti-Hermitian ⇐⇒ Ω = −Ω†.

Shankar’s book ignores a bigger class of operators called normal operators.
Normal operators commute with their adjoints. In a sense, normal operators
act like numbers. Hermitian (or self-adjoint) operators are a subset of normal
operators. So, the number-likeness of normal operators carries over to Hermitian
operators and anti-Hermitian operators as well. Hermitian and anti-Hermitian
operators are like pure real and pure imaginary numbers. Just as every number
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maybe be decomposed into a sum of pure real and pure imaginary parts, it turns
out that we can decompose every operator into its Hermitian and anti-Hermitian
parts.

Ω =
Ω + Ω†

2
+

Ω− Ω†

2
. (1.49)

One can verify that the first terms is Hermitian, and the second term is anti-
Hermitian.

Definition 1.1.11. An operator U is unitary ⇐⇒ UU† = I.

Unitary operators are like complex numbers of unit modulus.

Theorem 1.1.5. Unitary operators preserves the inner product between the
vectors they act on.

Proof. Suppose

|v′〉 = U |v〉 (1.50)

|w′〉 = U |w〉 . (1.51)

Then

〈v′|w′〉 = 〈Uv|Uw〉 = 〈v| U†U |w〉 = 〈v|w〉 . (1.52)

Theorem 1.1.6. The columns (or rows) of a unitary matrix form an ONB.

Proof. Refer to a linear algebra text. The key is to consider an inner product
between any two columns/rows.

1.1.10 Active and Passive Transformation

Suppose all |v〉 is unitarily transformed to |v′〉:

|v〉 → U |v〉 . (1.53)

Then under this transformation, the matrix elements of any operator Ω are
modified as follows:

|v′〉Ω |v〉 → |Uv′〉Ω |Uv〉 = 〈v′| U†ΩU |v〉 . (1.54)

It is clear that the same change is equivalent to leaving the vectors alone and
subjecting all operators to the change

Ω→ U†ΩU . (1.55)

Active transformation refers to changing the vectors, while passive transfor-
mation refers to changing the operators.
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1.1.11 The Eigenvalue Problem

I won’t say much about what eigenvectors and eigenvalues are because we should
be familiar with these concepts at this point. But just to introduce some ter-
minology, each operator has certain kets of its own called eigenkets, on which
its action is simply that of scaling. So, eigenkets are just a different word for
eigenvectors of an operator:

Ω |v〉 = ω |v〉 . (1.56)

Shankar’s book talks about the characteristic equation and characteristic
polynomial. While these are legitimate ways to find eigenvalues and eigenvec-
tors, it is often very difficult. I’d prefer Leo Livshits’ and Sheldon Axler’s way
and use minimal polynomials instead. I would steer away from determinants
and characteristic polynomials at this point.

Theorem 1.1.7. Eigenvalues of a Hermitian operator are real.

Proof. Suppose

Ω |w〉 = a |w〉 , (1.57)

then

〈w|Ω |w〉 = a 〈w|w〉 , (1.58)

and thus

a∗ 〈w|w〉 = 〈w|Ω† |w〉 = 〈w|Ω |w〉 = a 〈w|w〉 . (1.59)

So we have

(a− a∗) 〈w|w〉 = 0. (1.60)

Because |w〉 are eigenkets, they are cannot be the zero vector. This means
a = a∗.

Some might worry about the existence of eigenvalues of Hermitian opera-
tors. But worry no more, because Hermitian operators are a subclass of normal
operators, which are a subclass of diagonalizable operators. This simply says
Hermitian matrices are diagonalizable, and all its eigenvalues are real. But it
turns out there is a little bit more to this.

Theorem 1.1.8. For every Hermitian operator Ω, there exists an ONB com-
prised entirely of the eigenvectors of Ω.

Once again, this should be no surprise if one has studied normal operators.
Hermitian operators inherit this property from its normalness. This property
of normal operators are called the Spectral Theorem (for normal operators, of
course). The proof of all this can be found in many linear algebra texts.

Theorem 1.1.9. The eigenvalues of a unitary operator are complex numbers
of unit modulus.

Proof. The key to the proof is using inner products.
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Simultaneous Diagonalization of Two Hermitian Operators

I would say the topic of simultaneous diagonalizability is covered quite well in
Leo Livshits’ course and hence in my Matrix Analysis notes. But here I will
just give the most important results.

Theorem 1.1.10. If Ω and Λ are two commuting Hermitian operators, there
exists a basis of common eigenvectors that diagonalizes them both.

This result is not too surprising if we have studied simultaneous diagonaliz-
ability before. A more general theorem says that

Simultaneous diagonalizbility ⇐⇒ Individual diagonalizability + Commutativity.
(1.61)

It is clear that because all Hermitian operators are diagonalizable, if two Her-
mitian operators commute, they are simultaneously diagonalizable.

The Propagator

In quantum mechanics (and classical mechanics of course), it is quite common to
have some final state vector be obtained from an initial state vector multiplied
by some matrix, which is independent of the initial state. We call this matrix
the propagator.

The central problem in quantum mechanics is finding the state of a quantum
system |ψ〉, which obeys the Schrödinger equation:

i~
∣∣∣ψ̇〉 = J |ψ〉 (1.62)

where the Hermitian operator H is called the Hamiltonian. We will see much
more of this as we move on.

1.1.12 Functions of Operators and Related Concepts

In this section, we look at whether it makes sense to define functions of operators.
We will only restrict ourselves to functions that can be written as a power series.
Consider a series

f(x) =

∞∑
n=0

= anx
n (1.63)

where x is a scalar. We defined the same function of an operator to be

f(Ω) =

∞∑
n=0

anΩn. (1.64)

Now, this definition only makes sense if we have convergence. Consider this
example:

eΩ =

∞∑
n=0

Ωn

n!
, (1.65)

https://huanqbui.com/LaTeX%20projects/Matrix_Analysis/HuanBui_MatrixAnalysis.pdf
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where Ω is Hermitian. In the eigenbasis of Ω, Ω is diagonal. This means we can
add and/or take powers of Ω by add and/or take powers of the diagonal entries.
We can find that

eΩ =

∑∞m=0
ωm1
m! ∑∞

m=0
ωmn
m!

 (1.66)

where ωi are the eigenvalues of Ω. We note that each entry in the expression
above converges to eωi .

Derivatives of Operators with Respect to Parameters

Now, consider some operator Θ(λ) that depends on a parameter λ. The deriva-
tive of Θ with respect to λ is defined to be

dΘ(λ)

dλ
= lim

∆λ→0

[
Θ(λ+ ∆λ)−Θ(λ)

∆λ

]
. (1.67)

If Θ(λ) is written as a matrix, then the matrix of dΘ/dλ is obtained by differ-
entiating the matrix elements of Θ(λ). A case that might be interesting to us
is

Θ(λ) = eλΩ. (1.68)

It turns out that if Ω is Hermitian or “nice enough” then

dΘ(λ)

dλ
= ΩeλΩ = eλΩΩ = Θ(λ)Ω = ΩΘ(λ). (1.69)

Conversely, if we have

dΘ(λ)

dλ
= Θ(λ)Ω (1.70)

then

Θ(λ) = ceλΩ (1.71)

where c is some operator. But we have to be careful that c might not commute
with eλΩ.

The business of whether two operators commute or don’t can make things
slightly more complicated. If Θ and Ω commute, i.e., [Θ,Ω] = 0, then the rules
of exponentiation carries over very nicely:

eaΩebΩ = e(a+b)Ω (1.72)

eaΩebΘ = eaΩ+bΘ (1.73)

eaΩebΘe−aΩ = ebΘ. (1.74)
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If [Ω,Θ] 6= 0, then the second and third equations no longer hold. Likewise, in
differentiating a product, we have to be extra careful:

d

dλ
eλΩeλΘ = ΩeλΩeλΘ + eλΩeλΘΘ. (1.75)

While [Ω, eλΩ] = 0, because Θ and Ω might not commute, we can’t bring Ω over
to the right of eλΘ.

1.1.13 Generalization to Infinite Dimensions

The Dirac delta function

Consider the ordered n-tuple {fn(x1), . . . , fn(xn)} as components of a ket |fn〉
in a vector space Vn(R):

|fn〉 ↔

fn(x1)
...

fn(xn)

 . (1.76)

The basis vectors in this space are:

|xi〉 ↔



0
0
...
1
0
...
0


← ithplace. (1.77)

The basis vectors satisfy orthogonality and completeness:

〈xi|xj〉 = δij (1.78)
n∑
i=1

|xi〉 〈xi| = I. (1.79)

With this,

|fn〉 =

n∑
i=1

fn(xi) |xi〉 . (1.80)

We next define the inner product in this space:

〈fn|gn〉 sumn
i=1fn(xi)gn(xi). (1.81)



1.1. MATHEMATICAL INTRODUCTION 21

The functions fn and gn are said to be orthogonal if 〈fn|gn〉 = 0. We also have
that

〈fn|fn〉 =

n∑
i=1

[fn(xi)]
2. (1.82)

For finite n, nothing “bad” can really happen here. But what if n is infinity?
What we need is the redefinition of the inner product for finite n in such a way
that as n goes to infinity, we get a smooth limit. A natural choice is

〈fn|gn〉 =

n∑
i=1

fn(xi)gn(xi)
L

n+ 1
(1.83)

where L is the length of the interval. If we now let n go to infinity, we get

〈f |g〉 =

ˆ L

0

f(x)g(x) dx (1.84)

〈f |f〉 =

ˆ L

0

f2(x) dx. (1.85)

Now, if we consider complex functions as well in some interval a ≤ x ≤ b, the
inner product becomes:

〈f |g〉 =

ˆ b

a

f∗(x)g(x) dx. (1.86)

But what are the basis vectors in this space and are they normalized? We know
that

〈x|x′〉 = 0 (1.87)

if x 6= x′. But what if x = x′? It turns out that we cannot simply require
〈x|x〉 = 1. The best way to see this is to deduce the correct normalization. We
start with the completeness relation:

ˆ b

a

|x′〉 〈x′| dx′ = I. (1.88)

Now, consider this

ˆ b

a

〈x|x′〉 〈x′|f〉 dx′ = 〈x| I |f〉 = 〈x|f〉 . (1.89)

This is nothing but the projection of |f〉 along the basis ket |x〉, which is just
f(x). So, we also have f(x′) = 〈x′|f〉. Let the inner product 〈x|x′〉 be some
unknown function δ(x, x′). Since δ(x, x′) vanishes if x 6= x′, we can restrict the
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integral to an infinitesimal region near x′ = x. With these, the equality above
gives

ˆ x+ε

x−ε
δ(x, x′)f(x′) dx′ = f(x). (1.90)

In this infinitesimal region, f(x) can assumed to be constant, and thus can be
pulled out of the integral, leaving

f(x)

ˆ x+ε

x−ε
δ(x, x′) dx′ = f(x). (1.91)

And so we have

ˆ x+ε

x−ε
δ(x, x′) dx′ = 1. (1.92)

Clearly, δ(x, x′) cannot be finite at x = x′. It should be infinite in such a way
that its integral is 1. Since δ(x, x′) depends only on the difference x − x′, we
can write it as δ(x− x′). So, the function δ(x− x′) has the properties:{

δ(x− x′) = 0, x 6= x′´ b
a
δ(x− x′) dx′ = 1 a < x < b

. (1.93)

This is called the Dirac delta function and it fixes the normalization of the
basis vectors:

〈x|x′〉 = δ(x− x′). (1.94)

The Dirac delta function is “strange” in the sense that its value is either
zero or infinite. It’s thus useful to view it as the limit of a Gaussian:

of the form

g∆(x− x′) =
1√
π∆2

e−(x−x′)2/∆2

. (1.95)
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It is clear that the area under the curve is one (one can easily check this). Also,
∆ → 0, g∆ becomes closer and closer to δ(x − x′) (the area under the curve is
the same, while the width of the peak becomes smaller and smaller).

From Gaussian model, we know that the delta function is not only real but
also even:

δ(x− x′) = δ(x′ − x). (1.96)

Next, we consider the derivative of δ(x− x′) with respect to x:

δ′(x− x′) =
d

dx
δ(x− x′) = − d

dx′
δ(x− x′). (1.97)

Once again, we consider the Gaussian model. We consider dg∆(x − x′)/dx =
−dg∆(x− x′)/dx′ as a function of x′:

As g∆ shrinks,, each bump at ±ε will become, up to a scale factor, the δ
function, such that

ˆ
δ′(x− x′)f(x′) dx′ ∝ f(x+ ε)− f(x− ε) = 2ε

df

dx′

∣∣∣∣
x=x′

.

The constant of proportionality turns out to be ε/2, and so

ˆ
δ′(x− x′)f(x′) dx′ =

df

dx′

∣∣∣∣
x=x′

=
df(x)

dx
. (1.98)

In short, we can describe the δ′ function as

δ′(x− x′) = δ(x− x′) d

dx′
. (1.99)

In this way, we can describe higher derivatives of δ:

dnδ(x− x′)
dxn

= δ(x− x′) dn

dx′n
. (1.100)

Next, we will develop an alternative representation of the delta function.
Suppose we’re given a function f(x). The Fourier transform is given by

F [f ](k) =
1√
2π

ˆ ∞
−∞

e−ikxf(x) dx. (1.101)
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And the inverse is given by

F−1[f ](x) =
1√
2π

ˆ ∞
−∞

eikx
′
f(k) dk. (1.102)

Feeding the inverse formula into the transform formula, we get

f(x′) =

ˆ ∞
−∞

(
1

2π

ˆ ∞
−∞

eik(x−x′) dk
)
f(x) dx. (1.103)

Comparing this result to (1.90), we see that

1

2π

ˆ ∞
−∞

eik(x−x′) dk = δ(x− x′) (1.104)

Operators in Infinite Dimensions

Let us revisit the linear transformation:

Ω |f〉 =
∣∣∣f̃〉 (1.105)

in the vector space whose basis is |x〉.
Let us assume that this action takes place in an infinite-dimensional vector

space. Consider the differential operator. We can write the equation above as

Dx |f(x)〉 = |df/dx〉 . (1.106)

What are the matrix elements of the operator D in the |x〉 basis? To find
the matrix elements, we do exactly as before:

〈x|D |f〉 =

〈
x

∣∣∣∣ dfdx
〉

=
df(x)

dx
, (1.107)

followed by
ˆ
〈x|D |x′〉 〈x′|f〉 dx′ =

df

dx
. (1.108)

We deduce that

〈x|D |x′〉 = Dxx′ = δ′(x− x′) = δ(x− x′) d

dx′
. (1.109)

We notice that D is not Hermitian because if

Dxx′ = D∗x′x (1.110)

then

Dxx′ = δ′(x− x′) = D∗x′x = δ′(x′ − x) = −δ′(x− x′), (1.111)
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which is obviously not true. But we can convert D to a Hermitian matrix by
multiplying it with a purely imaginary number. Consider

K = −iD. (1.112)

Then

K∗x′x = [−iδ′(x′ − x)]∗ = iδ′(x′ − x) = −iδ′(x− x′) = Kxx′ . (1.113)

It turns out that this is not enough to make K Hermitian, as we shall show
now. Suppose we have |f〉 and |g〉 in the function space whose images in the x
basis are f(x) and g(x) in the interval a − b. If K is Hermitian, we must have
that

〈g|K |f〉 = 〈g|Kf〉 = 〈Kf |g〉∗ = 〈f |K† |g〉∗ = 〈f |K |g〉∗ . (1.114)

So, we ask

ˆ b

a

ˆ b

a

〈g|x〉 〈x|K |x′〉 〈x′|f〉 dx dx′ ?
=

(ˆ b

a

ˆ b

a

〈f |x〉 〈x|K |x′〉 〈x′|g〉 dx dx′
)∗

.

(1.115)

Or, equivalently, we ask that if K = −iD, then

ˆ b

a

g∗(x)

[
−idf(x)

dx

]
dx

?
=

{ˆ b

a

f∗(x)

[
−idg(x)

dx

]
dx

}
= i

ˆ b

a

dg∗

dx
f(x) dx.

(1.116)

Integrating the left hand side by parts gives

−ig∗(x)f(x)

∣∣∣∣b
a

+ i

ˆ b

a

dg∗

dx
f(x) dx. (1.117)

So for equality to hold, we require that

−ig∗(x)f(x)

∣∣∣∣b
a

= 0 (1.118)

Thus, in contrast to the finite-dimensional case, Kxx′ = K∗x′x is not a suffi-
cient condition for K to be Hermitian. We must also look at the behavior of
the functions at the end points a and b. So what kinds of functions make this
work? One set of such functions are the possible configurations f(x) of the
string clamped at x = 0 and at x = L. These functions of course have zero
boundary conditions. But this condition (1.118) can also be fulfilled in another
way.
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Consider functions in 3-dimensional space, parameterized by r, θ, φ. Suppose
that these functions are single-valued, say, f(θ) = f(θ + 2π). In the space of
these functions, K = −iD is Hermitian. This is very easy to verify since the
condition (1.118) is met:

−ig∗(x)f(x)
∣∣2π
0

= −ig(2π)f(2π) + ig∗(0)f(0) = 0. (1.119)

In quantum mechanics, we are interested in functions over the full interval
−∞ ≤ x ≤ ∞. These functions into two classes: those that vanish at infinity
and those that don’t. Functions that don’t vanish at infinity behave as e−ikx,
where k is real. It is clear that if K is sandwiched between two functions
of the first class or two functions where one comes from each class, then K is
Hermitian, because the boundary terms vanish. But if K is sandwiched between
two functions of the second class, then whether K is Hermitian depends on
whether

eikxe−ik
′x

∣∣∣∣∞
−∞

?
= 0. (1.120)

If k′ = k then K is Hermitian. If k′ 6= k then the answer is unclear because
ei(k−k

′)x oscillates. It turns out that there exists a way of defining a limit
for such functions that connect make up their minds: the limit as |x| → ∞.
This limit is defined to be the average over a large interval. According to this
prescription, we have, say as x→∞:

lim
x→∞

eikxe−ik
′x = lim

L→∞,∆→∞

1

∆

ˆ L+∆

L

ei(k−k
′)x dx = 0 k 6= k′. (1.121)

And thus K is Hermitian in this space as well.

Next, we are interested in the eigenvalue problem of K. Let us start with

K |k〉 = k |k〉 . (1.122)

Following the standard procedure,

〈x|K |k〉 = k 〈x|k〉 =⇒
ˆ
〈x|K |x′〉 〈x′|k〉 dx′ = kψk(x) (1.123)

=⇒ −i d
dx
ψk(x) = kψk(x) (1.124)

where ψk(x) = 〈x|k〉. This is a very simple differential equation whose solution
is

ψk(x) = Aeikx. (1.125)

Let us chose A to be such that the function is normalized. In this case A =
1/
√

2π. And so,

|k〉 ∼ 1√
2π
eikx, (1.126)
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and

〈k|k′〉 =

ˆ ∞
−∞
〈k|x〉 〈x|k′〉 dx =

1

2π

ˆ ∞
−∞

e−i(k−k
′)x dx = δ(x− x′). (1.127)

Now, because K is Hermitian, functions that are expanded in the x basis
with components f(x) = 〈x|f〉 must also have an expansion in the K basis.
What are the components in this expansion? We first look at the components
in the K basis, starting with |k〉:

f(k) = 〈k|f〉 =

ˆ ∞
−∞
〈k|x〉 〈x|f〉 dx =

1√
2π

ˆ ∞
−∞

e−ikxf(x) dx. (1.128)

To get back to the x basis, we simply apply the inverse transform:

f(x) = 〈x|f〉 =

ˆ ∞
−∞
〈x|k〉 〈k|f〉 dk =

1√
2π

ˆ ∞
−∞

eikxf(k) dk. (1.129)

Thus the familiar Fourier transform gives us the passage from one complete
basis to another. What about the matrix elements of K in the k basis? It turns
out that these elements are trivial:

〈k|K |k′〉 = k′ 〈k|k′〉 = k′δ(k − k′). (1.130)

So, the k basis is generated by the Hermitian operator K. So what generates
the x basis? Let us call this operator X, and that

X |x〉 = x |x〉 . (1.131)

Its matrix elements in the x basis are

〈x′|X |x〉 = xδ(x′ − x). (1.132)

To find its actions on functions, let us define

X |f〉 =
∣∣∣f̃〉 . (1.133)

And so

〈x|X |f〉 =

ˆ
〈x|X |x′〉 〈x′|f〉 dx′ = xf(x) =

〈
x
∣∣∣f̃〉 = (̃f)(x). (1.134)

Therefore,

f̃(x) = xf(x). (1.135)

So, X has the effect of multiplying a function f by x:

X |f(x)〉 = |xf(x)〉 . (1.136)



28 PART 1. QUANTUM MECHANICS

We notice that there is a nice reciprocity between X and K. Let us compute
the matrix elements of X in the k basis:

〈k|X |k′〉 =
1

2π

ˆ ∞
−∞

e−ikxxeik
′x dx (1.137)

= i
d

dk

(
1

2π

ˆ ∞
−∞

ei(k
′−k)x dx

)
= iδ′(k − k′). (1.138)

So, if |g(k)〉 is a ket whose image in the k basis is g(k) then

X |g(k)〉 =

∣∣∣∣ idg(k)

dk

〉
. (1.139)

Thus we have the following. In the x basis, X acts as x. In the k basis, X
acts as −id/dx. On the other hand, in the k basis, K acts as k, and in the x basis
as −id/dk. Operators with such an interrelationship are said to be conjugate
of each other. Now, the conjugate operators K and X don’t commute. Let us
calculate their commutator. Suppose we have some ket |f〉. Then,

X |f〉 → xf(x) (1.140)

K |f〉 → −idf(x)

dx
. (1.141)

This is just the definition of these operators. Next,

XK |f〉 → −ixdf(x)

dx
(1.142)

KX |f〉 → −i d
dx
xf(x). (1.143)

Thus,

[X,K] |f〉 → −ixdf(x)

dx
+ ix

df(x)

dx
+ if → iI |f〉 . (1.144)

So, we have for X and K conjugate of each other,

[X,K] = iI. (1.145)
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1.2 Review of Classical Mechanics

1.2.1 Principle of Least Action & Lagrangian Mechanics

Suppose we have a particle in a potential V (x). Newton tells us that

m
d2x

dt2
= −dV

dx
. (1.146)

In general coordinates,

mj
d2xj
dt2

= − ∂V
∂xj

. (1.147)

In Lagrangian mechanics, we first define the Lagrangian: L = T − V , where T
is the kinetic energy and V is the potential energy. This makes L = L(x, ẋ, t).
For each path connecting (xi, ti) to (xf , tf ), the action is given by

S[x(t)] =

ˆ tf

ti

L(x, ẋ) dt. (1.148)

The classical path which the particle follows is one which minimizes S[x(t)].
Variational methods (requiring δS = 0 and boundary terms to vanish) give us
the Euler-Lagrange equation(s):

∂L
∂x(t)

=
d

dt

∂L
∂ẋ(t)

(1.149)

Details of this derivation can be found in many differential equation textbooks.
We can easily show how Newton’s Second law emerges from the Euler-Lagrange
equation by setting T = mv2/2. In which case, we get

d

dt
(mẋ) = mẍ = −dV

dx
. (1.150)

In general coordinates, we get the same thing:

mẍi = − ∂V
∂xi

. (1.151)

Now, we notice that we have assumed the potential V to be velocity-independent.
The force of a magnetic field B on a moving charge is excluded by this restric-
tion (F = qv×B). We will show shortly how to accommodate this force in the
Lagrangian formalism. However, this treatment will leave L no longer in the
form T − V . So, we will be free from the notion that L has the form T − V , by
only requiring that L gives the correct equations of motion.

Suppose in some generalized coordinates, we have

d

dt

(
∂L
∂q̇i

)
=
∂L
∂qi

. (1.152)
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It turns out that the form of the Euler-Lagrange equation is invariant under
change of coordinates. The Euler-Lagrange equation above can be made to
resemble Newton’s Second law if one defines a quantity:

pi =
∂L
∂q̇i

(1.153)

as the canonical momentum conjugate to qi and the quantity

Fi =
∂L
∂qi

(1.154)

as the generalized force conjugate to qi. Note that these quantities are not always
linear momentum and force. They can be angular momentum and torque, for
instance. In many cases, we can find conservation laws from the Lagrangian,
but we won’t go into the details for now.

1.2.2 The Electromagnetic Lagrangian

As promised, in this subsection we will incorporate electromagnetism into the
Lagrangian formalism. Recall that the force on a charge q due to an electric
field E and a magnetic field B is given by

F = q
(
E +

v

c
×B

)
(1.155)

where v = ṙ is the velocity of the charged particle, and c is the speed of light.
It turns out that if we use

LEM =
1

2
mv · v − qφ+

q

c
v ·A (1.156)

we get the correct electromagnetic force laws. We note that φ and A are the
scalar and the vector potentials related to E and B via:

E = −∇φ− 1

c

∂A

∂t
(1.157)

and

B =∇×A. (1.158)

With respect to this Lagrangian, the Euler-Lagrange equation is

d

dt

(
mxi +

q

c
Ai

)
= −q ∂φ

∂xi
+
q

c

∂v ·A
∂xi

. (1.159)

We can combine the i = 1, 2, 3 equations into one vector equation:

d

dt

(
mv +

qA

c

)
= −q∇φ+

q

c
∇(v ·A). (1.160)
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Rewriting this gives

d

dt
mv = −q∇φ+

q

c

[
−dA
dt

+∇(v ·A)

]
(1.161)

The canonical momentum is then

p =
∂L
∂ẋ

= mv +
qA

c
. (1.162)

Now, the total derivative dA/dt has two parts:

dA

dt
=
∂A

∂t
+ (v ·∇)A (1.163)

where

(v ·∇)i =
dxi
dt

∂

∂xi
. (1.164)

Thus we have

d

dt
mv = −q∇φ− q

c

∂A

∂t
+
q

c
[∇(v ·A)− (v ·∇)A] . (1.165)

Now, we use the identity

v × (∇×A) =∇(v ·A)− (v ·∇)A (1.166)

to get

d

dt
mv = −q∇φ− q

c

∂A

∂t
+
q

c
v × (∇×A). (1.167)

Using the definition of E and B in relation to φ and A we indeed get the correct
force law:

d

dt
mv = F = q

(
E +

v

c
×B

)
(1.168)

1.2.3 The two-body problem

The two-body problem can be solved more elegantly in the center-of-mass co-
ordinate system where

r = r1 − r2 (1.169)

and

rCM =
m1r1 +m2r2
m1 +m2

. (1.170)
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The inverse formulas are as follow:

r1 = rCM +
m2r

m1 +m2
(1.171)

r2 = rCM −
m1r

m1 +m2
(1.172)

The original Lagrangian is

L =
1

2
m1|ṙ1|2 +

1

2
m2|ṙ2|2 − V (r1 − r2). (1.173)

In CM coordinate system, the Lagrangian becomes:

L =
1

2
(m1 +m2)|ṙCM |2 +

1

2

m1m2

m1 +m2
|r|2 − V (r). (1.174)

By doing this, we have in a sense “decoupled” the problem:

L(r, ṙ, rCM , ṙCM , t) = L(r, ṙ, t) + L(rCM , ṙCM , t). (1.175)

The first fictitious particle is the center of mass of the system. The motion of
the center of mass is often uninteresting, so we can always go to the center of
mass frame, so that the term L(rCM , ṙCM , t) vanishes completely from the total
Lagrangian. The second fictitious particle has reduced mass:

µ =
m1m2

m1 +m2
(1.176)

moves under the potential V (r). Now, we only need to solve this one-body
problem.

1.2.4 The Hamiltonian Formalism

Recall the canonical momentum in Lagrangian mechanics:

pi =
∂L
∂q̇i

. (1.177)

In the Hamiltonian formalism one exchanges the roles of q̇ and p: one replaces
the Lagrangian L(q, q̇) by a Hamiltonian H(q, p) which generates the equations
of motion, and q̇ becomes a derived quantity:

q̇i =
∂H
∂pi

. (1.178)

But of course the question is, how can we make such a change? It turns out
that there exists procedure for effecting such a change, called a Legendre trans-
formation. Suppose we have a function f(x) with

u(x) =
df(x)

dx
. (1.179)
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How do we invert u(x) to get x(u)? If we define a function (called the Legendre
transformation)

g(u) = x(u)u− f(x(u)) (1.180)

then

dg

du
=
dx

du
u+ x(u)− df

dx

dx

du
= x(u). (1.181)

In going from f to g, we simply exchange the roles of x and u. f and g are called
the Legendre transforms of each other. More generally, if f = f(x1, . . . , xn),
one can eliminate a subset {xi} in favor of the partial derivatives ui = ∂f/∂xi
by the transformation

g(u1, . . . , uj , xj+1, . . . , xn) =

j∑
i=1

uixi − f(x1, . . . , xn). (1.182)

We can easily check that

∂g

∂ui
= xi. (1.183)

So, we define the Hamiltonian as

H(q, p) =

n∑
i=1

piq̇i − L(q, q̇) (1.184)

where the q̇’s are functions of p’s and q’s. Now, we observe that

∂H
∂pi

=
∂

∂pi

 n∑
j=1

pj q̇j − L(q, q̇)

 (1.185)

= q̇i +

n∑
j=1

pj
∂q̇j
∂pi
−

n∑
j=1

∂L
∂q̇j︸︷︷︸
pj

∂q̇j
∂pi

(1.186)

= q̇i. (1.187)

Similarly, we have that

∂H
∂qi

=
∂

∂qi

 n∑
j=1

pj q̇j − L(q, q̇)

 (1.188)

=
∑
j

pj
∂q̇j
∂qi
− ∂L
∂qi
−
∑
j

∂L
∂q̇j︸︷︷︸
pj

∂q̇j
∂pi

(1.189)

= − ∂L
∂qi

. (1.190)
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We obtain the Hamilton’s canonical equations by replacing ∂L/∂qi by ṗi:

∂H
∂pi

= q̇i, −∂H
∂qi

= ṗi (1.191)

We have altogether 2n first-order equations in time for a system with n degrees
of freedom. Given (qi(0), pi(0)) it is possible to integrate to find (qi(t), pi(t)).

Let us take a moment now to compare Lagrangian and Hamiltonian me-
chanics.

Lagrangian formalism Hamiltonian formalism
The state of a system with n
df’s is described by n coordi-
nates (q1, . . . , qn) and n velocities
(q̇1, . . . , q̇n), or in a more compact
notation by (qi, q̇i).

The state of a system with n df’s
is described by n coordinates and n
momenta (q1, . . . , qn; p1, . . . , pn) or,
more succinctly, (q, p).

The state of the system may be rep-
resented b a point moving with a
definite velocity in an n-dimensional
configuration space.

The state of the system nay be
represented by a point in 2n-
dimensional phase space with coor-
dinates (q1, . . . , qn; p1, . . . , pn).

The n coordinates evolve according
to n second-order equations.

The 2n coordinates and momenta
obey 2n first-order equations.

For a given L, several trajectories
may pass through a given point in
configuration space depending on q̇.

For a given H only one trajec-
tory passes through a given point in
phase space.

So what is H, physically? We know that L can be interpreted as T − V if
the force is conservative. Let us looks at H for this case. Suppose

T =

n∑
i=1

1

2
miẋ

2
i (1.192)

pi =
∂L
∂ẋi

=
∂T

∂ẋi
= miẋi, (1.193)

where the coordinates are Cartesian qi = xi. This gives

H =

n∑
i=1

piẋi − L(q, ẋ) (1.194)

=

n∑
i=1

miẋ
2
i − L(q, ẋ) (1.195)

= 2T − L (1.196)

= T + V. (1.197)

So, we can interpret H as the total energy (assuming that the force is conserva-
tive). Of course, we also assumed that the potential is not velocity-dependent,
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which does not apply to electromagnetism. In the next section, we will look
into electromagnetism in the Hamiltonian scheme.

1.2.5 The Electromagnetic Force in the Hamiltonian Scheme

Recall the Lagrangian for electromagnetism:

LEM =
1

2
mv · v − qφ+

q

c
v ·A (1.198)

where

p = mv +
qA

c
. (1.199)

In the Hamiltonian scheme, we write

HEM = p · v − LEM (1.200)

=

(
mv +

qA

c

)
· v −

(
1

2
mv · v − qφ+

q

c
v ·A

)
(1.201)

=
1

2
mv · v + qφ (1.202)

= T + qφ. (1.203)

Wait a minute. What’s happened to the vector potential A? How can HEM
generate the correct dynamics without knowing A? It turns out that T is
dependent on p and A. Recall that

1

2
mv · v = T =

|p− qA/c|2

2m
. (1.204)

Thus we have

HEM =
|p− qA/c|2

2m
+ qφ (1.205)

1.2.6 Cyclic Coordinates, Poisson Brackets, and Canoni-
cal Transformations

Let a Hamiltonian H(q, p) be given. Suppose that the coordinate qi is missing
in H, then

ṗi = −∂H
∂qi

= 0, (1.206)

which means the canonical momentum pi is conserved. Now, in many cases
there are other quantities that are conserved, such as energy. How do we char-
acterize these in the Hamiltonian formalism? It turns out there is a way to do
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this.

Suppose ω(q, p) is some state variable that doesn’t depend explicitly on time
t. Then we have by the chain rule

dω

dt
=
∑
i

(
∂ω

∂qi
q̇i +

∂ω

∂pi
ṗi

)
(1.207)

=
∑
i

(
∂ω

∂qi

∂H
∂pi
− ∂ω

∂pi

∂H
∂qi

)
(1.208)

≡ {ω,H}. (1.209)

So, we define the Poisson bracket between two variables ω(q, p) and λ(q, p) to
be

{ω, λ} =
∑
i

(
∂ω

∂qi

∂λ

∂pi
− ∂ω

∂pi

∂λ

∂qi

)
(1.210)

Let us look at this equation again

dω

dt
=
∑
i

(
∂ω

∂qi

∂H
∂pi
− ∂ω

∂pi

∂H
∂qi

)
= {ω,H} (1.211)

This says that any state variable whose Poisson bracket with H vanishes is con-
stant in time (i.e., is a conserved quantity).

Poisson brackets have a few important properties and similarities with com-
mutators:

1. {ω, λ} = −{λ, ω}

2. {ω, λ+ σ} = {ω, λ}+ {ω, σ}

3. {ω, λσ} = {ω, λ}σ + λ{ω, σ}

4. {qi, qj} = {pi, pj} = 0

5. {qi, pj} = δij

6. q̇i = {qi,H}

7. ṗi = {pi,H}

Please refer to Shankar’s book for the sections on Canonical Transforma-
tions, Active Transformations, and Symmetries and Their Consequences.
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1.3 The Postulates –a General Discussion

1.3.1 The Postulates

Here we introduce the postulates of nonrelativistic quantum mechanics. We
consider a system with one df (a particle in one dimension). The straightfor-
ward generalization to more particles in higher dimension will be introduced
later.

Classical Mechanics Quantum Mechanics
The state of a particle at
any given time is speci-
fied by the two variables
x(t) and p(t), i.e., as a
point in a two-dimensional
phase space.

The state of the particle is represented by a
vector |φ(t)〉 in a Hilbert space.

Every dynamical variable
ω is a function of x and p:
ω = ω(x, p).

The independent variables x and p of classical
mechanics are represented by Hermitian oper-
ators X and P with the following matrix ele-
ments in the eigenbasis of X:

〈x|X |x′〉 = xδ(x− x′) (1.212)

〈x|P |x′〉 = −i~δ′(x− x′). (1.213)

The operators corresponding to dependent vari-
ables ω(x, p) are given Hermitian operators

Ω(X,P ) = ω(x→ X, p→ P ). (1.214)

If the particle is in a state
given by x and p, the mea-
surement of the variable ω
will yield a value ω(x, p).
The state will remain un-
affected.

If the particle is in a state |ψ〉, measurement of
the variable corresponding to Ω will yield one
of the eigenvalues ω with probability P (ω) ∝
|〈ω|ψ〉|2. The state of the system will change
from |ψ〉 to |ω〉 as a result of the measurement.

The state variables change
with time according to
Hamilton’s equations:

ẋ =
∂H
∂ṗ

(1.215)

ṗ = −∂H
∂x

(1.216)

The state vector |ψ(t)〉 obeys the Schrödinger
equation

i~
d

dt
|ψ(t)〉 = H |ψ(t)〉 (1.217)

where H(X,P ) = H(x → X, p → P ) is
the quantum Hamiltonian operator and H is
the Hamiltonian for the corresponding classical
problem.
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Collapse of the State Vector

Suppose we have a state vector written in a general form

|ψ〉 =
∑
ω

|ω〉 〈ω|ψ〉 (1.218)

where |ω〉 are of course the eigenstates. We recall that this expression is equiv-
alent to writing |ψ〉 as a linear combination of the eigenstates |ω〉 (where the
corresponding eigenvalues are ε), with coefficients being the inner product of |ψ〉
and |ω〉, which we can think of as “how much of |ψ〉 is in a certain |ω〉” direction.

Now, postulate III says that the measurement of the variable Ω changes
the state vector. This phenomenon is called the collapse/reduction of the state
vector. There are two types of measurements in quantum mechanics. Loosely
speaking, an ideal measurement of Ω leaves only the eigenstates of Ω invariant.
For example, ideal measurement of the momentum of a particle in a momentum
eigenstate leaves the state vector of the particle unchanged. Physically, this is
due to the fact that the photons required for this measurement can be infinites-
imally low in energy. On the contrary, suppose we want to ideally measure the
position of some particle in a momentum eigenstate |p〉, which we can write in
terms of the position eigenstates as

|p〉 =

ˆ
|x〉 p dx. (1.219)

We see that the measurement forces the particle into some eigenstate |x〉, thus
changing the state vector.

Expectation Value

Suppose we want to measure a variable Ω, given a large ensemble of N particles
in a state |ψ〉. Quantum theory allows us to predict how much of the population
will yield some eigenvalue ω. However, often we are interested in the expectation
value of these measurements, which is defined in statistics as

〈Ω〉 =
∑
i

ωiP (ωi). (1.220)

But of course each probability is the modulus square of inner product of |ψ〉
and |ω〉. So we can write the expectation value as

〈Ω〉 =
∑
i

ωi|〈ωi|ψ〉|2 =
∑
i

ωi 〈ψ|ωi〉 〈ωi|ψ〉 . (1.221)

Now, because each ωi is an eigenvalue corresponding to an eigenfunction |ωi〉 in
the eigenvalue equation Ω |ωi〉 = ωi |ωi〉, we can rewrite the equation above as∑

i

〈ψ|Ω |ωi〉 〈ωi|ψ〉 = 〈ψ|Ω

(∑
i

|ωi〉 〈ωi|

)
|ψ〉 = 〈ψ|Ω |ψ〉 , (1.222)
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by completeness. Thus,

〈Ω〉 = 〈ψ|Ω |ψ〉 (1.223)

So, we notice a few things:

1. To calculate 〈Ω〉, we only need the operator Ω. We do not need to know
the eigenstates nor the eigenvalues of Ω.

2. If the particles is in some eigenstate |ωi〉 of Ω, then 〈Ω〉 = ωi, the corre-
sponding eigenvalue.

3. 〈Ω〉 is not necessarily one of the eigenvalues ωi.

The Uncertainty

Beside the mean (or the expectation value), another useful quantity to specify
is the standard deviation, or the uncertainty. Statistically, it is defined as

∆Ω =
√
〈Ω2〉 − 〈Ω〉2. (1.224)

In quantum mechanics, if Ω has a discrete spectrum, then the uncertainty in Ω
is given by

∆Ω =

√∑
i

P (ωi)(ωi − 〈Ω〉)2 (1.225)

Else if it has a continuous spectrum, then

∆Ω =

√ˆ
P (ω)(ω − 〈Ω〉)2 dω (1.226)

Or equivalently, we can write the uncertainty in Ω as a square root of an expec-
tation value (this is all statistical definitions, by the way):

〈Ω〉 =
√
〈ψ| (Ω− 〈Ω〉)2 |ψ〉 (1.227)

Compatible and Incompatible Variables

Suppose we want to measure some quantity Ω from the state |ψ〉. Such a mea-

surement can yield an eigenvalue, say ω, with probability P (ω) = |〈ω|ψ〉|2 where
|ω〉 is the eigenfunction corresponding to the eigenvalue ω. Now, what if we want
to measure a different variable, say Λ, on the already measured state |ψ〉? We
see that this is sort of like a filtering process where we start with |ψ〉 and want
to produce a state with ω and λ. But notice that once we measure |ψ〉, we have
made the transformation |ψ〉 → |ω〉. Can measuring |ω〉 give |λ〉? The answer
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is no, not generally, since |ω〉 must has a component that is the eigenfunction
corresponding to the eigenvalue |λ〉.

An exception occurs when the state produced after the first measurement is
unaffected by the second measurement, i.e., |ω〉 is also an eigenstate of Λ. So,
a natural question is when do two operators Ω and Λ have exactly the same
eigenkets? Mathematically, we want to know when the following equation

[Ω,Λ] = 0∀ eigenket (1.228)

holds. Well, given any two operators Ω and Λ, we call Ω and Λ compatible if
they commute, i.e., [Ω,Λ] = 0. They are incompatible when they don’t com-
mute. There’s also a third situation where Ω and Λ don’t share all of their
eigenkets.

If Ω and Λ, we can show with linear algebra that Ω and Λ are simultaneously
diagonalizable, i.e., we know a complete basis of simultaneous eigenkets can be
found.

If Ω and Λ never commute, then any attempt to filter Ω is ruined by a sub-
sequent filtering for Λ and vice versa. A classic example of this is the canonical
commutation rule

[x̂, p̂] = i~, (1.229)

which is the origin of the Heisenberg uncertainty principle.

There’s nothing interesting about the third situation so we will skip it.

The Density Matrix

For an ensemble of N systems, the density matrix is given by

ρ =
∑
i

pi |i〉 〈i| (1.230)

where

pi =
ni
N

(1.231)

is the probability that a system picked randomly out of the ensemble is in the
state |i〉.

Any ensemble average of Ω is given by

〈Ω̄〉 =
∑
i

pi 〈i|Ω |i〉 . (1.232)
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We note that there are two kinds of average going on here. First we have 〈i|Ω |i〉,
which is the expectation value of Ω for a given state i, and then we have the
bar average, which is the statistical expectation value over the entire ensemble.
Next, we observe that

Tr(Ωρ) =
∑
j

〈j|Ωρ |j〉 (1.233)

=
∑
j

∑
i

〈j|Ω |i〉 〈i|j〉 pi (1.234)

=
∑
i

∑
j

〈i|j〉 〈j|Ω |i〉 pi (1.235)

=
∑
i

∑
j

δij 〈j|Ω |i〉 pi (1.236)

=
∑
i

pi 〈i|Ω |j〉 (1.237)

= 〈Ω̄〉. (1.238)

Thus we say the density matrix contains all statistical information about the
ensemble. Now, suppose we don’t want 〈 but instead ¯P (ω), the probability
of obtaining a particular value ω, then we simply replace Ω̄ by an probability
operator for ω, which is simply |ω〉 〈ω|. So,

¯P (ω) = Tr(|ω〉 〈ω| ρ). (1.239)

Now, a very important property of the density matrix is that its trace is 1:

Tr(ρ) =
∑
j

〈j| ρ |j〉 (1.240)

=
∑
j

〈j|

(∑
i

|i〉 〈i|

)
|j〉 (1.241)

=
∑
j

∑
i

δijδij (1.242)

= 1. (1.243)

Since the density matrix is defined as a sum of outer products, it acts like a
projection, and thus is Hermitian, i.e., ρ† = ρ. Any because it is a projection,
letting it act twice (assuming ensemble is pure) is the same as letting it act once
ρ2 = ρ. If the ensemble is uniformly distributed over k states then ρ = (1/k)I
where I is the identity. And finally, tr

(
ρ2
)
≤ 1 in general, where equality holds

when the ensemble is pure.

1.3.2 The Schrödinger Equation & The Propagator

At this point we should know what the Schrödinger equation is and its solution
for the SHO problem. But now let us look a bit closer in terms of Dirac brakets.



42 PART 1. QUANTUM MECHANICS

Let the initial ket |ψ(0)〉 be given. How is it going to evolve in time? We find
this by constructing a propagator U(t) such that

|ψ(t)〉 = U(t) |ψ(0)〉 . (1.244)

We note that U(t) must retain the normalization of |ψ〉, i.e., preserve the length
of the vector |ψ〉. We have reasons to think that U(t) is unitary. Now, the
time-independent SE says

H |ψ〉 = E |ψ〉 . (1.245)

Suppose the eigenfunction corresponding to the eigenvalue E is found to be |E〉.
Then we can write |t〉 is the |E〉 basis:

|ψ(t)〉 =
∑

ci |Ei〉 =
∑
|E〉 〈E|ψ(t) |≡〉

∑
aE(t) |E〉 . (1.246)

Now, let Ĥ act on both sides of the equation and using the fact that both |ψ〉 (t)
and |E〉 are solutions to the SE to get

i~ȧE = EaE . (1.247)

This is a rather easy ODE to solve. The general solution has the form

aE(t) = aE(0)e−iEt/~. (1.248)

Now, note that aE(t) are inner products between |E〉 and |ψ(t)〉. In other words,

〈E|ψ(t)〉 = 〈E|ψ(0)〉 e−iEt/~. (1.249)

Plugging everything back into the expression for |ψ(x)〉 we get

|ψ(t)〉 =
∑
|E〉 〈E|ψ(0)〉 e−iEt/~. (1.250)

And thus we can now extract U(t), where |ψ(t)〉 = U(t) |ψ(0)〉:

U(t) =
∑
E

|E〉〈E| e−iEt/~ (1.251)

Now, by Taylor series expansion, we can verify that an expression for the
propagator U(t) is

U(t) = e−iHt/~, (1.252)

where H here is the Hamiltonian itself. Now, because H is Hermitian (self-
adjoint), U(t) must be unitary, as expected. Thus we can think of the propa-
gator U(t) as some sort of a rotation of the vector |ψ〉 in Hilbert space. From
linear algebra, we know that unitary operators preserves length. This is the
reason why |ψ(t)〉 stays normalized once it is normalized at t = 0.

Now, what if we chose to be in a different frame where the vectors |ψ〉 seem
frozen (i.e. not rotating)? First, we can do this by a change of basis. But note
that no physical quantity might change from this change of basis because inner
products are preserved. This picture where the vectors are not rotating is called
the Heisenberg picture, whereas the picture we are familiar with is called the
Schrödinger picture.
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The Propagator & Time-dependent Hamiltonian

Suppose now that our Hamiltonian is a combination of a time-independent part
and a small time-dependent piece:

H(t) = H0 +H1(t). (1.253)

The question is, how is the propagator U(t) defined in terms of this new
Hamiltonian? To find out, let us first divide the interval 0→ t into N pieces of
width ∆ = t/N , where N is very large and ∆ is very small. To first order in ∆,
the integrated SE is given by

|ψ(∆)〉 = |ψ(0)〉+ ∆
d |ψ(t)〉
dt

∣∣∣∣
0

(1.254)

= |ψ(0)〉+ ∆

(
−i
~

)
H(0) |ψ(0)〉 (1.255)

=

[
1− i∆

~
H(0)

]
|ψ(0)〉 (1.256)

≈ exp

[
−i∆
~
H(0)

]
|ψ(0)〉 . (1.257)

Inching forth in steps of ∆, we should get

|ψ(t)〉 =

N−1∏
n=0

e−i∆H(n∆)/~ |ψ(0)〉 . (1.258)

Now note that we can’t simply add the exponents because the Hamiltonian (as
an operator) changes in time, i.e., it at time t1 does not necessarily commute
with itself at t2.

Thus the propagator U(t) has the form of a time-ordered integral :

U(t) = T

{
exp

[
−(i/~)

ˆ t

0

H(t′) dt′
]}

= lim
N→∞

N1∏
n=0

exp [−(i/~)H(n∆)∆] .

(1.259)

One thing to note here is that U(t) is still a product of unitary operators, so it
is still unitary even though H is time-dependent.

While we haven’t gained much insights in this short discussion of propa-
gators, propagators do appear again in quantum field theory. The treatment
where time is divided into smaller chunks is also used. In fact, we have

U(t3, t2)U(t2, t1) = U(t3, t1), (1.260)

and that U(t) is unitary, i.e., U(t1, t2) = U†(t2, t1). This will appear again in a
very similar fashion in quantum field theory.
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1.4 Simple Problems in One Dimension

1.4.1 The Free Particle

The Hamiltonian for the free particle case has the form H = p̂2/2m. Let the
eigenfunctions of H be |E〉, then a general eigenfunction has the form

|ψ(t)〉 = |E〉 e−iEt/~, (1.261)

where E is the eigenvalue corresponding to the eigenvector |E〉. Next, consider
an eigenfunction |E〉. |E〉 solves the time-independent SE, so

H |E〉 =
p̂2

2m
|E〉 = E |E〉 . (1.262)

Because |E〉 6= 0, we find that the eigenvalues of p̂ must be ±
√

2mE. Thus,
there are two orthogonal eigenstates for each eigenvalue E:

|E,+〉 =
∣∣∣p =

√
2mE

〉
(1.263)

|E,−〉 =
∣∣∣p = −

√
2mE

〉
. (1.264)

This makes physical sense since it describes the same particle with the same
energy but is allowed to travel to the left or to the right. This is like classical
mechanics. However the twist here is that any linear combination of these two
states |E,+〉 and |E,−〉 are also eigenstates corresponding to the eigenvalue
E. The fact that this state describes a single particle is a classically prohibited
thing.

Now, recall our extraction of the propagator in the previous section (1.251):

U(t) =

ˆ ∞
−∞
|p〉〈p| e−iE(p)t/~ dp =

ˆ ∞
−∞
|p〉〈p| e−ip

2t/2m~ dp, (1.265)

where it suffices to just specify the momentum of the particle (see, E is degen-
erate, but p is not, so specifying p specifies both momentum and energy).

The propagator U(t) can be evaluated explicitly in the X basis starting with
the matrix element

〈x|U(t) |x′〉 =

ˆ ∞
−∞
〈x|p〉 〈p|x′〉 e−ip

2t/2m~ dp (1.266)

=
1

2π~

ˆ ∞
−∞

eip(x−x
′)/~ · e−ip

2t/2m~ dp Fourier transform twice?

(1.267)

=

√
m

2π~it
eim(x−x′)2/2~t. (1.268)
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With this, we can now find explicitly ψ(x, t) given ψ(x, 0):

ψ(x, t) =

ˆ
〈x|U(t) |x′〉ψ(x′, 0) dx′ ≡

ˆ
U(x, t;x′, 0)ψ(x′, 0) dx′. (1.269)

If we started out at some time t′ 6= 0 then we would have

ψ(x, t) =

ˆ
U(x, t;x′, t′)ψ(x′, t′) dx′ (1.270)

Now, suppose we started off with a particle localized at x′ = x′0, i.e.,
ψ(x′, t′) = δ(x′ − x′0), then

ψ(x, t) = U(x, t;x′0, t
′). (1.271)

This turns out to have some nice interpretations. What this equation is saying
is that the propagator (in the X basis) is the amplitude that a particle starting
out at the space-time point (x′0, t

′) ends with at the space-time point (x, t). The
equation

ψ(x, t) =

ˆ
U(x, t;x′, t′)ψ(x′, t′) dx′ (1.272)

tells us that the total amplitude for the particle’s arrival at (x, t) is the sum
of the contributions from all points x′ with a weight proportional to the initial
amplitude ψ(x′, t′) tat the particle was at x′ at time t′.

This is a very nice interpretation which will appear again in quantum field
theory. In fact, this interpretation is very well highlighted in the first two
chapters of Feynman’s famous book Quantum Electrodynamics.

1.4.2 The Particle in a Box

This classical problem is also referred to as the infinite square well problem that
is often introduced in sophomore year modern physics and revisited in third
year introduction to quantum mechanics. We will assume familiarity with this
problem and its solution. And we will simply recall that the eigenfunctions for
the time-independent SE is

ψn(x) =

√
2

L
sin
(nπx
L

)
, n even > 0 (1.273)

=

√
2

L
cos
(nπx
L

)
, n odd. (1.274)

The allowed energies are

En =
~2π2n2

2mL2
. (1.275)
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Of course because En’s are the eigenvalues of an operator, the energy which
it represents is quantized, at least in the bound states. The fact that the lowest
energy state is not zero directly comes from the Heisenberg uncertain principle.
If the lowest energy state is zero, then the momentum in the ground state is
zero, which violates the fact that ∆p > 0.

Now, let us focus a little bit on the propagators in the problem. If we let
|n〉 denote an abstract braket corresponding to ψn(x), then we can write the
propagator as

U(t) =

∞∑
n=1

|n〉〈n| exp

[
− i
~
~2π2n2

2mL2
t

]
, (1.276)

which follows direction from the definition of propagators (1.251). In the X
basis the propagator is simply just

〈x|U(t) |x′〉 =

∞∑
n=1

ψn(x)ψ∗n(x′) exp

[
− i
~
~2π2n2

2mL2
t

]
. (1.277)

1.4.3 The Continuity Equation for Probability

In this section, we focus on two important concepts: probability current density
and the continuity equation is satisfies.

We know that charge is a conserved quantity, i.e., Q(t) = Constant. How-
ever, charge is also conserved locally. This is expressed in the form of the
continuity equation

∂ρ(r, t)

∂t
= −∇ · j, (1.278)

where ρ is the charge density and j is the current density. Take the volume
integral of both sides, we get

d

dt

ˆ
V

ρ(r, t) d3r = −
ˆ
V

∇ · j d3r =

˛
SV

j · dS. (1.279)

This basically says that the rate of change in charge is account for by a flux
through some closed surface.

In QM, the quantity that is conserved is the probability that we observe the
particle somewhere.

〈ψ(t)|ψ(t)〉 = 〈ψ(0)|U†(t)U(t) |ψ(0)〉 = 〈ψ(0)|ψ(0)〉 , (1.280)
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so

〈ψ(t)|ψ(t)〉 =

˚
〈ψ(t)|x, y, z〉 〈x, y, z|ψ(t)〉 dxdydz (1.281)

=

˚
〈ψ(t)|r〉 〈r|ψ(t)〉 d3r (1.282)

=

˚
ψ(r, t)∗ψ(r, t) d3r (1.283)

=

˚
P (r, t) d3r (1.284)

= 1. (1.285)

This is like the conservation of charge, but for probability. Now, let us turn
to the SE to get the continuity equation for probability. Consider the SE and
its conjugate, we can obtain the follow equation

i~
∂

∂t
(ψ∗ψ) = − ~2

2m

(
ψ∗∇2ψ − ψ∇2ψ∗

)
(1.286)

∂P

∂t
= − ~

2mi
∇ · (ψ∗∇ψ − ψ∇ψ∗) (1.287)

∂P

∂t
= −∇ · j (1.288)

where of course

j =
~

2mi
(ψ∗∇ψ − ψ∇ψ∗) (1.289)

is called the probability current density. To regain global conservation law, we
integrate the above equation over all space to get

d

dt

ˆ
P (r, t) d3r = −

˛
S∞

j · dS. (1.290)

This equation holds because the LHS is obviously 0, and the RHS is zero because
wavefunctions have to be normalized, i.e., they have to be zero on the boundary.

1.4.4 The Single-Step Potential: A Problem in Scattering

Please refer to PH242 archive for a complete tutorial on this. The strategy
includes getting rid of unphysical anzats, matching the wavefunctions and their
derivatives at the barriers. The hard part is calculating the correct coefficients.
But other than that there’s no new quantum mechanics here except the concepts
of transmission and reflection probabilities.

One thing to take away here is that there is some tunneling/penetration
effect going on. Basically, we find that there is a non-zero probability that the
particle is the classical forbidden region inside the barrier.
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1.4.5 Some Theorems

Theorem 1: There is no degeneracy in one-dimensional bound states.

The proof starts with assuming ψ1 and ψ2 have the same eigenvalue E. Then
by the SE, we can show that ψ1 ∝ ψ2, which means they both represent the
same state.

Theorem 2: The eigenfunctions of H can always be chosen pure real in the
coordinate basis.

The proof starts with the SE and its conjugate. Since ψ and ψ∗ are so-
lutions to the SE, their linear combinations are solutions. In particular, ψr =
(1/2) (ψ + ψ∗) is a solution, and it is pure real. And of course, ψim = (1/2i) (ψ − ψ∗)
is also pure real.
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1.5 The Classical Limit

QM when applied to macroscopic system should return classical mechanics,
very much the way relativistic dynamics gives classical mechanics at low speeds.
Consider the time evolution of expectation values of some variable Ω where Ω
has no explicit time dependence:

d

dt
〈Ω〉 =

d

dt
〈ψ|Ω |ψ〉 (1.291)

=
〈
ψ̇
∣∣∣Ω |ψ〉+ 〈ψ|Ω

∣∣∣ψ̇〉 . (1.292)

From the SE and its adjoint (and their difference), we get

d

dt
〈Ω〉 =

−i
~
〈ψ| [Ω,H] |ψ〉 =

d

dt
〈[Ω,H]〉 (1.293)

This is called Ehrenfest’s theorem. We notice the similarity between the above
equation and another equation from classical mechanics:

dω

dt
= {ω,H} . (1.294)

Let us see how these two equations are related mechanically. Let Ω be x̂,
then we have

〈 ˙̂x〉 =
−i
~
〈[x̂,H]〉. (1.295)

If H = p̂2/2m+ V (x) then

〈 ˙̂x〉 =
−i
~
〈[x̂, p̂2/2m]〉. (1.296)

Now, we have that

[x̂, p̂] = p̂[x̂, p̂] + [x̂, p̂]p̂ = 2i~p̂, (1.297)

so

〈 ˙̂x〉 =
〈p̂〉
m
. (1.298)

This basically says velocity is momentum divided by mass, which is exactly
what we learn from classical mechanics.

There are of course more formal ways to discuss this, but we will skip them
for the time being. But just FYI, we can write

〈 ˙̂p〉 =

〈
−∂H
∂x̂

〉
(1.299)

when we let ∂V (x)/∂x̂ = ∂H/∂x̂. This equation basically says that the change
in momentum (force) is the gradient of the energy (or potential), which is also
similar to what we have seen from classical mechanics.
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1.6 The Harmonic Oscillator

1.6.1 In the X basis

This is another classic problem in introductory QM is the quantum single har-
monic oscillator. Let us do a quick review here. (The rest of the details on this
can be found on the QM archived lecture notes.)

Let us begin with classical mechanics. The equation of motion is

ẍ+ ω2x = 0. (1.300)

The general solution to this problem is

x(t) = A cosωt+B sinωt. (1.301)

The total energy is given by

E = T + V =
1

2
mẋ2 +

1

2
mω2x2 =

1

2
mω2x2

0, (1.302)

which is guaranteed by the conservation of energy.

In quantum mechanics, we observe quantization in the coordinate basis. The
SE is

i~
d

dt
|ψ〉 = H |ψ〉 (1.303)

where the Hamiltonian is

H =
p̂2

2m
+

1

2
mω2x̂2. (1.304)

We wish to find the propagator U(t) in order to completely solve this prob-
lem. To do this, we first start with the Hamiltonian H. We must note that
because energy cannot be negative (at least in this particular problem), the
eigenvalues of H cannot be negative. This is in fact true and can be verified as
follows:

〈H〉 =
1

2m
〈ψ| p̂2 |p〉+

1

2
mω2 〈ψ| x̂2 |ψ〉 (1.305)

=
1

2m
〈ψ| p̂†p̂ |p〉+

1

2
mω2 〈ψ| x̂†x̂ |ψ〉 ≥ 0. (1.306)

Now, let us solve this problem by bringing it back to the X basis, which we
are familiar with. The SE becomes the time-independent SE in the variable x:(

− ~2

2m
∂2
x +

1

2
mω2x2

)
ψ = Eψ. (1.307)
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At this point, please refer to the QM notes for details involving finding the
solution to this problem. But just to summarize, what we will do here consid-
ering ψ(x) at infinity and recognizing that because at infinity the wavefunction
must be zero, ψ must contain a factor of a exponential (which comes from
solving the SE without the potential). This gives

ψ ∝ e±y
2/2. (1.308)

Now, because the wavefunction cannot blow up, the ey
2/2 solution must

be discarded as unphysical. Next, by rearranging the SE to get the Hermite
equation, we find that ψ(x) must also be proportional to a polynomial in a
dimensionless variable called the Hermite polynomials. Finally, once we write
down ψ as a product of the exponential and some polynomial in x (whose cutoff
gives rise to the Hermite polynomials), we simply normalize ψ. Again, please
refer to the QM notes for the details on this.

The strategy outlined (by Shankar) is the following

1. Introduce dimensionless variables natural to the problem.

2. Extract the asymptotic (y →∞, y → 0) behavior of ψ.

3. Write ψ as a product of the asymptotic form and an unknown function u.
The function u will usually be easier to find that ψ.

4. Try a power series to see if it will yield a recursion relation...

In the end, what we should find is that the energy is quantized and the
allowed energies are

En = ~ω
(
n+

1

2

)
. (1.309)

So, in the end, a stationary state (an eigenfunction) for the SHO has the
form

ψn(x) =
(mω
π~

)1/4

Hn

[(√
mω

~
x

)]
exp

[
−mωx

2

2~

]
(1.310)

With this, we are now able to write down the expression for the propagator.
Recall its definition from (1.251):

U(t) =
∑
E

|E〉〈E| e−iEt/~. (1.311)

Well now in this case because we are working in the coordinate basis, the bras
and kets will be the eigenfunctions (which are given above) and their conjugates.
The energies En will be dependent on n and is given by En = ~ω(n+ 1/2).
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The propagator for a particle in the energy state n from point (x′, t′) to (x, t)
is

U(x, t;x′, t′) =

∞∑
n=0

Ane
−mωx22~ Hn(x)Ane

−mωx′22~ Hn(x′)e−i(n+ 1
2 )ω(t−t′)

(1.312)

Evaluating this sum can be tricky, but it can be done. It fact, the sum turns
out to be

U(x, t;x′, t′) =

√
mω

2πi~ sinωT
exp

[
imω

~
(x2 + x′2) cosωT − 2xx′

2 sinωT

]
(1.313)

where T = t− t′.
It also turns out that there is an extremely easy way to calculate the prop-

agator U(t) in the next section, where we will talk about the path integral
formalism of QM.

1.6.2 In the E basis

In this section, we basically tackle the same problem, but with a slightly more
elegant approach, by considering things the energy basis. Consider the Hamil-
tonian again:

H =
p̂2

2m
+

1

2
mω2x̂2. (1.314)

Now, what we will do here to decompose H into what we call ladder operators.
There are two types of these operators, called lowering and raising. What they
do is exactly what their names suggest. Lowering/raising an energy state n to
a neighboring n± 1 state. Here’s how they are defined:

Lowering: â =
1√

2~mω
[ip̂+mωx̂] (1.315)

Raising: â† =
1√

2~mω
[−ip̂+mωx̂] (1.316)

It is easy to verify that the following commutation relation:

[â, â†] = 1 (1.317)

holds, and the eigenvalues of â†â, which we call the number operator, are:

â†â |ψn〉 = n |ψn〉 (1.318)
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which is something we can check quite quickly by inspection.

We can also verify the relationship between the Hamiltonian and these ladder
operators:

H = ~ω
(
â†â+

1

2

)
= ~ω

(
ââ† − 1

2

)
(1.319)

Next, we can also very that if |E〉 is an eigenfunction of H then so is â |E〉
and the corresponding eigenvalue is E − ~ω:

Hâ |E〉 = ~ω
(
ââ† − 1

2

)
â |E〉 (1.320)

= ~ωâ†
(
â†â+

1

2
− 1

)
|E〉 (1.321)

= â† (H− ~) |E〉 (1.322)

= (E − ~ω) â |E〉 , (1.323)

as desired. Similarly, we can show that Hâ† |E〉 = (E + ~) |E〉.

The next question to ask is what happens to ψn when a ladder operator acts
on it? We can already infer that

â |n〉 = Cn(E − ~) |n− 1〉 (1.324)

â† |n〉 = C(E + ~) |n+ 1〉 (1.325)

n+1 Thus it makes sense why we would want to name the operators this way.
The lowering operator lowers the energy of the state, while the raising operator
raises the energy of the state. But more than that, the ladder operators also
moves a state up and down the energy ladder. In a more general context, these
operators are also called creation and annihilation operators, because as we can
see, they create/destroy a quantum of energy ~ every time they are applied.

But there’s something we need to sort out before moving on. What if we’re at
ψ0? What happens when the lowering operator acts on it? First of all, because
energy cannot be zero (we have proven this), the lowering operator acting on
ψ0 should not give something with a negative eigenvalue. This means

â |0〉 = 0. (1.326)

This implies that

â†â |0〉 =

(
H− 1

2
~ω
)
|0〉 = 0. (1.327)
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This just means that the eigenvalue of the n = 0 state is (1/2)~ω, which is
exactly the zero-point energy. But of course, because there’s nothing stopping
us from applying â† indefinitely, we get back the allowed energies (or eigenvalues)

En = ~ω
(
n+

1

2

)
. (1.328)

Finally, what are these coefficients Cn, i.e., what are the eigenvalues of these
ladder operators? Let us consider the case with the lowering operator first:

â |n〉 = Cn |n− 1〉 ⇐⇒ 〈n| â† = 〈n− 1|C∗n. (1.329)

Combining these equations we have

〈n| â†â |n〉 = 〈n− 1|n− 1〉C∗nCn (1.330)

〈n|
(
H− 1

2
~
)
|n〉 = |Cn|2 (1.331)

〈n− 1|n |n− 1〉 = |C1|2 (1.332)

n = |Cn|2. (1.333)

It is conventional to choose Cn =
√
n. We can do something similar to this with

the raising operator. In the end, we have

â |n〉 =
√
n |n− 1〉 â† |n〉 =

√
n+ 1 |n+ 1〉 (1.334)

Now, the reason why these operators are so useful (if you haven’t seen that
already at this point), is that it aids a lot with calculations. Suppose we wanted
to find the overlap integral |3〉x3 |2〉 for instance. With our previous analytic
approach things things inside the integral can get very nasty very quick. With
the ladder operators, however, things are a bit better for us since we can write
x̂ and p̂ in terms of these operators. After all, these operators are defined in
terms of x̂ and p̂. It is very to easy to see that

x̂ =

√
~

2mω
(â+ â†) (1.335)

and

p̂ = i

√
mω~

2
(â† − â) (1.336)

With this, the integrand with x̂ can now be replaced by an expression in
terms of â and â†. And since we know exactly what these do to any ψn, the
integral should be much simpler. Many examples can be found in the archived
introductory QM notes. Check that out if you want to convince yourself things
do get a easier.
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1.7 The Heisenberg Uncertainty Relation
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1.8 Systems with N Degrees of Freedom
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1.9 Symmetries and Their Consequences
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1.10 Rotational Invariance and Angular Momen-
tum
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1.11 The Hydrogen Atom
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1.12 Spin
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1.13 Additional of Angular Momentum
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1.14 Variational and WKB Methods
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1.15 Time-Independent Perturbation Theory
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1.16 Time-Dependent Perturbation Theory
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1.17 Scattering Theory
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1.18 Quantization of the Electromagnetic Field

1.18.1 Quantization of a Single-mode Field

Consider the following simple yet important scenario: a radiation field confined
to a one-dimensional cavity along the z-axis with perfectly conducting walls at
z = 0 and z = L.

Suppose that the field is a standing wave which vanishes on the boundary and
is polarized in the x-direction. We also assume there is no source of radiation
such as a charge or a current. The electric field then can be written as

E(r, t) = exEx(z, t) (1.337)

where ex is the polarization vector. The Maxwell’s equations without source
are

∇×E = −∂B

∂t
(1.338)

∇×B = µ0ε0
∂E

∂t
(1.339)

∇ ·E = 0 (1.340)

∇ ·B = 0. (1.341)

A single-mode field satisfying Maxwells equations and the boundary condi-
tions is given by

Ex(z, t) =

(
2ω2

V ε0

)1/2

q(t) sin(kz). (1.342)

ω is the frequency, k = ω/c is the wavenumber. The allowed frequencies are

ωm = c
mπ

L
, = 1, 2, . . . (1.343)

V is the effective volume of the cavity and q(t) is the time-dependent factor
having the dimension of length. The magnetic field, from the second Maxwell
equation, is

B(r, t) = eyBy(z, t) (1.344)
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where

By(z, t) =
(µ0ε0

k

)(2ω2

V ε0

)1/2

q̇(t) cos(kz). (1.345)

It will become clear that q(t) plays the role of canonical position, and q̇(t) =
p(t) plays the role of canonical momentum. The classical field energy (or the
Hamiltonian H) of this single-mode field is then given by

H =
1

2

ˆ
dV

[
ε0E

2(r, t) +
1

µ0
B2(r, t)

]
(1.346)

=
1

2

ˆ
dV

[
ε0E

2
x(z, t) +

1

µ0
B2
y(z, t)

]
(1.347)

It turns out that (for p(t) = q̇(t)), we have

H =
1

2

(
p2 + ω2q2

)
(1.348)

Now, we notice that we have the canonical variables q and p. When we promote
these variables to operators (so we can quantize the fields), these operators must
satisfy the canonical commutation relation

[q̂, p̂] = i~Î. (1.349)

We rewrite the fields and the Hamiltonian as operators:

Êx(z, t) =

(
2ω2

V ε0

)1/2

q̂(t) sin(kz) (1.350)

B̂y(z, t) =
(µ0ε0

k

)(2ω2

V ε0

)1/2

p̂(t) cos(kz). (1.351)

Ĥ =
1

2

(
p̂2 + ω2q̂2

)
. (1.352)

The operators q̂ and p̂ correspond to observables because they are Hermitian.
We can also introduce creation (â†) and annihilation (â) operators through
combining q̂ and p̂:

â = (2~ω)−1/2(ωq̂ + ip̂) (1.353)

â† = (2~ω)−1/2(ωq̂ − ip̂) (1.354)

It is easy to show that the electric and magnetic field operators then become

Êx(z, t) = E0(â+ â†) sin(kz) (1.355)

B̂y(z, t) = B0
1

i
(â− â†) cos(kz) (1.356)
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where

E0 =

√
~ω
ε0V

, B0 =
(µ0

k

)√ε0~ω3

V
(1.357)

represents respectively the electric and magnetic field “per photon.” We notice
that

[â, â†] = Î (1.358)

so the Hamiltonian takes the form

Ĥ = ~ω
(
â†â+

1

2

)
(1.359)

Now, what is the time dependent of these new operators? For an arbitrary
operator Ô, Heisenberg equation reads

dÔ

dt
=
i

~
[Ĥ, Ô]. (1.360)

For the annihilation operator, this becomes

dâ

dt
=
i

~

[
~ω
(
â†â+

1

2

)
, â

]
= −iωâ. (1.361)

Thus,

â(t) = â(0)eiωt (1.362)

Similarly for the creation operator, we have

â†(t) = â†(0)eiωt (1.363)

Now, let |n〉 denote an energy eigenstate of the single mode field correspond-
ing to energy En, then

Ĥ |n〉 = ~ω
(
â†â+

1

2

)
|n〉 = En |n〉 . (1.364)

Applying the creation operator â† from the left we have

~ω
(
â†â†â+

1

2
â†
)
|n〉 = Enâ

† |n〉 . (1.365)

Using the commutation relation, we can write

ââ† = Î + â†â. (1.366)
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Thus,

Enâ
† |n〉 = ~ω

(
â†[−Î + ââ†] +

1

2
â†
)
|n〉 (1.367)

= ~ω
(
−â† + â†ââ† +

1

2
â†
)
|n〉 (1.368)

= ~ω
(
−Î + â†â+

1

2

)
â† |n〉 . (1.369)

This says we have a new eigen-equation:

(En + ~ω)â† |n〉 = ~ω
(
â†â+

1

2

)
â† |n〉 (1.370)

or equivalently,

Ĥ
[
â† |n〉

]
= (En + ~ω)

[
â† |n〉

]
(1.371)

This is the eigenvalue problem for the eigenstate â† |n〉 with the energy eigen-
value En + ~ω. It is clear now why â† is called the creation operator: it creates
a “quantum” energy ~ω. On the other hand, we can also show that

Ĥ [â |n〉] = (En − ~ω) [â |n〉] (1.372)

It is clear that the operator â annihilates a quantum of energy. Now, because
for the least energetic eigenstate

â |0〉 = 0, (1.373)

the Hamiltonian of the annihilation of the least energetic eigenstate is

Ĥ [â |0〉] = (E0 − ~ω) [â |0〉] = 0. (1.374)

Therefore,

Ĥ |0〉 = ~ω
(
â†â+

1

2

)
|0〉 =

1

2
~ω |0〉 = E0 |0〉 . (1.375)

Or equivalently, the zero-point energy is

E0 = ~ω (1.376)

and the energy eigenvalues En+1 = En + ~ω are

En = ~
(
n+

1

2

)
(1.377)
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Note that this is just like the energy levels for the harmonic oscillator in an
infinite well. Now, we observe that

Ĥ |n〉 = ~ω
(
â†â+

1

2

)
|n〉 = En |n〉 = ~ω

(
n+

1

2

)
|n〉 , (1.378)

i.e.,

â†â |n〉 = n |n〉 . (1.379)

It makes sense to call â†â the “number operator” n̂, so that

n̂ |n〉 = n |n〉 . (1.380)

Next, the eigenstates must be normalized according to 〈n|n〉 = 1. For the state
â |n〉 we have

â |n〉 = cn |n− 1〉 . (1.381)

Taking the inner product with itself we have(
〈n| â†

)
(â |n〉) = 〈n| â†â |n〉 (1.382)

= 〈n| n̂ |n〉 (1.383)

= n 〈n|n〉 (1.384)

= 〈n− 1| c∗ncn |n− 1〉 . (1.385)

This says n = |cn|2. So we have

â |n〉 =
√
n |n− 1〉 (1.386)

Similarly,

â† |n〉 =
√
n+ 1 |n+ 1〉 (1.387)

This says that |n〉 can be generated from the |0〉 state by applying the creation
operator â† appropriately many times with the appropriate normalization:

|n〉 =

(
â†
)n

√
n!
|0〉 (1.388)

Next, because the eigenstates are orthonormal (〈n′|n〉 = δn′n and 〈n|n〉 = 1)
and form a complete set, i.e.,

∞∑
n=0

|n〉 〈n| = 1, (1.389)

the only non-vanishing matrix elements of the annihilation and creation opera-
tors are

〈n− 1| â |n〉 =
√
n 〈n− 1|n− 1〉 =

√
n (1.390)

〈n+ 1| â† |n〉 =
√
n+ 1 〈n+ 1|n+ 1〉 =

√
n+ 1 (1.391)
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1.18.2 Quantum Fluctuations of a Single-mode Field

Recall the electric field operator

Êx(z, t) = E0(â+ â†) sin(kz). (1.392)

The mean field is zero:

〈n| Êx(z, t) |n〉 = E0 sin(kz)[〈n| â |n〉︸ ︷︷ ︸
0

+ 〈n| â† |n〉︸ ︷︷ ︸
0

] = 0 (1.393)

by orthonormality. However, the mean of the square of the field is not zero:

〈n| Ê2
x(z, t) |n〉 = E2

0 sin2(kz) 〈n|
(
â†
)2

+ â2 + â†â+ ââ† |n〉 (1.394)

= E2
0 sin2(kz) 〈n| 2â†â+ 1 |n〉 (1.395)

= 2E2
0 sin2(kz)

(
n+

1

2

)
. (1.396)

So, the fluctuations in the field for the state |n〉 may be characterized by the
variance

Var[Êx(z, t)] = E[Ê2
x(z, t)]− E2[Êx(z, t)] (1.397)

= 2E2
0 sin2(kz)

(
n+

1

2

)
. (1.398)

And so the uncertainty of the field for the state |n〉 is

σ[Êx(z, t)] =
√

2E0 sin(kz)

√
n+

1

2
(1.399)

Now, note that even at n = 0, the field still has fluctuations. These are called
“vacuum fluctuations.” Now the number states |n〉 are taken to represent a
state of the field containing n photons. Yet as we have seen, the average field
is zero. This is all in accordance with the uncertainty principle because the
number operator n̂ = â†â does not commute with the electric field:

[n̂, Êx] = E0 sin(kz)(â† − â). (1.400)

Thus n̂ and Êx are complementary quantities for which their respective uncer-
tainties obey the inequality

σ[n] · σ[Ex] ≥ 1

2
E0|sin(kz)|

∣∣〈â† − â〉∣∣ (1.401)

This says that if the field is accurately known, then the number of photons in
uncertain.
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1.18.3 Quadrature Operators for a Single-mode Field

When we explicitly include the time dependence of the electric field operator
we have

Êx = E0(âe−ωt + â†eiωt) sin(kz) (1.402)

where

â(0) ≡ â â†(0) ≡ â†. (1.403)

Next, we define quadrature operators:

X̂1 =
1

2
(â+ â†) (1.404)

X̂2 =
1

2i
(â− â†). (1.405)

With these definitions, we rewrite the time-dependent electric field operator as

Êx(t) = 2E0 sin(kz)[X̂1 cos(ωt) + X̂2 sin(ωt)]. (1.406)

We observe that X̂1 and X̂2 are associated with field amplitudes oscillating
π/2 out of phase. Essentially, X̂1 and X̂2 are position and momentum opera-
tors, only scaled to be dimensionless. These operators satisfy the commutation
relation

[X̂1, X̂2] =
i

2
, (1.407)

which one can easily check. Next, by definition we have

〈n| X̂1 |n〉 = 〈n| X̂2 |n〉 = 0. (1.408)

However,

〈n| X̂2
1 |n〉 =

1

4
〈n| â2 + (â†)2 + â†â+ ââ† |n〉 (1.409)

=
1

4
〈n| 2â†â+ 1 |n〉 (1.410)

=
1

4
(2n+ 1). (1.411)

Similarly,

〈n| X̂2
2 |n〉 =

1

4
(2n+ 1). (1.412)

Thus for a number state, the uncertainties in both quadratures are the same
and furthermore the vacuum state (n = 0) minimizes the uncertainty product
since

Var[X̂1] = Var[X̂2] =
1

4
. (1.413)

From this section, we learn that the quanta of the single-mode cavity field
are the excitations of energy in discrete amounts of ~ω. These quantas (or
photons) are not localized particles but rather are spread out over the entire
mode volume.
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1.18.4 Multimode Fields

Now we generalize our results for the single-mode field to multi-mode fields.
We again assume that there is no source of radiation. Let the vector potential
A(r, t) be given such that

∇ ·A(r, t) = 0. (1.414)

The vector potential gives the electric and magnetic fields by

E(r, t) = −∂A(r, t)

∂t
(1.415)

B(r, t) =∇×A(r, t). (1.416)

The vector potential satisfies the wave equation

∇2A(r, t)− 1

c2
∂2A(r, t)

∂t2
= 0. (1.417)

We now assume free space is a cubic cavity with perfectly reflecting walls of
length L. We assume that L → ∞, i.e., L is much larger than the wavelength
of the field. This allows us to impose boundary conditions:

eikxx = eikx(x+L) (1.418)

eikyx = eiky(y+L) (1.419)

eikzx = eikz(z+L). (1.420)

It follows that

kx =

(
2π

L

)
mx, mx = 0,±1,±2, . . . (1.421)

ky =

(
2π

L

)
my, my = 0,±1,±2, . . . (1.422)

kz =

(
2π

L

)
mz, mz = 0,±1,±2, . . . (1.423)

The wave vector is then

k =
2π

L

mx

my

mz

 . (1.424)

The magnitude of this vector is related to the frequency ωk according to k =
ωk/c. A set of integers (mx,my,mz) specifies a normal mode of the field (apart
from polarization), the number of modes being infinite but denumerable. The
total number of modes in the intervals ∆mx,∆my,∆mz is

∆m = ∆mx∆my∆mz = 2

(
L

2π

)3

∆kx∆ky∆kz (1.425)
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where the factor of 2 takes into account two independent modes of polarization.
With the assumption that L is very large compared to the wavelengths, this
becomes

dm = 2

(
V

8π3

)
dkxdkydkz. (1.426)

In spherical coordinates,

k = k(sin θ cosφ, sin θ sinφ, cos θ), (1.427)

and

dm = 2

(
V

8π3

)
k2 dkdΩ (1.428)

where

dΩ = sin θ dθdφ. (1.429)

With k = ωk/c,

dm = 2

(
V

8π3

)
ω2
k

c3
dωkdΩ. (1.430)

Integrating over all solid angles gives
´
dΩ = 4π, so the number of modes in all

directions from k → k + dk is

2

(
V

8π3

)
k2 · (4π) dk = V

k2

π2
dk = V ρk dk (1.431)

where ρk = k2/π2 and ρk dk is the number of modes per unit volume. Integrat-
ing in the same fashion but with ωk gives the number of modes in all directions
from ωk → ωk + dωk:

V

(
ω2
k

π2c3

)
dωk = V ρ(ωk) dωk (1.432)

where now ρ(ωk) is also the mode density.

The vector potential can be written as a superposition on plane waves in the
form

A(r, t) =
∑
k,s

eks

[
Aks(t)e

ik·r +A∗kse
−ik·r] (1.433)

where Aks is the complex amplitude of the field and eks is a real polarization vec-
tor. The sum over k simply means the sum over the set of integers (mx,my,mz)
and the sum over s is the sum over the two independent polarizations. These
polarizations must be orthogonal:

eks · eks′ = 0 (1.434)
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and the transversality condition must be satisfied:

k · eks = 0, (1.435)

which is just says that the polarization is orthogonal to the propagation. The
polarization vectors ek1 and ek2 form a right-handed system:

ek1 × ek2 =
k

|k|
= κ. (1.436)

In free space, we make the transition from “discrete” modes to a continuum of
modes, thus the sum becomes an integral:∑

k

→ V

π2

ˆ
k2 dk. (1.437)

From (1.414) and (1.417) and ωk = kc, we get

d2Aks

dt2
+ ω2

kAks = 0. (1.438)

The solution to this is of course

Aks(t) = Aks(0)e−iωkt = Akse
−iωkt. (1.439)

From this and (1.415) we can derive the electric and magnetic fields:

E(r, t) = i
∑
k,s

ωkeks

[
Akse

i(k·r−ωkt) −A∗kse−i(k·r−ωkt)
]

(1.440)

B(r, t) =
i

c

∑
k,s

ωk(κ× êks)
[
Akse

i(k·r−ωkt) −A∗kse−i(k·r−ωkt)
]
. (1.441)

The electromagnetic Hamiltonian is given by

H =
1

2

ˆ
V

(
ε0E ·E +

1

µ0
B ·B

)
dV. (1.442)

The periodic boundary conditions result in

ˆ L

0

e±ikxx dx =

{
L, kx = 0

0, kx 6= 0
(1.443)

same for y and z. Collectively we write this as

ˆ
V

e±i(k−k
′)·r dV = δkk′V. (1.444)
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So the contribution to the Hamiltonian from the electric field is

1

2

ˆ
V

ε0E ·E dV =ε0V
∑
ks

ω2
kAks(t)A

∗
ks(t) (1.445)

− 1

2
ε0V

∑
kss′

ω2
keks · e−ks′

[
Aks(t)Aks′(t) +A∗ks(t)A

∗
−ks′(t)

]
︸ ︷︷ ︸

R

.

(1.446)

To obtain the magnetic contribution we use the identity

(A×B) · (C×D) = (A ·C)(B ·D)− (A ·D)(B ·C). (1.447)

This gives

(κ× eks) · (κ× eks′) = δss′ (1.448)

(κ× eks) · (−κ× e−ks′) = −eks · e−ks′ . (1.449)

With this we get the contribution from the magnetic field

1

2

ˆ
V

1

µ0
B ·B dV =ε0V

∑
ks

ω2
kAks(t)A

∗
ks(t) +R. (1.450)

Thus the Hamiltonian is

H = 2ε0V
∑
ks

ω2
kAks(t)A

∗
ks(t) (1.451)

= 2ε0V
∑
ks

ω2
kAks(0)e−iωktA∗ks(0)eiωkt (1.452)

= 2ε0V
∑
ks

ω2
kAksA

∗
ks. (1.453)

To quantize the field, the canonical variables qks and pks must be introduced:

Aks =
1

2ωk
√
ε0V

[ωkqks + ipks] (1.454)

A∗ks =
1

2ωk
√
ε0V

[ωkqks − ipks] (1.455)

such that when we can re-write the Hamiltonian as

H =
1

2

∑
ks

(
p2
ks + ω2

kq
2
ks

)
. (1.456)

To quantize the field, we promote these canonical variables to operators:

Ĥ =
1

2

∑
ks

(
p̂2
ks + ω2

kq̂
2
ks

)
(1.457)
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where

[q̂ks, q̂k′s′ ] = 0 = [p̂ks, p̂k′s′ ] (1.458)

[q̂ks, p̂k′s′ ] = i~δkk′δss′ . (1.459)

The annihilation and creation operators are defined in a similar fashion as in
the case of a single-mode field:

âks = (2~ωk)−1/2(ωkq̂ks + ip̂ks) (1.460)

â†ks = (2~ωk)−1/2(ωkq̂ks − ip̂ks) (1.461)

which satisfy

[âks, âk′s′ ] = 0 =
[
â†ks, â

†
k′s′

]
(1.462)[

âks, â
†
k′s′

]
= δkk′δss′ . (1.463)

Finally, we define a similar operator for the mode ks as the “number” operator
before

n̂ks = â†ksâks. (1.464)

With these, the Hamiltonian (operator) can be written as

Ĥ =
∑
ks

~ωk
(
â†ksâks +

1

2

)
=
∑
ks

ωk

(
n̂ks +

1

2

)
. (1.465)

For simplicity, we associate a jth mode with kjsj . We let

âkjsj ≡ âj (1.466)

â†kjsj ≡ â
†
j (1.467)

n̂kjsj ≡ n̂j . (1.468)

Now we can write the Hamiltonian as

Ĥ =
∑
j

~ωj
(
n̂j +

1

2

)
(1.469)

A multimode photon number state is a (tensor) product of the number states
|nks〉 ≡ |nj〉 of all the modes which we write as

|n1〉 |n2〉 |n3〉 · · · ≡ |n1n2n3 . . .〉 = |{nj}〉 . (1.470)

This is an eigenstate of the Hamiltonian:

Ĥ |{nj}〉 = E |{nj}〉 . (1.471)
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We can show that energy eigenvalue is

E =
∑
j

~ωj
(
nj +

1

2

)
(1.472)

Because the Hamiltonian is Hermitian (as always) the eigenstates are orthogo-
nal:

〈n1n2n3 . . .|n′1n′2n′3 . . .〉 = δn1n′1
δn2n′2

δn3n′3
. . . (1.473)

The actions of the annihilation and creation operator are as expected and similar
to what we have seen before:

Annihilation: âj |n1, n2, . . . , nj , . . .〉 =
√
nj |n1, n2, . . . , nj − 1, . . .〉 (1.474)

Creation: â†j |n1, n2, . . . , nj , . . .〉 =
√
nj + 1 |n1, n2, . . . , nj + 1, . . .〉 (1.475)

The vacuum multimode is denoted

|{0}〉 = |010203 . . . 0j . . .〉 (1.476)

for which

âj |{0}〉 = 0 for all j. (1.477)

Once again, like in the single-mode case, a multimode number state can be
generated by applying the creation operator. Any number state can be written
as some creation operator applied to the multimode vacuum:

|{nj}〉 =
∏
j

(â†j)
nj√
nj !
|{0}〉 . (1.478)

Now, we notice that the creation/annihilation operators âks/â
†
ks are very

much like the vector potential amplitude Aks. Indeed, upon quantization of the
field, the amplitudes can be promoted to operators as well:

Âks =

(
~

2ωkε0V

) 1
2

âks. (1.479)

With this, we are able to rewrite the vector potential, electric, and magnetic
fields in terms of the creation and annihilation operators:

Â(r, t) =
∑
ks

(
~

2ωkε0V

) 1
2

eks

[
âkse

i(k·r−ωkt) + â†kse
−i(k·r−ωkt)

]
(1.480)

Ê(r, t) = i
∑
ks

(
~ωk
2ε0V

) 1
2

eks

[
âkse

i(k·r−ωkt) − â†kse
−i(k·r−ωkt)

]
(1.481)

B̂(r, t) =
i

c

∑
ks

(κ× eks)

(
~ωk
2ε0V

) 1
2

eks

[
âkse

i(k·r−ωkt) − â†kse
−i(k·r−ωkt)

]
.

(1.482)
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The annihilation and creation operators are to be understood as Heisenberg
picture operators evaluated at t = 0. The time-dependent annihilation operator
for a free field is given by

âks(t) = âks(0)e−iωkt. (1.483)

With this the electric field can be written as

Ê(r, t) = i
∑
ks

(
~ωk
2ε0V

) 1
2

eks

[
âks(t)e

ik·r − â†ks(t)e
−ik·r

]
. (1.484)

where the e±iωkt term is absorbed into the operator. Alternatively, the field can
be written in a different form:

Ê(r, t) = Ê(+)(r, t) + Ê(−)(r, t) (1.485)

where

Ê(+)(r, t) = i
∑
ks

(
~ωk
2ε0V

) 1
2

eksâks(t)e
ik·r. (1.486)

Of course,

Ê(+)(r, t) =
[
Ê(−)(r, t)

]†
. (1.487)

Similar expressions can be obtained for the magnetic field. However, be-
cause the magnetic field is “weaker” than the electric field by a factor of 1/c, we
generally neglect the magnetic field in most matter-field interactions (as most

interactions are through the electric dipole). Ê(+)(r, t) is called the positive fre-
quency part of the field as it contained all terms oscillate as e−iωt for ω > 0. The
opposite is for Ê(−)(r, t). We notice that Ê(+)(r, t) is a collective annihilation
operator while the latter is a collective creation operator.

The last observation we make is the following. For a single-mode plane wave
field the electric field is

Ê(r, t) = i

(
~ωk
2ε0V

) 1
2

ex
[
âeik·r−iωt − â†e−ik·r+iωt

]
. (1.488)

In most of quantum optics, the spatial variation of the field over the dimensions
of the atomic system may be negligible, i.e., the length characteristic of the size
of the atom is often much smaller than a typical wavelength:

λ

2π
=

1

|k|
� |ratom|. (1.489)

With this, we can make an approximation:

e±ik·r ≈ 1± ik · r (1.490)
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which says we replace the exponential by unity for |r| is negligible. Under this
approximation,

Ê(r, t) ≈ Ê(t) = i

(
~ωk
2ε0V

) 1
2

ex
[
âe−iωt − â†eiωt

]
(1.491)

This is called the “dipole” approximation.
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1.19 Emission and Absorption of Radiation by
Atoms

1.19.1 Atom-field interactions

Suppose we have an atom in no external field. The Hamiltonian of an electron
bound to this atom is given by

Ĥ0 =
1

2m
P̂2 + V (r) (1.492)

where V (r) is the Coulomb interaction between the electron and nucleus and
r = |r| is the distance to the core. In the configuration space representation,

P̂ = −i~∇ (1.493)

r̂ |r〉 = r |r〉 . (1.494)

The wave functions are given by

ψ(r) = 〈r|ψ〉 . (1.495)

We assume that the energy eigenstates |k〉 of Ĥ0 satisfy the time-independent
Schrödinger equation:

Ĥ0 |ψ〉(0)
k (r) = Ekψ

(0)
k (r) (1.496)

where

〈r|k〉 = ψ
(0)
k (r) (1.497)

are known. In the presence of external fields the Hamiltonian is modified to

Ĥ(r, t) =
1

2m

[
P̂ + eA(r, t)

]2
− eΦ(r, t) + V (r) (1.498)

where A(r, t) and Φ(r, t) are the vector and scalar potentials, respectively, −e
is the electron charge. The electric and magnetic fields are given by

E(r, t) = −∇Φ(r, t)− ∂A(r, t)

∂t
(1.499)

B(r, t) =∇×A(r, t) (1.500)

which we can easily show to be invariant under the following gauge transforma-
tions

Φ′(r, t) = Φ(r, t)− ∂χ(r, t)

∂t
(1.501)

A′(r, t) = A(r, t) +∇χ(r, t). (1.502)
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The time-dependent Schrödinger equation is

Ĥ(r, t)ψ(r, t) = i~
∂ψ(r, t)

∂t
. (1.503)

To eventually simplify the form of the atom-field interaction, we define a unitary
operator R̂ such that

ψ′(r, t) = R̂ψ(r, t) (1.504)

where

Ĥ′ψ′ = i~
∂ψ′

∂t
. (1.505)

We can show that the new Hamiltonian relates to the old Hamiltonian as

Ĥ′ = R̂ĤR̂† + i~
∂R̂

∂t
R̂†. (1.506)

Our goal is to choose

R̂ = e−ieχ(r,t)/~, (1.507)

so that with P̂2 = −i~∇:

Ĥ′ =
1

2m

[
P̂2 + eA′

]2
− eΦ′ + V (r), (1.508)

where the new vector and scalar potentials A′ and Φ′ depend on the gauge
field χ as (1.501). This form of the Hamiltonian is not desirable because of the

interaction terms P̂ ·A and A2. To remedy this, we can first make a definite
choice of gauge, namely the Coulomb gauge, for which Φ = 0 and ∇ ·A = 0.
Now with A′ = A +∇χ and Φ′ = Φ− ∂χ/∂t = −∂χ/∂t, the new Hamiltonian
has the form

Ĥ′ =
1

2m

[
P̂ + e (A +∇χ)

]2
+ e

∂χ

∂t
+ V (r). (1.509)

The vector potential A for no sources near the atom satisfies the wave equation

∇2A− 1

c2
∂2A

∂t2
= 0, (1.510)

whose solution is simply a wave propagating wave

A = A0e
i(k·x−ωt) + c.c. (1.511)

where |k| = 2π/λ is the wave vector of the radiation. For |r| a typical atomic
length (10−10 m) and λ of typical optical wavelengths (10−7 m), the product
k · r � 1 so that over the extend of the atom A can be taken to be uniform,
i.e.,

A(r, t) ≈ A(t). (1.512)
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This is very much like the idea we discussed before regarding the electric field
E in the quantization of the EM field. This is also called the dipole approx-
imation. Now, the Hamiltonian in (1.509) has coupled terms, and we would
like to remove ∇χ from the coupling between itself and A and between A and
P̂. One very good way to do this is finding χ such that

∇χ = −A(r, t) ≈ A(t). (1.513)

Such a χ(r, t) is

χ(r, t) = −A(t) · r. (1.514)

With this choice, we have (since ∇r = 1)

∇χ(r, t) = −A(t) (1.515)

∂χ

∂t
(r, t) = −r · ∂A(t)

∂t
= −r ·E(t). (1.516)

The new Hamiltonian is now “decoupled”:

Ĥ′ =
1

2m
P̂2 + V (r)︸ ︷︷ ︸
field-free

−er ·E(t)︸ ︷︷ ︸
dipole int.

(1.517)

This new Hamiltonian contains only one interaction term (within the dipole
approximation) as opposed to two terms as before. −er is called the dipole
moment, denoted d. We can of course promote it to an operator, so that the
Hamiltonian in the presence of an external field can be written as

Ĥ = Ĥ0 − d̂ ·E(t) (1.518)

where Ĥ0 = P̂2/2m+ V (r) is of course the field-free Hamiltonian.

1.19.2 Interaction of an atom with a classical field

So far we have not specified whether the interacting field is classical or quan-
tum mechanical. The derivation we just looked at is valid for both classical
and quantum fields. However, we will eventually show that the atom behaves
differently in each case.

Let us first look at the the atom-field interaction with a classical field. Sup-
pose the field is given by

E(t) = E0 cos(ωt) (1.519)

where the dipole approximation k · r � 1 has already been made (so that the
field is uniform over the atom). Suppose that ω is the frequency of the radiation,
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and the field is abruptly turned on at t = 0. Assume that the initial state of
the atom is |i〉 where

Ĥ0 |i〉 = Ei |i〉 . (1.520)

For time t > 0, the state vector |ψ〉 (t) is a linear combination of all uncoupled
states |k〉:

|ψ(t)〉 =
∑
k

Ck(t)e−iEkt/~ |k〉 (1.521)

where ∑
k

|Ck(t)|2 = 1. (1.522)

The time-dependent Schroödinger equation is

i~
∂ |ψ(t)〉
∂t

=
(
Ĥ0 + Ĥ(I)

)
|ψ(t)〉 (1.523)

where

Ĥ(I) = −d̂ ·E(t). (1.524)

Substituting the expansion (1.521) into the time-dependent SE, them multiply-
ing from the left by 〈l| e−Elt/~ gives

i~ 〈l| e−Elt/~ ∂
∂t

∑
k

Ck(t)e−iEkt/~ |k〉 = 〈l| e−iElt/~
(
Ĥ0 + Ĥ(I)

)∑
k

Ck(t)e−iEkt/~ |k〉 .

(1.525)

This simplifies to

Ċl(t)−
i

~
∑
k

Ck(t) 〈l| Ĥ(I) |k〉 e−i(El−Ek)t~. (1.526)

Defining

ωl =
El − EK

~
(1.527)

as the transition frequencies between levels l and k gives a set of couple-first-
order differential equations for the amplitudes

Ċl(t) = − i
~
∑
k

Ck(t) 〈l| Ĥ(I) |k〉 e−iωlt. (1.528)

The initial condition is Ci(0) = 1: |i〉 is the only state initially populated.
As time goes forward, the population in |i〉 will decrease and move to some
unpopulated |f〉. The probability of the transition i→ f is given by

Pi→f (t) = C∗(f)Cf (t) = |Cf (t)|2. (1.529)
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For simple cases, these probabilities can be solved analytically or even numeri-

cally for more complex cases. However, for the “weak” field where
∣∣∣〈f | ˆd ·E0 |i〉

∣∣∣
is small, we can use the time-dependent perturbation theory to approach the
problem. For bookkeeping purposes we shall write the interaction Hamiltonian
as λĤ(1) where 0 ≤ λ ≤ 1. (At the end of the calculations we often take λ→ 1.)
We then expand the probability amplitude for, say, the state |l〉 in the power
series

Cl(t) =

∞∑
n=0

λnC
(n)
l (t). (1.530)

Inserting this expansion into (1.528) and equating the like powers of λ we obtain
up to second order

Ċ
(0)
l = 0 (1.531)

Ċ
(1)
l = − i

~
∑
k

C
(0)
k (t)H(I)

lk (t)eiωlkt (1.532)

Ċ
(2)
l = − i

~
∑
k

C
(1)
k (t)H(I)

lk (t)eiωlkt (1.533)

where

H(I)
lk (t) = 〈l| Ĥ(I)(t) |k〉 = 〈l| − d̂ ·E(t) |k〉 . (1.534)

We observe the pattern relating the nth order to the n+ 1th order:

Ċ
(n+1)
l = − i

~
∑
k

C
(n)
k (t)H(I)

lk (t)eiωlkt. (1.535)

The essential assumption underlying the perturbation-theory approach is that
the driving field is so weak that the atomic populations change very little. That
is, if Ci(0) = 1 and Cf (0) = 0 then for t > 0, a good approximation is Ci(t) ≈ 1

and Cf (t) � 1. Thus, for the expression of Ċ
(1)
l the only surviving term is for

the state k to be the initial state i. This gives

Ċ
(1)
f (t) = − i

~
C

(0)
i (t)H(I)

fi (t)eiωfit. (1.536)

Integrating this gives

C
(1)
f (t) = − i

~

ˆ t

0

C
(0)
i (t′)H(I)

fi (t′)eiωfit
′
dt′. (1.537)

Following a similar line of reasoning we get for Ċ
(2)
l

Ċ
(2)
l (t) = − i

~
∑
l

ˆ t

0

C
(1)
l (t′)H(I)

fl (t′)eiωflt
′
dt′. (1.538)
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Now replacing C
(1)
l with (1.537) we get

C
(2)
l (t) = − i

~
∑
l

ˆ t

0

(
− i
~

ˆ t′

0

C
(0)
i (t′′)H(I)

fi (t′′)eiωfit
′′
dt′′

)
H(I)
fl (t′)eiωflt

′
dt′

(1.539)

=

(
−i
~

)2∑
l

ˆ t

0

dt′
ˆ t′

0

dt′′
(
H(I)
fl (t′)eiωflt

′
)
H(I)
fi (t′′)eiωfit

′′
(1.540)

We see that while (1.537) gives the transition probability amplitude from |i〉 →
|f〉, (1.539) gives the transition probability amplitude from |i〉 → |{l}〉 → |f〉.
The total transition probability from |i〉 to |f〉 is then the square of the sum of
the amplitudes:

Pi→f (t) =

∣∣∣∣∣
∞∑
n=0

C
(n)
f (t)

∣∣∣∣∣
2

. (1.541)

The dipole moment operator d̂ = −er has non-vanishing matrix elements
only between states of opposite parity. Thus the first-order correction to the
amplitude of the initial state (where f = i) vanishes:

C
(1)
i (t) = − i

~

ˆ t

0

C
(0)
i (t′)H(I)

ii (t′)eiωiit
′
dt′ = 0, (1.542)

since

〈i| Ĥ(I)(t) |i〉 = 0. (1.543)

Thus, to first order,

Ci(t) = C
(0)
i (t) = 1. (1.544)

Thus, by (1.537)

C
(1)
f (t) = − i

~

ˆ t

0

C
(0)
i (t′)H(I)

fi (t′)eiωfit
′
dt′ (1.545)

= − i
~

ˆ t

0

H(I)
fi (t′)eiωfit

′
dt′. (1.546)

Now, with

Ĥ(I)(t) = −d̂ ·E0 cos(ωt) = −1

2
d̂ ·E0

(
eiωt + e−iωt

)
, (1.547)

the integral above becomes

C
(1)
f (t) =

(
− i
~

)(
−1

2

)
〈f | d̂ ·E0 |i〉

ˆ t

0

(
eiωt + e−iωt

)
eiωfit

′
dt′ (1.548)

=
1

2~

(
d̂ ·E0

)
fi
·
{
ei(ω+ωfi)t − 1

ω + ωfi
− ei(ω−ωfi)t − 1

ω − ωfi

}
(1.549)
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If ω ≈ ωfi, i.e., the field is near resonance then clearly the second term in the
curly brackets dominates. With RWA (rotating wave approximation) we drop
the first term. And so the transition probability to first order is

P
(1)
i→f (t) =

∣∣∣C(1)
f (t)

∣∣∣2 =

∣∣∣∣(d̂ ·E0

)
fi

∣∣∣∣2
~2

sin2(∆t/2)

∆2
(1.550)

where ∆ = ω − ωfi is called the detuning and we have used the identity

e−iθ−1 = cos θt− i sin θt− 1 (1.551)

= −2 sin2 θt

2
− 2i sin

θt

2
cos

θt

2
(1.552)

= −2 sin
θt

2

(
eiθt/2

)
(1.553)

so that ∣∣∣∣−1

2

(
ei∆t − 1

)∣∣∣∣2 = sin2 ∆t

2
. (1.554)

When ∆ 6= 0, the transition probability maximizes at

(
P

(1)
i→f

)
max

=

∣∣∣∣(d̂ ·E0

)
fi

∣∣∣∣2
~2

1

∆2
. (1.555)

On resonance, i.e., ∆ = 0,

(
P

(1)
i→f

)
max

=

∣∣∣∣(d̂ ·E0

)
fi

∣∣∣∣2
~2

t2. (1.556)

Thus we have the following For the perturbation approximation to be valid we

require that C
(1)
f (t) � 1, which implies P

(1)
i→f (t) � 1. For ∆ 6= 0, this places



88 PART 1. QUANTUM MECHANICS

constraints on both

∣∣∣∣(d̂ ·E0

)
fi

∣∣∣∣ and ∆. On resonance, (1.556) is only valid for

a very short time. For the case of the transition probability as a function of ∆,
the width of the peak is proportional to t−1 while the height is proportional to
t2. It turns out that the area is proportional to t:

ˆ ∞
−∞

sin2 ∆t/2

∆2
d∆ =

πt

2
(1.557)

In the limit where ∆ ≈ 0 and t � 2π/ωfi, the function in the integrand may
be approximated by the Dirac delta function

lim
t→∞

sin2 ∆t/2

∆2
=
π

2
tδ(∆). (1.558)

In this case the transition probability is

P
(1)
i→f (t) =

π

2

∣∣∣C(1)
f (t)

∣∣∣2 =

∣∣∣∣(d̂ ·E0

)
fi

∣∣∣∣2
~2

tδ(∆). (1.559)

Now we define the time-independent transition probability rate as

Wi→f =
P

(1)
i→f

t
=
π

2

∣∣∣∣(d̂ ·E0

)
fi

∣∣∣∣2
~2

δ(ω − ωfi). (1.560)

In practice, the driving field will not be monochromatic so that a range of fre-
quencies will have to be summed or integrated over to obtain the total transition
rate. If [f ] represents a set of accessible final states, then the transition rate for
a monochromatic field is

Wi→[f ] =
π

2

∑
[f ]

∣∣∣∣(d̂ ·E0

)
fi

∣∣∣∣2
~2

δ(ω − ωfi) (1.561)

This expression is often famously called Fermi’s Golden Rule. Now suppose
there is a broad range of frequencies. This means the amplitude of the light
is now frequency dependent E0 → E0(ω). Thus the transition probability rate
induced by all the frequency components must be

P
(1)
i→f

t
=

ˆ
dω

∣∣∣∣(d̂ ·E0

)
fi

∣∣∣∣2
~2

sin2(∆t/2)

∆2
(1.562)

=
1

~

ˆ
dω

sin2(∆t/2)

∆2

∣∣∣〈f | ˆd ·E0(ω) |i〉
∣∣∣2︸ ︷︷ ︸

F (ω)

. (1.563)
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Now if F (ω) varies slowly with ω compared to sin2(∆t/2)
∆2 then we can take F (ω)

to be its resonant value F (ωfi). With this we can take it out of the integral and
get

Wi→f =
P

(1)
i→f

t
=

π

2~2
F (ωfi). (1.564)

The spread of the frequencies results in the dephasing of the oscillations as
shown in the plot of transition probability versus time. This is due to the fact
that the light in incoherent (lacking the phase relations between the various
frequency components). If the atom is driven by coherent light (like a laser),
dephasing don’t occur and the perturbative time-independent transition rates
above generally do not adequately describe the dynamics. We will resolve this
issue later.

1.19.3 Interaction of an atom with a quantized field &
Spontaneous emission

In the previous subsection, we did not make any assumption about the relative
position of the states i and f , i.e., whether Ei is greater or less than Ef . We
simply said that so long as E0 6= 0 and Ei 6= Ef , there is some non-zero tran-
sition probability. In this section, we will now show that for the case Ei > Ef ,
when the field is quantized, transitions will occur even when no photons are
present. This is called spontaneous emission. This is one of many differences
that appear when we treat the field quantum mechanically versus classically.

Let us revisit the single-mode free space field given by (1.491) after dipole
approximation (where we assumed the field is uniform over the atom):

Ê(r, t) ≈ Ê(t) = i

(
~ωk
2ε0V

) 1
2

e
[
âe−iωt − â†eiωt

]
. (1.565)

But also recall that this free-space field is written in the Heisenberg picture
(there is a time-dependence when the field operator is expressed in the Heisen-
berg basis). In the Schrödinger picture, though, the field operator becomes

Ê = i

(
~ωk
2ε0V

) 1
2

e
[
â− â†

]
. (1.566)

Now, the free-space Hamiltonian Ĥ0 must be

Ĥ0 = Ĥatom + Ĥfield (1.567)

where Ĥatom is just the free-atom Hamiltonian as before and Ĥfield is the free-
space field Hamiltonian, which we have seen before as well:

Ĥfield = ~ω
(
â†â+

1

2

)
. (1.568)
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Now, because the zero-point energy term does not contribute to the dynamics,
we will simply drop it. With this, the interaction Hamiltonian is given by

Ĥ(I) = −d̂ · Ê = −i
(

~ωk
2ε0V

) 1
2 (

d̂ · e
) (
â− â†

)
. (1.569)

Let us define

E0 = i

(
~ωk
2ε0V

) 1
2

e. (1.570)

From this,

Ĥ(I) = −d̂ · E0

(
â− â†

)
. (1.571)

Now, because both the atomic and field systems are quantized, the states of
the combined system is the product of the states of both the atom and field.
Suppose initially we’re given the initial state of the atom |a〉 and n photons |n〉,
then the initial state of the system is

|i〉 = |a〉 |n〉 . (1.572)

The perturbation interaction of the quantized field causes a transition to the
new state

|f1〉 = |b〉 |n− 1〉 (1.573)

where n−1 means that one photon has been absorbed by the atom to transition
from |a〉 to |b〉, or to the state

|f2〉 = |b〉 |n+ 1〉 (1.574)

where n+ 1 means that one photon has been emitted by the atom to transition
from |a〉 to |b〉. The energy of these states are

for |i〉 = |a〉 |n〉 , Ei = Ea + n~ω (1.575)

for |f1〉 = |b〉 |n− 1〉 , Ei = Eb + (n− 1)~ω (1.576)

for |f2〉 = |b〉 |n+ 1〉 , Ei = Eb + (n+ 1)~ω (1.577)

where Ea and Eb are the energies of the atomic states |a〉 and |b〉.

We observe that the interaction Hamiltonian (or the Hamiltonian associ-
ated with the perturbation) is time-independent. The matrix elements of this
interaction can be calculated by finding

Absorption: 〈f1| Ĥ(I) |i〉 (1.578)

Emission: 〈f2| Ĥ(I) |i〉 . (1.579)
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For absorption, we need a term in the interaction Hamiltonian that contains
only the annihilation operator:

Absorption: 〈f1| Ĥ(I) |i〉 = 〈b, n− 1| − d̂ · E0(â) |a, n〉 (1.580)

= 〈b, n− 1| − d̂ · E0

√
n |a, n− 1〉 (1.581)

= 〈b| − d̂ · E0 |a〉
√
n 〈n− 1|n− 1〉 (1.582)

= −
(
d̂ · E0

)
ba

√
n (1.583)

Similarly, for emission

Emission: 〈f2| Ĥ(I) |i〉 = 〈b, n+ 1| − d̂ · E0(−â†) |a, n〉 (1.584)

= 〈b, n+ 1| d̂ · E0

√
n+ 1 |a, n+ 1〉 (1.585)

= 〈b| d̂ · E0 |a〉
√
n+ 1 〈n+ 1|n+ 1〉 (1.586)

=
(
d̂ · E0

)
ba

√
n+ 1 (1.587)

where (
d̂ · E0

)
ba

= 〈b| d̂ · E0 |a〉 = 〈b| d̂ |a〉 · E0 ≡ dba · E0 (1.588)

is the dipole matrix element between states |b〉 and |a〉.

It is worthy to compare this result to the semiclassical picture we saw in the
last subsection. For the absorption case, there is nothing new: if no field then
no absorption:

n = 0 =⇒ 〈f1| Ĥ(I) |i〉 = 0 (1.589)

since
√
n = 0. However, the emission case has no semiclassical counterpart:

transitions may occur even when no photons are present:

n = 0 6=⇒ 〈f2| Ĥ(I) |i〉 = 0 (1.590)

since
√
n+ 1 6= 0. This is called spontaneous emission, which cannot be ob-

tained from the semiclassical approach. If n > 0, the emission of an additional
photon is called stimulated emission, which is essential for the operation of
the “light amplification by stimulated emission of radiation” or LASER.

We might also be interested in the ratio of the absorption/emission rates:∣∣∣〈f2| Ĥ(I) |i〉
∣∣∣2∣∣∣〈f1| Ĥ(I) |i〉
∣∣∣2 =

n+ 1

n
(1.591)
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It turns out that we can still use the perturbation method developed in the
previous section to calculate the transition amplitudes, provided that me make
appropriate modifications to account for the fact that the field is now quantized.
The first difference is in the Hamiltonians:

Ĥ0 = Ĥatom → Ĥ0 = Ĥatom + Ĥfield (1.592)

Ĥ(I)(t) = −d̂ ·E(t)→ Ĥ(I)(t) = −d̂ · E0

(
â− â†

)
(1.593)

where of course

Ĥfield = ~ω
(
â†â+

1

2

)
(1.594)

where we again leave out the zero-point energy term.

Now, let us assume that the atom has only two levels |a〉 and |b〉. The state
vector of the system can be written as

|ψ(t)〉 =Ci(t) |a〉 |n〉 e−iωate−inωt

+ Cf1(t) |b〉 |n− 1〉 e−iωbte−i(n−1)ωt

+ Cf2(t) |b〉 |n+ 1〉 e−iωbte−i(n+1)ωt (1.595)

where the first term is the initial state of the system, the second term is corre-
sponds to absorption, and the third term corresponds to emission. We assume
that |ψ(t)〉 = |a〉 |n〉, Ci(0) = 1, and Cf1(0) = Cf2(0) = 0. Following the
perturbative method used before, we can get the first-order correction for the
amplitudes Cf1 and Cf2 associated with the atom being in state |b〉:

Absorption: C
(1)
f1

(t) = − i
~

ˆ t

0

dt′ 〈f1| Ĥ(I) |i〉 ei(ωf1−ωi)t
′

(1.596)

Emission: C
(1)
f2

(t) = − i
~

ˆ t

0

dt′ 〈f2| Ĥ(I) |i〉 ei(ωf2−ωi)t
′
. (1.597)

And so the amplitude of the atom being in state |b〉 (to first-order of course)
regardless of how it got there is the sum of these amplitudes:

C
(1)
f (t) = C

(1)
f1

(t) + C
(1)
f2

(t) (1.598)

=
i

~

(
d̂ · E0

)
ba

ˆ t

0

dt′
√
nei(ωf1−ωi)t

′
−
√
n+ 1ei(ωf2−ωi)t

′
(1.599)

=
i

~

(
d̂ · E0

)
ba

√n+ 1 · e
i(ω+ωba)t − 1

ω + ωba︸ ︷︷ ︸
Emission

−
√
n · e

i(ω−ωba)t − 1

ω − ωba︸ ︷︷ ︸
Absorption


(1.600)
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If n� 1 then
√
n+ 1 ≈

√
n, in which case this result and (1.548) are essentially

the same and we get a correspondence between classical and quantum field
amplitudes:

(E0)classical ↔
(
2iE0
√
n
)

quantum
. (1.601)

If Eb > Ea (|b〉 is the excited state) and ω ≈ ωba then by RWA the first
term in (1.598) can be dropped as the second term dominates. There is nothing
abnormal about this. However, if Ea > Eb (|a〉 is the excited state) and ω ≈
−ωba, then the second term of (1.598) can be dropped (again under RWA). This
leaves us with

C
(1)
f (t) ≈ i

~

(
d̂ · E0

)
ba

√n+ 1 · e
i(ω+ωba)t − 1

ω + ωba︸ ︷︷ ︸
Emission

 . (1.602)

We notice that even when n = 0, this does not vanish. In this case, the transition
between |a〉 and |b〉 occurs through spontaneous emission.

Field-theoretic derivation of the Planck’s distribution

Suppose we have a collection of atoms interacting resonantly with a quantized
field of frequency

ω =
Ea − Eb

~
(1.603)

where |a〉 and |b〉 are atomic eigenstates with Ea > Eb. Let Na, Nb be the
populations of atoms in |a〉 and |b〉 respectively. Let Wemis and Wabs be the
transition rate due to photon emission and absorption respectively. We have
the following set of differential equations:

dNa
dt

= −NaWemis +NbWabs (1.604)

dNb
dt

= −NbWabs +NaWemis. (1.605)

At thermal equilibrium:

dNa
dt

= 0 =
dNb
dt

=⇒ NaWemis = NbWabs. (1.606)

From the relative rates in (1.591), we have

Nb
Na

=
Wemis

Wabs
=
n+ 1

n
. (1.607)

Now, according to Boltzmann statistics:

Nb
Na

= e(Ea−Eb)/kT = e~ω/kT . (1.608)
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From (1.607) and (1.608) we have

n =
1

e~ω/kT − 1
(1.609)

There’s a slightly different derivation by Einstein (which was done even
before quantum electrodynamics was invented), which takes into account as
well the distinction between spontaneous and stimulated emission. We won’t go
into the details of this.

1.19.4 The Rabi model

In the previous subsections we have used the perturbation theory approach to
calculate transition probabilities. This approach assumes that the population in
the initial state is essentially unchanged and the population in the final states
are very small. This approach fails in cases of large population transfer, for
example when there is a strong, near resonance (with one state and no other)
laser field. In this case, the perturbation approach must be abandoned, only
two dominant states remain, and the problem can solved “exactly.” This is the
Rabi model. We note that the Rabi model is a semiclassical model. The full
quantum mechanical model is covered in the next subsection.

Suppose our two levels are the ground |g〉 and excited state |e〉. The transi-
tion frequency is given by

ω0 =
Ee − Eg

~
≈ ω (1.610)

where ω is the frequency of the driving field. Once again, the interaction Hamil-
tonian is given by

Ĥ(I) = −d̂ ·E0 cosωt ≡ V̂0 cosωt (1.611)

where again the dipole approximation is already made. The state vector is a
linear combination of the eigenstates:

|ψ(t)〉 = Cg(t)e
−iEgt/~ |g〉+ Ce(t)e

−iEet/~ |e〉 . (1.612)

The Schrödinger equation

i~
∂ |ψ(t)〉
∂t

=
(
Ĥ0 + Ĥ(I)

)
|ψ(t)〉 (1.613)

=
(
Ĥ0 + V̂0 cosωt

)
|ψ(t)〉 (1.614)

gives a system of differential equations:[
Ċg
Ċe

]
=

[
0 − i

~ 〈g| V̂0 |e〉 e−iω0t

− i
~ 〈g| V̂0 |e〉 eiω0t 0

] [
Cg
Ce

]
(1.615)
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where the first equation is obtained by multiplying the SE from the left by
eiωgt 〈g| and the fact that 〈i| V̂0 |j〉 = 0 when i = j. Next, we assume that
〈g| V̂0 |e〉 is real and Cg(0) = 1, Ce(0) = 0. Let us call

V = 〈g| V̂0 |e〉 (1.616)

and approximate cosωt in exponentials and keep only the terms that oscillate
at frequency ω − ω0 to get

Ċg = − i

2~
Vei(ω−ω0)tCe (1.617)

Ċe = − i

2~
Ve−i(ω−ω0)tCg. (1.618)

Taking the derivative of the second equation, plugging it into the first while
applying RWA (eliminating terms with ω + ω0) we get

C̈e + i(ω − ω0)Ċe +
1

4

V2

~2
Ce = 0. (1.619)

This differential equation is quite a classic. The general solution is

Ce(t) = A+e
iλ+t +A−e

iλ−t (1.620)

where with ∆ = ω − ω0,

λ± =
1

2

[
∆±

√
∆2 +

V2

~2

]
. (1.621)

From the initial conditions, we also have that

A± = ∓ 1

2~
V√

∆2 + V2

~2

. (1.622)

With this, the solution to the problem is

Ce(t) = i
V

ΩR~
ei∆t/2 sin

ΩRt

2
(1.623)

Cg(t) = ei∆t/2
{

cos
ΩRt

2
− i ∆

ΩR
sin

ΩRt

2

}
(1.624)

where

ΩR =

√
∆2 +

V2

~2
(1.625)

is called the Rabi frequency, or Rabi rate.
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The probability that the atom is in the excited state |e〉 is then

Pe(t) = |Ce(t)|2 =
V2

Ω2
R~2

sin2 ΩRt

2
(1.626)

On resonance, this probability is a perfect sine-squared:

Pe(t) = sin2 Vt
2~

(1.627)

where at t = π~/V all the atomic population is transferred to the excited state.
The following plot illustrates the population transfer and “oscillation”

The atomic inversion W (t) is defined as the difference in population be-
tween the excited and ground states:

W (t) = Pe(t)− Pg(t). (1.628)

For the case of resonance (∆ = 0) and that initially the atom is in the ground
state,

W (t) = sin2 Vt
2~
− cos2 Vt

2~
= − cos

Vt
~

= − cos ΩR(∆ = 0)t. (1.629)

For t = π~/V, W (π~/V) = 1. This kind of population transfer is called the
π−pulse. For t = π~/2V, W (π~/2V) = 0, which means the population is shared
coherently between the ground and excited states, i.e., the system is in a perfect
superposition:

|ψ(t)〉 =
1√
2

(|g〉+ i |e〉) . (1.630)

1.19.5 Fully quantum-mechanical model; the JaynesCum-
mings model

We move on to the quantum electrodynamics version of the Rabi model. In
our previous discussion of the interaction between atoms and the quantized
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field, we assumed the field is single-mode. We again assume this, such that the
single-mode cavity field can be written as

Ê = e

(
~ω
ε0V

)1/2 (
â+ â†

)
sin(kz) (1.631)

where e is some arbitrary polarization vector. We also assume that the atom
has two levels |g〉 and |e〉. The interaction Hamiltonian is given by

Ĥ(I) = −d̂ · Ê = d̂g(â+ â†) (1.632)

where

d̂ = d · e (1.633)

g =

(
~ω
ε0V

)1/2

sin(kz). (1.634)

For simplicity, let us introduce the atomic transition operators

Excitation: σ̂+ = |e〉 〈g| (1.635)

De-excitation: σ̂− = |g〉 〈e| = σ̂†+. (1.636)

The inversion operator is given by

σ̂3 = |e〉 〈e| − |g〉 〈g| . (1.637)

We can verify that these operators obey the Pauli spin algebra:

[σ̂+, σ̂−] = σ̂3 (1.638)

[σ̂3, σ̂±] = 2σ̂±. (1.639)

We know that the diagonal matrix elements of d̂ is zero because 〈e| d̂ |e〉 =

〈g| d̂ |g〉 = 0. This means with d = 〈e| d̂ |g〉, we can write in the basis

d̂ = d |g〉 〈e|+ d∗ |e〉 〈g| (1.640)

= dσ̂− + d∗σ̂+ (1.641)

= d (σ̂− + σ̂+) . (1.642)

This gives the interaction Hamiltonian:

Ĥ(I) = ~
(
dg

~

)
(σ̂− + σ̂+)

(
â+ â†

)
. (1.643)

Define the energy to be zero halfway between the states, then we have Ee = −Eg,
and the free atomic Hamiltonian can be written as

Ĥ0 =
~
2

[
Ee

Eg

]
(1.644)
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or in the basis

Ĥ0 =
1

2
~ω0 (|e〉 〈e| − |g〉 〈g|) =

1

2
~ω0σ̂3 (1.645)

where

Ee = −Eg =
1

2
~ω0 (1.646)

and of course ω0 is the transition frequency. The free-field Hamiltonian after
dropping the zero-point energy term, again, is

ĤF = ~ωâ†â. (1.647)

So the total Hamiltonian is

Ĥ = Ĥ0 + ĤF + Ĥ(I) (1.648)

=
1

2
~ω0σ̂3 + ~ωâ†â+ ~

(
dg

~

)
(σ̂− + σ̂+)

(
â+ â†

)
. (1.649)

Let us call

λ =
dg

h
. (1.650)

It follows that

Ĥ =
1

2
~ω0σ̂3 + ~ωâ†â+ ~λ (σ̂− + σ̂+)

(
â+ â†

)
. (1.651)

Let us simplify this Hamiltonian with some approximations. We know that in
the field-free case, the creation and annihilation operators evolve in time as

â(t) = â(0)e−iωt â†(t) = â†(0)eiωt, (1.652)

while in the free atomic case the excitation operators (which we can show) to
evolve in time as

σ̂±(t) = σ̂±(0)e±iω0t. (1.653)

This gives us some idea of the time dependency of the product of some of these
operators:

σ̂+â ∼ ei(ω0−ω)t (1.654)

σ̂−â
† ∼ e−i(ω0−ω)t (1.655)

σ̂+â
† ∼ ei(ω0+ω)t (1.656)

σ̂−â ∼ e−i(ω0+ω)t. (1.657)

For ω0 ≈ ω we can use RWA to ignore the last two terms. The term σ̂+â
†

corresponds to the emission of a photon (the creation operator) as the atom
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goes from the ground to the excited state, while the term σ̂−â corresponds to
the absorption of a photon (the annihilation operator) as the atom goes from
the excited to ground state. It makes good sense to ignore these terms, so that
we’re left with the approximate Hamiltonian:

Ĥ =
1

2
~ω0σ̂3 + ~ωâ†â+ ~λ

(
σ̂+â+ σ̂−â

†) (1.658)

This is called the Jaynes-Cummings model. To solve the dynamics of the
system, we first note a few constants. The first constants is the number of
electrons, or the total probability of the atom being in either state |e〉 or |g〉:

P̂E = |e〉 〈e|+ |g〉 〈g| = 1. (1.659)

and of course this quantity is conserved:

[Ĥ, P̂E ] ∝ dP̂E
dt

= 0. (1.660)

The excitation number is also unchanged:

N̂e = â†â+ |e〉 〈e| =⇒ [Ĥ, N̂e] ∝
dN̂e
dt

= 0. (1.661)

This equation essentially says the number of electrons created corresponds to
the transitions.

With these constants we may break the Hamiltonian into two commuting
parts:

Ĥ = ĤI + ĤII (1.662)

where

ĤI = ~ωN̂e + ~
(ω0

2
− ω

)
P̂E (1.663)

ĤII = −~∆ + ~λ
(
σ̂+â+ σ̂−â

†) (1.664)

All dynamics is contained in ĤII , while ĤI contributes to (irrelevant) phase
factors. Next, let us examine a few notable cases.

Resonance: ∆ = 0

Let us assume that initially the atom is in the excited state |e〉 and the field is
initially in the state |n〉. The initial atom-field state is

|i〉 = |e〉 |n〉 . (1.665)

The energy of this state is of course

Ei = Ee + En =
1

2
~ω + n~ω (1.666)
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where recall that we have set zero energy to be in the middle of the two states.
This initial state |i〉 to coupled to and only to the final state |f〉 = |g〉 |n+ 1〉.
The state vector is given by

|ψ(t)〉 = Ci(t) |i〉+ Cf (t) |f〉 (1.667)

with Ci(0) = 1 and Cf (0) = 0. In the interaction picture,

i~
d |ψ(t)〉
dt

= ĤII |ψ(t)〉 . (1.668)

Plugging ĤII in and solve we obtain

Ċi = −iλ
√
n+ 1Cf (1.669)

Ċf = −iλ
√
n+ 1Ci. (1.670)

By eliminating Cf and solving, we get

Ci(t) = cos
(
λt
√
n+ 1

)
(1.671)

and

Cf (t) = −i sin
(
λt
√
n+ 1

)
. (1.672)

With this, the probability that the system is in the initial state is

Pi(t) = C∗i (t)Ci(t) = cos2
(
λt
√
n+ 1

)
. (1.673)

And the probability that the system is in the other state is of course

Pf (t) = sin2
(
λt
√
n+ 1

)
. (1.674)

The atom inversion is then

W (t) = Pi(t)− Pf (t) = cos
(
2λt
√
n+ 1

)
. (1.675)

We may define a quantum electrodynamic Rabi frequency

Ω(n) = 2λ
√
n+ 1 (1.676)

This gives

W (t) = cos (Ω(n)t) . (1.677)

We notice that there’s Rabi oscillation, which we also see in the classical case.
However, there is still Rabi oscillation in the case of n = 0. These is vacuum Rabi
oscillation. They are the result of the atom spontaneously emitting a photon
then re-absorbing it, re-emitting it, etc.: an example of reversible spontaneous
emission.
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Pure state

In this scenario we assume that the atom is initially in a superposition of |e〉
and |g〉.

|ψ(t)〉atom = Ce |e〉+ Cg |g〉 . (1.678)

The field is initially in the state

|ψ(t)〉field =

∞∑
n=0

Cn |n〉 . (1.679)

Thus the initial state of the system is given by a tensor product

|ψ(t)〉 = |ψ(0)〉atom ⊗ |ψ(0)〉field . (1.680)

The solution to the Schrödinger equation is now

|ψ(t)〉 =

∞∑
n=0

{[
CeCn cos

(
λt
√
n+ 1

)
− iCgCn+1 sin

(
λt
√
n+ 1

)]
|e〉

+
[
−iCeCn−1 sin

(
λt
√
n
)

+ CgCn cos
(
λt
√
n
)]}
⊗ |n〉 . (1.681)

This is an entangled state. Now, if Ce = 1 and Cg = 0 initially, then

|ψ(t)〉 = |ψg(t)〉 ⊗ |g〉+ |ψe(t)〉 ⊗ |e〉 , (1.682)

where

|ψg(t)〉 = −i
∞∑
n=0

Cn sin
(
λt
√
n+ 1

)
|n+ 1〉 (1.683)

|ψe(t)〉 =

∞∑
n=0

Cn cos
(
λt
√
n+ 1

)
|n〉 . (1.684)

The atomic inversion is then

W (t) = 〈ψ(t)| σ̂3 |ψ(t)〉 (1.685)

= 〈ψe(t)|ψe(t)〉 − 〈ψg(t)|ψg(t)〉 (1.686)

=

∞∑
n=0

|Cn|2 cos
(
2λt
√
n+ 1

)
. (1.687)

1.19.6 The Density Operator approach (or the master equa-
tion’s approach)

So far, we have considered only cases where the field and the atom are initially
in pure states. The density operator approach allows us to solve for a more
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general case. Let us work in the interaction picture again where the interaction
Hamiltonian is given by

ĤI = ~λ
(
âσ̂+ + â†σ̂−

)
(1.688)

Let us consider the density operator of the atom-field system at time t. As we
know the density operator is defined to be

ρ̂ = |ψ〉 〈ψ| . (1.689)

Applying the Schrödinger equation to |ψ〉, we have

i~
d |ψ〉
dt

= ĤI |ψ〉 . (1.690)

Now let us see what we get when we look at the time evolution of the density
operator

dρ̂

dt
=
d |ψ〉
dt
〈ψ|+ |ψ〉 d 〈ψ|

dt
(1.691)

=

[
−i
~
ĤI |ψ〉

]
〈ψ|+ |ψ〉

[
i

~
〈ψ| ĤI

]
(1.692)

=
−i
~

[
ĤI |ψ〉 〈ψ| − |ψ〉 〈ψ| ĤI

]
(1.693)

=
−i
~

[
ĤI , ρ̂

]
. (1.694)

The solution to this (which we can quite easily verify) is

ρ̂(t) = e−iĤIt/~ρ̂(0)eiĤIt/~ = ÛI(t)ρ̂(0)Û†I (t). (1.695)

Recall that the Hamiltonian can be expressed further in terms of the excitation/de-
excitation, and inversion operators, whose matrix representations are

σ+ =

[
0 1
0 0

]
, σ− =

[
0 0
1 0

]
, σ3 =

[
1 0
0 −1

]
(1.696)

where we have used the convention

σj =

[
〈e| σ̂j |e〉 〈e| σ̂j |g〉
〈g| σ̂j |e〉 〈g| σ̂j |g〉

]
, j = ±, 3. (1.697)

Let us re-write ÛI(t) in terms of these operators:

ÛI(t) = e−iĤIt/~ = e−iλt(âσ̂++â†σ̂−). (1.698)

With this, we can write the evolution operator ÛI in terms of cosines and sines
as

ÛI(t) =

[
Ĉ(t) Ŝ′(t)

Ŝ(t) Ĉ ′(t)

]
(1.699)
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where

Ĉ(t) = cos
(
λt
√
ââ†
)

(1.700)

Ŝ(t) = −iâ†
sin
(
λt
√
ââ†
)

√
ââ†

(1.701)

Ĉ ′(t) = cos
(
λt
√
â†â
)

(1.702)

Ŝ′(t) = −iâ
sin
(
λt
√
â†â
)

√
â†â

. (1.703)

It is then easy to show that

Û†I (t) = ÛI(−t) =

[
Ĉ(t) −Ŝ′(t)
−Ŝ(t) Ĉ ′(t)

]
. (1.704)

Now, suppose at t = 0 the density operator for the atom-field system can be
written as a tensor product of the field and atom parts (not entangled):

ρ̂(0) = ρ̂F (0)⊗ ρ̂A(0). (1.705)

Next, suppose that our atom is initially in |e〉, such that by convention the
atom’s density matrix is

ρA(0) =

[
1 0
0 0

]
. (1.706)

Thus for the system,

ρ̂(0) = ρ̂F (0)⊗
[
1 0
0 0

]
=

[
ρ̂F (0) 0

0 0

]
. (1.707)

Now by (1.695),

ρ̂(t) =

[
Ĉ(t)ρ̂F (0)Ĉ(t) −Ĉ(t)ρ̂F (0)Ŝ′(t)

Ŝ(t)ρ̂F (0)Ĉ(t) −Ŝ(t)ρ̂F (0)Ŝ′(t)

]
. (1.708)

To find the density operator of the field, we trace over the atomic states:

ρ̂F (t) = TrA ρ̂(t) = Ĉ(t)ρ̂F (0)Ĉ(t)− Ŝ(t)ρ̂F (0)Ŝ′(t). (1.709)

The matrix elements for the field are then

ρ̂Fnm ≡ 〈n| ρ̂F (t) |m〉 (1.710)

= 〈n| Ĉ(t)ρ̂F (0)Ĉ(t) |m〉 − 〈n| Ŝ(t)ρ̂F (0)Ŝ′(t) |m〉 . (1.711)

On the other hand, tracing over the field states (there are infinitely many) we
obtain the density operator of the atom:

ρ̂A(t) = TrF ρ̂(t) =

∞∑
n=0

〈n| ρ̂(t) |n〉 . (1.712)
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The matrix elements are then

〈i| ρ̂A(t) |j〉 =

∞∑
n=0

〈i, n| ρ̂F (t) |j, n〉 (1.713)

where i, j = e, g. The diagonal elements ρAee and ρAgg are the populations of the
excited and ground states and satisfy

ρAgg(t) + ρAee(t) = 1 (1.714)

for any time t. The atomic inversion is

W (t) = ρAee(t)− ρAgg(t) = 2ρAee(t)− 1. (1.715)

We can find that

ρAee(t) =

∞∑
n=0

〈n| Ĉ(t)ρ̂F (0)Ĉ(t) |n〉 (1.716)

=

∞∑
n=0

〈n| ρ̂F (0) |n〉 cos2(λt
√
n+ 1). (1.717)

Pure state

If the field is initially in a pure state

|ψF (0)〉 =

∞∑
n=0

Cn |n〉 , (1.718)

then

ρ̂F (0) = |ψF 〉 〈ψF | , (1.719)

which gives

ρAee(t) =

∞∑
n=0

|Cn|2 cos2(λt
√
n+ 1). (1.720)

This gives the atomic inversion we have found before.

Mixed state

However, if the field is initially in a thermal state (mixed state) where

ρ̂F (0) = ρ̂Th =
∑

Pn |n〉 〈n| (1.721)

where Pn is probability. The atomic inversion in this case is

W (t) =

∞∑
n=0

Pn cos
(
2λt
√
n+ 1

)
, (1.722)

which is slightly different.
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1.20 Collective Atomic Interactions
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2.1 Path Integral Formulation of QM, Shankar

So far, we have only been looking at quantum mechanics in the Schrödinger
formulation, which stems from Hamiltonian mechanics. In this section we will
consider the Lagrangian formulation (Hamiltonian’s counterpart) of quantum
mechanics, which was invented by Richard Feynman in the 1940s. The path
integral formulation of quantum mechanics is not only beautiful but it also can
for a certain class of problems give us the full propagator with ease. This for-
mulation also gives us better insights into the relationship between classical and
quantum mechanics.

2.1.1 The recipe

In the Schrödinger approach, which I hope we have seen enough at this point,
we find the propagator U by first evaluating the eigenvalues of the Hamiltonian,
and then write the propagator in terms of these eigenvalues and eigenfunctions
of the Hamiltonian. In the path integral formulation, however, we will evaluate
the propagator U directly, by the following strategy:

1. Draw all paths in space-time connecting (x′, t′) and x, t.

2. Evaluate the action S[x(t)] for each path x(t).

3. The propagator is given by

U(x, t;x′, t′) = A
∑

all paths

exp [iS[x(t)]/~] , (2.1)

where A is a normalization factor.

2.1.2 Primary analysis of the recipe

Before we look at how this path integral formulation gives us conventional quan-
tum mechanics, we will analyze qualitative how this approach works. A very
surprising fact about this formulation is that all path (including the classical
path) carries the same weight in the calculation. So, how come classical me-
chanics emerge?

To find out how exactly classical mechanics comes about, we have to inte-
grate over all paths. Let us first pretend that the continuum of paths linking
the end points is actually a discrete set.

For each path xa(t), we add the contribution Za = exp[iS[xa(t)]/~]. Because
each path has a different action, it adds a different phase, and some paths’ con-
tributions cancel each other. As we move away from the classical path xcl(t),
the destructive interference becomes more significant, while the closer we get to
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the classical path, the more we add to Z.

So how far must we deviate from xcl(t) before destructive interference sets
in? Well, this depends on the particle. For a particle of mass 1g, very little
deviation is required. However, for an electron, for instance, deviations can be
go up to roughly π/6.

2.1.3 Approximating U(t) for a Free Particle

Recall that the propagator for the free particle is given by (1.266)

U(x, t;x′, 0) =

√
m

2π~it
eim(x−x′)2/2~t. (2.2)

To calculate the propagator in this new formulation, let us assume that each
of the possible paths contributes the same amount exp[iScl/~]. With this, we
get

U(t) = A′ exp[iScl/~] (2.3)

where A′ is some normalizing constant.

The classical path for a fere particle is a straight line in space-time. Let us
write is as

xcl(t
′′) = x′ +

x− x′

t− t′
(t′′ − t) (2.4)

where it travels at a constant velocity v = (x−x′)/(t−t′). Now, the Lagrangian
is given by

L = T − V = T − 0 =
1

2
mv2, (2.5)

which is also a constant due to conservation of energy. It follows that the action
is

Scl =

ˆ t

t′
L dt′′ =

1

2
m

(x− x′)2

t− t′
. (2.6)

With this, the propagator is

U(x, t;x′, t′) = A′ exp[iScl/~] = A′ exp

[
im(x− x′)2

2~(t− t′)

]
. (2.7)

Now, in order to normalize (because U(t) is unitary), we need to note that
U(t) must tend to the Dirac-delta function δ(x − x′) when t − t′ → 0. This
makes sense, because at an arbitrarily small time interval, the particle shouldn’t
be propagating and its wavefunction is localized.
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With that in mind, we also know that the Dirac-delta function can also be
written in terms of a limit of a Gaussian:

δ(x− x′) ≡ lim
∆→0

1√
π∆2

exp

[
− (x− x′)2

∆2

]
. (2.8)

So we must have that in the limit

lim
∆→0

1√
π∆2

exp

[
− (x− x′)2

∆2

]
= δ(x− x′) = U(x, t;x′, t′) = A′ exp

[
im(x− x′)2

2~(t− t′)

]
.

(2.9)

This says

A′ =

√
m

2π~(t− t′)
. (2.10)

So,

U(x, t;x′, 0) ≡ U(x, t;x′) =

√
m

2π~it
exp

[
im(x− x′)

2~t

]
(2.11)

When we compare this to what we had before, we find that the answers
match exactly, which is quite incredible. Earlier, we had to solve the SE, find
the eigenvalues and eigenfunctions in order to construct U(t). Here, we simply
directly calculate U(t) from a simple approximation. This is very incredible.

However, this is not something we can generally do. It turns out that
only for potentials of the form V = a + bx + cx2 + dẋ + exẋ is it true that
U(t) = A(t) exp[iScl/~]. Furthermore, we can’t generally find A′ by using
U(x, t;x′, t′) = δ(x− x′), since A′ can have time and/or spatial dependence.

2.1.4 Path Integral Evaluation of the Free-Particle Prop-
agator

In this section, we will evaluate U(t) directly with the path integral without
approximations.

Consider the propagator U(xN , tN ;x′0, t
′
0). We want to perform this integral

ˆ xN

x0

exp[iS[x(t)]/~]D[x(t)] (2.12)

where

ˆ XN

x0

D[x(t)] (2.13)



2.1. PATH INTEGRAL FORMULATION OF QM, SHANKAR 111

denotes “integrating over all paths connecting x0 and xN .”

Next, we want to integrate over a continuum of possible paths. This is not
very easy to do. So instead, we will discretize time again into N pieces so that
tn = t0 + nε where n = 0, . . . , N , and ε = (tN − t0)/N . We hope that if we
take the limit N →∞ at the end we will get a result that is insensitive to these
approximations.

With that said, we will have to replace our continuous path definition

S =

ˆ tN

t0

L(t) dt =

ˆ tN

t0

1

2
mẋ2 dt (2.14)

by a discretized definition:

S =

N−1∑
i=0

m

2

(
(xi+1(t)− xi(t))2

ε

)2

ε. (2.15)

We would like to calculate is the following (ready?)

U(xN , tN ;x′0, t
′
0) =

ˆ xN

x0

exp

{
iS[x(t)]

~

}
D[x(t)] (2.16)

= lim
N→∞
ε→0

A

ˆ ∞
−∞

. . .

ˆ ∞
−∞

exp

[
i

~
m

2

N−1∑
i=0

(xi+1 − xi)2

ε

]
dx1 . . . dxN−1

.

(2.17)

This integral looks intimidating, but let us tackle it step-by-step. Let us first
worry about the N →∞ limit first, so we will just let

yi =
( m

2~ε

)2

xi (2.18)

for convenience, then we would like to calculate

lim
N→∞

A′
ˆ ∞
−∞

. . .

ˆ ∞
−∞

exp

[
−
N−1∑
i=0

(yi+1 − yi)2

i

]
dy1 . . . dyN−1, (2.19)

where now

A′ = A

(
2~ε
m

)(N−1)/2

(2.20)

by change of variables. The next thing to do is actually evaluating this integral.
While this might seem a bit formidable, it is totally doable. Let us just consider
the integral involving only y1, which is independent of any other variable yj
where j 6= 1:
ˆ ∞
−∞

exp

{
−1

i

[
(y2 − y1)2 + (y1 − y0)2

]}
dy1 =

(
iπ

2

)2

exp

[
−(y2 − y0)2

2i

]
.

(2.21)
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So we see y1 is out of consideration. Next we consider y2, by aggregating all
integrands that include y2:(

iπ

2

)1/2 ˆ ∞
−∞

e−(y3−y2)2/ie−(y2−y0)2/i dy2 (2.22)

=

(
iπ

2

)1/2(
2iπ

3

)1/2

e−(y3−y0)2/3i (2.23)

=

[
(iπ)2

3

]1/2

e−(y3−y0)2/3i. (2.24)

We deduce a pattern if we carry out this process N − 1 times. The integral
will eventually become

(iπ)(N−1)/2

N1/2
e−(yN−y0)2/Ni =

(iπ)(N−1)/2

N1/2
e−m(xN−x0)2/2~εNi (2.25)

So, combining this with the factor A, we get closer to the form of the prop-
agator

U = A

(
2π~εi
m

)N/2 ( m

2π~iNε

)1/2

exp

[
im(xN − x0)2

2~Nε

]
(2.26)

Finally, let N →∞ and ε→ 0 and Nε→ tN − t0, we get the correct answer
provided

A =

(
2π~εi
m

)−N/2
≡ B−N . (2.27)

It is conventional to associate a factor 1/B with each of the N − 1 integrations
and the remaining factor 1/B with the overall process. With this the precise
meaning of the statement “integral over all paths” is

ˆ
D[x(t)] = lim

N→∞
ε→0

1

B

ˆ ∞
−∞

. . .

ˆ ∞
−∞

dx1

B
. . .

dxN
B

(2.28)

where

B =

√
2π~εi
m

. (2.29)

We can easily see how the propagator we just found is exactly the same as
that derived earlier and the approximated version, given appropriate normal-
ization has been made.
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2.2 Path Integral Formulation of QM, Zee

In this section, we will look at the path integral formulation a bit more formally
with the Dirac bra-ket notation. To do this, we will first revisit some QM
concepts and standardize some of the notations/conventions. We will also look
at how the propagator comes to contain the term involving the action and the
Lagrangian, naturally from working with a Hamiltonian.

2.2.1 Revisiting QM

For the completeness relation in Hilbert space, we will use the following con-
vention

1 =

ˆ
dx |x〉〈x| (2.30)

for the position and

1 =
1

2π

ˆ
dp |p〉〈p| (2.31)

for momentum.

Next, given a state |ψ〉, the probability amplitude that |ψ〉 is in some eigen-
state |a〉 is given by

ψ(a, t) = 〈a|ψ〉 , (2.32)

which are the coefficients when |ψ〉 is expanded in the |a〉 basis:

|ψ〉 =
∑
|a〉 〈a|ψ〉 . (2.33)

And of course the probability that |ψ〉 is in the eigenstate |a〉 is the modulus
square of this coefficient.

The Dirac delta function is given by

δ(x− x′) =
1

2π

ˆ
e−ip(x−x

′) dp, (2.34)

and has the property

f(x) =

ˆ
δ(x′ − x)f(x′) dx′. (2.35)

Be careful that the derivation of this representation of the delta function
depends on our convention when writing the Fourier transform and its inverse.
By convention, we will use the asymmetric Fourier transform

F [ψx] =
1

2π

ˆ
Φpe

ixp dp (2.36)
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and

F−1[Φp] =

ˆ
ψxe

−ixp dx (2.37)

We recall that the Fourier transform gives us a passage between the position
and momentum space.

From these conventions, we will have

〈x|p〉 = eixp 〈p|x〉 = e−ixp (2.38)

and here’s why. Suppose we’re given a physical wavefunction in the x-basis:
ψ(x, t). Then we can write it as an inner product of |x〉 and |ψ〉, then inserting
the completeness relation to express it in the momentum space:

ψ(x, t) = 〈x|ψ〉 (2.39)

=
1

2π

ˆ
〈x|p〉 〈p|ψ〉︸ ︷︷ ︸

Φ(p,t)

dp (2.40)

=
1

2π

ˆ
〈x|p〉Φ(p, t) dp. (2.41)

But we also have that the Fourier transform is another passage between position
and momentum space. Here, ψ is the inverse transform of Φ, so

ψ(x, t) = F−1[Φ(p, t)] =

ˆ
Φ(p, t)eixp dp. (2.42)

Okay, now here’s where Zee’s convention becomes a little confusing, since we
obviously see there’s a factor of 2π missing. So, in this case it is probably safer
to use the completeness relation without the 2π, just so we can get through
this derivation. But other than this time, Zee follows the completeness relation
stated above.

With these we get

F−1[Φ(p, t)] =

ˆ
Φ(p, t)eixp dx =

1

2π

ˆ
〈x|p〉Φ(p, t) dp, (2.43)

which means

〈x|p〉 = eixp (2.44)

Taking the conjugate, we get

〈p|x〉 = e−ixp (2.45)
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2.2.2 Green’s Function

Green’s function will become particularly useful later on this section.

Suppose we want to solve the following ODE:(
m∂2

t + k
)
x(t) = f(t) (2.46)

where we can think of f(t) is a source, and we want to find x(t).

Green says we can solve this ODE using a Green’s function defined by(
m∂2

t + k
)
G(t, u) = δ(t− u) (2.47)

where we will use

f(t) =

ˆ
δ(t− u)f(u) du. (2.48)

Given a solution of G(t, u), then the solution to the problem is

x(t) =

ˆ
duG(t, u)f(u) (2.49)

because (
m∂2

t + k
)
x(t) =

(
m∂2

t + k
) ˆ

duG(t, u)f(u) (2.50)

=

ˆ
du
(
m∂2

t + k
)
G(t, u)f(u) (2.51)

=

ˆ
du δ(t− u)f(u) (2.52)

= f(t). (2.53)

So to solve this ODE it comes down to getting G(t, u), which depends on
the nature of the problem. But one thing to notice here is that we can think
of G(t, u) as something that carries the effects of the source f(t) and gives x(t)
which describes these effects.

2.2.3 Propagators

As before, a propagator for time t to t′ of a state is given by

|ψ(t′)〉 = U(t′, t) |ψ(t)〉 (2.54)

Let a Hamiltonian be given, then

H |ψ(t)〉 = i~∂t |ψ(t)〉 . (2.55)
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The state |ψ(t′)〉 also satisfies the SE, so we have

HU(t′, t) |ψ(t′)〉 = i~∂tU(t′, t) |ψ(t′)〉 . (2.56)

Now, because the SE is true for any given state |ψ(t)〉, we must have that

HU(t′, t) = i~∂tU(t′, t). (2.57)

Suppose the Hamiltonian is time-independent, then we can solve this differential
equation (as to how this works requires a proof, but we won’t go into that)

U(t′, t) = exp

[
−i
~
H(t′ − t)

]
(2.58)

We note that because U(t′, t) has to be unitary, we don’t get any leading coef-
ficients in front.

So we have

|ψ(t′)〉 = exp

[
−iHt
~

]
|ψ(t)〉 . (2.59)

In the physical x-basis,

ψ(x′, t′) = 〈x′|ψ(t′)〉 (2.60)

= 〈x′| exp

[
−iH(t′ − t)

~

]
|ψ(0)〉 . (2.61)

Inserting the completeness relation in x, we get

ψ(x′, t′) =

ˆ
dp 〈x′| exp

[
−iH(t′ − t)

~

]
|x〉︸ ︷︷ ︸

amplitude

〈x|ψ(t)〉︸ ︷︷ ︸
ψ(x,t)

(2.62)

=

ˆ
dp

(
〈x′| exp

[
−iH(t′ − t)

~

]
|x〉
)
ψ(x, t). (2.63)

Here, we say the amplitude of the propagation from |ψ(x, t)〉 → |ψ(x′, t′)〉 is

〈x′| exp

[
−iH(t′ − t)

~

]
|x〉 = 〈x′|U(t′, t) |x〉 (2.64)

But how do we evaluate this? This is where the path integral comes in. We
first break time into N segments or width δt = (t′ − t)/N and write x(t′) = xF
and x(t) = xI . With this,

〈xF | e−iHT/~ |xI〉 = 〈xF | e−iHδt/~ |xI〉 . . . e−iHδt/~ |xI〉 |xI〉 . (2.65)
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Next, we insert between each exponential a completeness relation from N − 1
to 0 to get

〈xF | e−iHT/~ |xI〉 =

N−1∏
j=1

ˆ
dxj

 〈xF | e−iHδt/~ |xN−1〉 〈xN−1| e−iHδt/~ . . . 〈x1|xI〉 .

(2.66)

If the Hamiltonian is given by

H =
p̂2

2m
, (2.67)

which describes the free particle, then we can perform the integration step-by-
step by looking at each piece involving a certain j. So for example to integrate
the part i and i+ 1 we insert the completeness relation (with or without the 2π
will do - the idea is more important here) in momentum to get

〈xj+1| e−iHδt/~ |xj〉 =

ˆ
〈xj+1| e−i(p̂

2/2m)δt/~ |p〉 〈p|xj〉 dp. (2.68)

We can check that the following holds

e−i(p̂
2/2m)δt/~ |p〉 = e−i(p

2/2m)δt/~ |p〉 , (2.69)

by writing the operator as a power series and summing up the eigenvalues in
the end. So with this we can remove the hat from the momentum operator,
turning it into a number, then bring it out front:

〈xj+1| e−iHδt/~ |xj〉 =

ˆ
e−i(p

2/2m)δt/~ 〈xj+1|p〉 〈p|xj〉 dp (2.70)

= e−i(p
2/2m)δt/~ 〈xj+1|xj〉 (2.71)

= e−i(p
2/2m)δt/~δ(xj+1, xj) (2.72)

=
1

2π

ˆ
dp e−i(p

2/2m)δt/~e−ip(xj+1−xj). (2.73)

This integral over p is a Gaussian integral. To evaluate this we will have to
consult Appendix 2 in Zee’s Quantum Field Theory in a Nutshell. The key to
doing this integral is to complete the squares. The integral above has the form

ˆ ∞
−∞

dx exp

[
1

2
iax2 + iJx

]
=

(
2πi

a

)1/2

exp

[
−iJ2

2a

]
. (2.74)

If we’re careful, we’ll get

〈xj+1| e−iδtp̂
2/2m~ |xj〉 =

(
−im
2πδt

)1/2

exp

[
im(xj+1 − xj)2

2δt

]
(2.75)

=

(
−im
2πδt

)1/2

exp

[
iδt

m

2

(
im(xj+1 − xj)

δt

)2
]
. (2.76)
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Now we can put this back into (2.66) to get

〈xF | e−iHT/~ |xj〉 =

(
−im
2πδt

)N/2(N−1∏
k=1

ˆ
dxk

)
exp

 im
2

N−1∑
j=0

δt

(
xj+1 − xj

δt

)2
 .

(2.77)

When δt→ 0, we can replace:(
xj+1 − xj

δt

)2

→ ẋ2 (2.78)

N−1∑
j=0

δt

(
xj+1 − xj

δt

)2

→
ˆ T

0

dt ẋ2, (2.79)

and define the integral over all paths as

ˆ
D[x(t)] ≡ lim

N→∞

(
−im
2πδt

)N/2(N−1∏
k=1

ˆ
dxk

)
. (2.80)

And we end up with the path integral representation

〈xF | e−iHδt/~ |xI〉 =

ˆ
D[x(t)] exp

[
i

ˆ T

0

mẋ2

2

]
(2.81)

This says that to get 〈xF | e−iHT/~ |xI〉 we simply integrate over all possible
paths x(t) such that x(0) = xI and x(T ) = xF .

We notice that the exponent inside the integral is a kinetic energy term.
What if the Hamiltonian also contains a potential term like this

H =
p̂2

2m
+ V (x̂)? (2.82)

Without going through all the algebra, we can actually work this out. Let
us think of these two oeprators p̂2/2m and V (x̂) as going hand-in-hand. We
see that in the propagator amplitude, there is a minus sign attached to the
Hamiltonian, and as a result this minus sign attaches to both p̂2/2m and V (x̂),
all the way up to the point where we perform the Gaussian integral. At that
stage, the minus sign on V (x̂) will remain, and eV (x̂) is not integrated because
we are integrating over p. However, for the p̂2/2m, the minus sign is switched to
a plus kinetic energy term, which is a result of performing the Gaussian integral
and taking appropriate limits. So we will end up with (after setting ~ = 1)

〈xF | e−i(p̂
2/2m+V (x̂))T |xI〉 =

ˆ
D[x(t)] exp

iˆ T

0

dt

mẋ2

2
− V (x̂)︸ ︷︷ ︸
L(x,ẋ)



(2.83)
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Thus we see that the Lagrangian emerges naturally from the Hamiltonian.
So in general, (for a time-independent Hamiltonian of course), we have

〈qF | e−iHT |qI〉 =

ˆ
D[q(t)]ei

´ T
0
dt L(q,q̇) (2.84)

where

S[q(t)] =

ˆ T

0

L(q, q̇, t) dt. (2.85)

is the action.

2.2.4 Classical mechanics emerges

With the Lagrangian appearing we can’t help but think if classical mechanics
can emerge. It turns out that one of the nice features of the path integral for-
mulation of QM is that classical mechanics can be recovered.

Let us put ~ back into the equation for the amplitude of the propagator and
take the limit as ~→ 0:

〈qF | e−(i~)HT |qI〉 =

ˆ
D[q(t)]e(i~)

´ T
0
dt L(q,q̇). (2.86)

In this limit, the Lagrangian takes the form L(q̇c, qc), which is a minimal, where
qc(t) is the classical path determined by solving the Euler-Lagrange equation

d

dt

(
δL
δq̇

)
=
δL
δq

= 0. (2.87)
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2.3 Quantum Field Theory & The Path Integral

Whereas path integrals in quantum mechanics compute amplitudes by integrat-
ing eiS over all paths, path integrals in quantum field theory compute ampli-
tudes by integrating eiS over all field configurations. For example, consider a
free scalar field theory

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2. (2.88)

The classical equations of motion for φ(x) is found by varying the Lagrangian
and requiring that δS = 0. We have shown (please refer to the classical field
theory text) that the equations of motion are

−(� +m2)φ(x) = 0. (2.89)

This is for a free field. Now, suppose we want a field that is created by a
source J(x) such that the equation of motion is now

−(� +m2)φ(x) = J(x), (2.90)

which can be obtained from varying

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 + J(x)φ(x), (2.91)

where we have simply included the source in the Lagrangian. To solve the new
equation of motion, we can solve for the Green function G satisfying

−(� +m2)G(x, y) = δ4(x− y). (2.92)

Recall that solution to the initial equation of motion in terms of the Green’s
function is

φ(x) =

ˆ
d4y G(x, y)J(y), (2.93)

where we see that the Green’s function propagates the source J(x) to affect
φ(x). Thus we call the Green’s function the propagator in QFT:

G(x, y)→ D(x, y) (2.94)

where D(x, y) obeys

−(� +m2)D(x, y) = δ4(x− y) (2.95)

and the solution to the initial equation of motion is

φ(x) =

ˆ
d4yD(x, y)J(y) (2.96)
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To solve for the propagator D(x, y), we have to go to momentum space via
the Fourier transform.

D(x, y) = F [D(k)](x, y) =
1

(2π)4

ˆ
d4kD(k)eik(x−y) (2.97)

φ(x) = F [φ(k)](x) =
1

(2π)4

ˆ
d4k φ(k)eikx (2.98)

J(x) = F [J(k)](x) =
1

(2π)4

ˆ
d4k J(k)eikx (2.99)

δ4(x− y) = F [δ4(k)](x− y) =
1

(2π)4

ˆ
d4k eik(x−y). (2.100)

So, putting this back into our equations, we have

−(� +m2)D(x, y) =
1

(2π)4

ˆ
d4kD(k)(−�−m2)eik(x−y) (2.101)

=
1

(2π)4

ˆ
d4kD(k)(k2 −m2)eik(x−y). (2.102)

So, by our setup:

δ4(x− y) =
1

(2π)4

ˆ
d4k eik(x−y) =

1

(2π)4

ˆ
d4kD(k)(k2 −m2)eik(x−y).

(2.103)

This means that

D(k)(k2 −m2) = 1 =⇒ D(k) =
1

k2 −m2
(2.104)

Putting everything together, the solution to the equation of motion is

φ(x) =

ˆ
d4xD(x, y)J(y) (2.105)

=

ˆ
d4x [F [D(x, y)](k)] J(y) (2.106)

=

ˆ
d4x

[
1

(2π)4

ˆ
d4kD(k)eik(x−y)

]
J(y) (2.107)

=

ˆ
d4x

[
1

(2π)4

ˆ
d4k

1

k2 −m2
eik(x−y)

]
J(y) (2.108)

But we run into a bit of a problem here, because we might have k2 −m2 = 0
since k ≡ m in QFT, making a pole appear in the integral. To fix that, we will
have to do a contour integral to tame this infinity. Let’s not worry about that
for me. In terms of path integrals, we have the Lagrangian with J(x) included

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 + J(x)φ(x). (2.109)
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The path integral describing φ(x) with source J(x) is then called

Z =

ˆ
D[φ] eiS =

ˆ
D[φ] ei

´
d4x [ 1

2∂µφ∂
µφ− 1

2m
2φ2+J(x)φ(x)] (2.110)

Z is called the generating function. With this, we can generalize to
include a potential V (φ):

L =
1

2
∂µφ∂

µφ− V (φ) + J(x)φ(x). (2.111)

In this case,

Z =

ˆ
D[φ] exp

{
i

ˆ
d4x

[
1

2
∂µφ∂

µφ− V (φ) + J(x)φ(x)

]}
. (2.112)

Now, this can’t be solved exactly in general. But we can solve for the free
case with V (φ) = (1/2)m2φ2, which is what we’ll do now.
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2.3.1 Free scalar with source J(x)

The Lagrangian is

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 + J(x)φ. (2.113)

And the corresponding generating function is

Z =

ˆ
D[φ] ei

´
d4x [ 1

2∂µφ∂
µφ− 1

2m
2φ2+J(x)φ(x)] (2.114)

=

ˆ
D[φ] exp

{
i

ˆ
d4x

[
1

2
∂µφ∂

µφ− 1

2
m2φ2 + J(x)φ(x)

]}
. (2.115)

Integrating by parts in the integrand in the exponent:

ˆ
d4x ∂µ [φ∂µφ] =

ˆ
d4x ∂µφ∂

µφ+

ˆ
d4xφ�φ (2.116)

φ∂µφ

∣∣∣∣∞
−∞

=

ˆ
d4x ∂µφ∂

µφ+

ˆ
d4xφ�φ (2.117)

0 =

ˆ
d4x ∂µφ∂

µφ+

ˆ
d4xφ�φ (2.118)

which gives

Z =

ˆ
D[φ] exp

{
i

ˆ
d4x

[
−1

2
φ(� +m2)φ+ J(x)φ(x)

]}
. (2.119)

Now this integral is hard to evaluate, so we replace φ(x) by a lattice of φi = φ(ia)
where i is an integer and a is the latter spacing. With this,

∂φ(ia)→ 1

a
(φi+1 − φi) = Mijφi (2.120)

where [Mij ] is now a matrix. Next, we call −(� + m2) = [A], which is also a
matrix, where

−(� +m2)φi = [A]φi = J. (2.121)

It follows that

Z =

ˆ
. . .

ˆ
dφ1 dφ2 . . . dφN exp

[
i

2
φAφ+ iJ · φ

]
(2.122)

= ζ exp

[
− i

2
JA−1J

]
(2.123)

where ζ is an overall factor that does not depend on J and A−1 is the inverse
of A. Please refer to a later section to see the actual derivation of this.
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With this, we can go back to the continuum case where the latter spacings
become infinitesimally small. Recall that we have defined

−(� +m2) = A. (2.124)

Because −(� +m2)D(x− y) = δ4(x− y), we must also have

A−1 = D(x− y). (2.125)

This means

Z = ζ exp

[
− i

2

¨
d4xd4y J(x)D(x− y)J(y)

]
= ζeiW (J) (2.126)

where the functional W is given by

W (J) = −1

2

¨
d4xd4y J(x)D(x− y)J(y) (2.127)

This is called the generating function for connected diagrams.

Also, with

Z(J) = ζeiW (J) (2.128)

Z(0) = ζ, (2.129)

we have

Z(J) = Z(0)eiW (J) (2.130)

Since for the free particle D(x− y) is the inverse of −(� +m2), i.e.,

−(� +m2)D(x− y) = δ4(x− y), (2.131)

we have for the free particle

D(x− y) =
1

(2π)4

ˆ
d4k

1

k2 −m2
eik(x−y) (2.132)

Again, we now should really worry about the pole at k2 = m2. So let us do a bit
of primer on contour integrals, which we will use extensively to tame infinities.
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2.3.2 Contour Integrals & The Residue Theorem

Let’s say we’re in the complex plane and let’s say that we’re given some function
f defined on some neighborhood of the complex plane. It is possible that we
want to perform an integration for f(z) along some closed contour curve C in
the complex plane: ˆ

C

f(z) dz. (2.133)

Pictorially, we want to perform the integral like this in order to avoid integrating

Figure 2.1: Wikipedia

over some pole z = i.

Cauchy Integral Formula

In order to the perform the integral above in general, we can make use of
something called the Cauchy integral formula, which goes as follows. For any
analytic function f(z), if z0 is interior to the contour C then we have

f(z0) =
1

2πi

ˆ
C

f(z)

z − z0
dz (2.134)

which says that the values of f inside the contour C such that |z| = 2 is
determined by the value of f on C. Let’s use this to actually perform the
integral. For example, say we would like to computeˆ

C

z dz

(9− z2)(z + i)
(2.135)

along a contour C that contains only the pole z0 = −i. Then we first re-write
the integral to match the Cauchy integral formula:

ˆ
C

z dz

(9− z2)(z + i)
=

ˆ
C

1

z + i

(
z

9− z2

)
dz (2.136)

where f(z) here is

f(z) =
z

9− z2
(2.137)
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which is analytic for |z| ≤ 2. By the integral formula, we have that

ˆ
C

1

z + i

(
z

9− z2

)
dz = f(z0 = −i) = 2πif(−i) = 2πi

−i
9 + 1

=
π

5
. (2.138)

So believe it or not, we’ve just evaluated the integral without doing any
integration!

Taylor & Laurent series

Complex functions can have Taylor series or Laurent series, which is like Taylor
series in a way except the powers are negative.

Figure 2.2: Wikipedia

Let the contours C1 and C2 be concentric circles centered on z0 with radii
r1 and r2 where r2 < r1. Then we have a theorem which says if f is analytic
on C1 and C2 and everywhere in between then at each point z in-between or on
C1 or C2, we have

f(z) =

∞∑
n=0

an(z − z0)n +

∞∑
n=0

bn
(z − z0)n

(2.139)

where

an =
1

2πi

ˆ
C1

f(s) ds

(s− z0)n+1
n = 0, 1, 2, 3, . . . (2.140)

bn =
1

2πi

ˆ
C2

f(s) ds

(s− z0)−n+1
n = 1, 2, 3, . . . (2.141)
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The series defined above is called the Laurent series for f .

One thing we can do to recover a “single” contour C is shrinking the inner
radius r2 → 0, so that the domain becomes a punctured neighborhood of radius
r1 around z0: 0 < |z − z0| < r1 and the bn’s vanish.

If f is analytic at all points inside and on C1 then f(z)/(z− z0)−n+1 is also
analytic since −n+1 ≤ 0 and bn = 0. This means the series reduces to a Taylor
series.

The Residue Theorem

A singular point of a function f(z) is a point z0 where f is not analytic at
z0 but is analytic at every point in some neighborhood of z0. So for example,
the function f(z) = 1/z is analytic everywhere except at z = 0, so z = 0 is a
singular point.

Isolated singularities have neighborhoods around them on which f is ana-
lytic.

When f has an isolated singular point z0, we define the residue of f at z0 is
the coefficient b1 of its Laurent series:

b1 =
1

2πi

ˆ
C

f(z) dz (2.142)

Note that the residue b1 is the coefficient in the 1/(z−z0) term in the Laurent
series:

f(z) =
b1

z − z0
+ . . . (2.143)

The Residue Theorem: Let f be an analytic function in and on a closed
contour C except where it has singular points z1, z2, . . . with corresponding
residues b1, b2, . . . . Then

ˆ
C

f(z) dz = 2πi(b1 + b2 + . . . ) (2.144)

i.e., the contour integral of f around some contour C which contains some of
the singular points of f is 2πi times the sum of the corresponding residues.

For example, let’s say we want to evaluate

ˆ
C

5z − z
z(z − 1)

dz (2.145)
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where the contour C contains both the 0 and 1 poles. Then we first write the
integrand so that it matches has the form of a Laurent series:

5z − 2

z(z − 1)
=

1

z

(
5z − 2

z − 1

)
=

1

z − 1

(
5z − 2

z

)
. (2.146)

We find that the for the z0 = 0 pole the residue is

b1 =
0− 2

0− 1
= 2. (2.147)

For the z1 = 1 pole the residue is

b2 =
5− 2

1
= 3. (2.148)

So by the residue theorem,
ˆ
C

5z − z
z(z − 1)

dz = 2πi(2 + 3) = 10πi. (2.149)

Let’s do another example to get more comfortable. Suppose we want to
evaluate

ˆ
C

z2

1 + z
dz (2.150)

for a contour C that contains the pole z = −1. For this pole, the corresponding
residue is (−1)2 = 1, so

ˆ
C

z2

1 + z
dz = 2πi(1) = 2πi. (2.151)

There are certainly techniques to evaluate integrals involving much more
complicated poles, but we won’t worry about that for now.

Evaluating real improper integrals

One of many very nice applications of the residue theorem and the contour
integrals is evaluating real improper integrals. Consider a general real improper
integral

ˆ ∞
−∞

f(x) dx (2.152)

where f now is a function that takes on real-valued arguments. If we extend f
over the complex plane and f(z) has a pole at z0 with positive imaginary part,
then consider the contour with |z0| < R which looks like the following If

f(z) =
g(z)

z − z0
(2.153)
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then we have from the theorems˛
C

f(z) dz = 2πig(z0). (2.154)

But we can also extend and make the contour very large by taking R→∞ since
the contour integral stays the same

˛
C

f(z) dz = lim
R→∞

(ˆ R

−R
f(x) dx+

ˆ
CR

f(z) dz

)
(2.155)

where the first term on the RHS is exactly the real improper integral we’re
looking for. Thus, so long as f(z) on CR vanishes when we take R → ∞, we
must have that

ˆ ∞
−∞

f(x) dx = 2πig(z0) (2.156)

For example, let’s say we want to evaluate the following integral
ˆ ∞
−∞

2x2 − 1

x4 + 5x2 + 4
dx. (2.157)

Well, while we can certainly try to do this completely on the real line, we can
avoid the singularities by doing the contour integral. So let’s write the integrand
as

f(z) =
2x2 − 1

(z2 + 1)(z2 + 4)
(2.158)

which has poles at z = ±i,±2i. We also observe that for large z, |f(z)| → 0.
This allows us to do use the contour integral. If we pick a contour that looks
like a half-circle in the upper half plane with the base being the real axis, so
that its radius is bigger than 2 (so that we can extend the contour to infinity),
then we have, by what we’ve shown earlierˆ

C

f(z) dz =

ˆ ∞
−∞

f(x) dx+ 0 (2.159)
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where 0 simply denotes the piece that vanishes when R → ∞. With this, we
move on to evaluating the contour integral. But notice that the contour includes
only the i and 2i poles, so we will only have two residues. Because we only have
the i and 2i poles, we write

f(z) =
1

z − i
2z2 − 1

(z + i)(z2 + 4)
=

1

z − 2i

2z2 − 1

(z2 + 1)(z − 2i)
. (2.160)

The residue that z = i is then i/2, while the residue that z = 2i is −3i/4. So
the improper integral is

ˆ ∞
−∞

2x2 − 1

x4 + 5x2 + 4
dx = 2πi

(
i

2
− 3i

4

)
=
π

2
. (2.161)
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2.3.3 Multi-valued Functions & Branch Cuts



132 PART 2. QUANTUM & CLASSICAL FIELD THEORIES

2.3.4 From Field to Particle to Force

Now that we’ve had the mathematical machinery in hand, we can tackle our
worries about the 1/(k2 −m2) the keeps popping up in the integrals.

Let’s start slow and try to evaluate the following integral

ˆ ∞
−∞

dk

k2 −m2
. (2.162)

We obviously see that there are two poles k = −m and k = m. While we
will try to evaluate this using the a contour integral, it’s not clear how we’ll
start because the poles are on the real axis. To resolve this slight issue, we will
“tilt” the complex plane so that the “poles” are no longer on the real axis.

What we’ll do is letting m2 → m2 − iε where ε > 0 is some arbitrarily small
positive number, just so we could push the pole a bit away from the real axis.
Our goal is to evaluate the contour integral with m2− iε, then take the limit as
ε→∞ and hopefully get something finite. So, with m2 → m2 − iε, we have

k2 −m2 → k2 − (m2 − iε) (2.163)

= (k −
√
m2 − iε)(k +

√
m2 − iε). (2.164)

Since ε can be chosen to be arbitrarily small, we will just do an expansion on
the square root term without worrying to much

√
m2 − iε = m

√
1− iε

m2
(2.165)

≈ m− iε

2m
(2.166)

= m− iε′ ≡ m− iε (2.167)

where we have let ε become the ε′, which is something we can do because again
ε can be chosen to be arbitrarily small. With this, we have

k2 − (m2 − iε) = (k − (m− iε))(k + (m− iε)). (2.168)

So now we have two poles at k = m− iε and k = −m+ iε, which are off the
real axis. The next thing to do now is to evaluate the contour integral. We can
make a closed contour using either the upper half-plane half-circle, or the lower
half-plane half circle, each enclosing a different pole.

Consider the contour integral on the left hand side. The enclosed pole here
is k = m− iε. So to compute the residue we write

1

k2 −m2 + iε
=

1

k − (m− iε)
1

k + (m− iε)
. (2.169)



2.3. QUANTUM FIELD THEORY & THE PATH INTEGRAL 133

Figure 2.3: Sketch by Prof. Robert Bluhm

The residue is therefore

1

(m− iε) + (m− iε)
→ 1

2m
(2.170)

as we take ε→ 0. If we consider the other contour then the residue is going to
take on a minus sign, −1/2m. However, worry not, because the integrals over
the real line in two contours have opposite directions. This means in either case,
we get

ˆ ∞
−∞

dk

k2 −m2 + iε
= 2πi

(
−1

2m

)
=
−iπ
m

. (2.171)

Note that we can use the residue theorem to evaluate the integral here because
as k →∞, 1/(k2 −m2 + iε)→ 0.

Okay, now suppose we want to evaluate something that is closer to what
we’re dealing with earlier:

ˆ ∞
−∞

dk eik(x−y)

k2 −m2 + iε
. (2.172)

Consider the same two contours. We will see that both contours don’t al-
ways work in both cases and whether the contour you choose works depends on
whether (x− y) is positive or negative.

Suppose x− y > 0. Then on CR, we have that

eiz(x−y) ∼ ei(iR)(x−y) = e−R(x−y) → 0 as R→∞, (2.173)

where iR represents the argument (up to phase shifts) that is fed into the expo-
nent when integrating over the contour. On the other contour, however, because
the argument now looks like −iR times a phase factor, the sign of the expo-
nent becomes positive, which means the function blows up. So, we see that the
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contour on the lower half-plane doesn’t work when x − y > 0. The opposite
happens when we have x−y < 0: only the contour on the lower half-plane works.

With this and the fact that the integrand still goes to zero as k → ∞, we
have for x− y > 0,

ˆ ∞
−∞

dk eik(x−y)

k2 −m2 + iε
=

ˆ
C

dz eiz(x−y)

z2 −m2 + iε
. (2.174)

So depending on the sign at (x− y), we get combinations to the residue

e2mi(x−y)

2m
or

e−2mi(x−y)

−2m
(2.175)

when x− y > 0 and x− y < 0, respectively.

With this, we can now tackle the free theory propagator in QFT, which is
given by

D(x− y) =

ˆ
d4k

(2π)4

eik(x−y)

k2 −m2 + iε
(2.176)

Here

k2 = k2
0 − ~k2 (2.177)

d4k = dk0 d
3k (2.178)

where we’re using the conventional Minkowskian metric ηµν = diag(1,−1,−1,−1).
With this we rewrite the integral as

D(x− y) =
1

(2π)4

ˆ ∞
−∞

dk0

ˆ ∞
−∞

d3k
eik0(x0−y0)e−i

~k·(~x−~y)

k2
0 − (~k2 +m2) + iε

, (2.179)

where we don’t really have to worry too much about k0 or k0 because of the
metric. Now we’ll call

w2
k = ~k2 +m2, (2.180)

which the equivalent to the total energy. For the k0 integration, which is an
integration over time:

k2
0 − w2

k + iε = (k0 − (wk − iε))(k0 + (wk − iε)) (2.181)

and so we have poles at k0 = wk − iε and −wk + iε.

Once again, to perform this integral (correctly), we must pick the correct
half-plane to close the contour. This choice depends on x0 − y0, which is the
time-ordering.
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It turns out that for x0 − y0 > 0, we use the upper contour of radius R,
where we have

eik0(x−y) ∼ ei(iR)(x0−y0) = e−R(x0−y0) ∼ 0. (2.182)

In this case, the pole is at k0 = −wk + iε. And so we can now evaluate the
integral over all space in the expression above:

1

(2π)4

ˆ ∞
−∞

d3k
eik0(x0−y0)e−i

~k·(~x−~y)

k2
0 − (~k2 +m2) + iε

(2.183)

=

ˆ
1

k0 + (wk − iε)

(
d3k

(2π)4

eik0(x0−y0)e−i
~k·(~x−~y)

k0 − (wk − iε)

)
. (2.184)

Now, remember that this is our f(k0), and what we’re actually trying to evaluate
here is

D(x− y) =

ˆ
dk0f(k0). (2.185)

By writing f(k0) as the triple integral over all space like above, the residue is
given by

ˆ
d3k

(2π)4

eik0(x0−y0)e−i
~k·(~x−~y)

k0 − (wk − iε)
(2.186)

evaluated at the pole k0 = −wk + iε, taking ε → 0. The value of this at
k0 = −wk + iε as ε→ 0 is

ˆ
d3k

(2π)4

e−iwk(x0−y0)e−i
~k·(~x−~y)

−wk − wk
(2.187)

=

ˆ
d3k

(2π)4

e−iwk(x0−y0)e−i
~k·(~x−~y)

−2wk
. (2.188)

This is the residue. And so the value of the propagator is then

D(x− y) =

ˆ
dk0 f(k0) = 2πi

[ˆ
d3k

(2π)4

e−iwk(x0−y0)e−i
~k·(~x−~y)

−2wk

]
. (2.189)

So,

D(x− y) =
1

(2π)3

ˆ
−i

2wk
d3k e−i[wk(x0−y0)+~k·(~x−~y)] (2.190)

On the other hand, if x0 − y0 < 0, then we would use the other pole and
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close the contour in the lower half-plane to get

D(x− y) = −2πi
1

(2π)4

ˆ
d3k

eiwk(x0−y0)e−i
~k·(~x−~y)

2wk
(2.191)

=
1

(2π)3

ˆ
−i

2wk
d3k eiwk(x0−y0)e−i

~k·(~x−~y) (2.192)

=
1

(2π)3

ˆ
−i

2wk
d3k ei[wk(x0−y0)−~k·(~x−~y)] (2.193)

where the minus sign comes from integrating over the real line in the (−) direc-
tion. The pole is now k0 = wk − iε and the residue is

1

(2π)3

ˆ
d3k

eiwk(x0−y0)e−i
~k·(~x−~y)

2wk
(2.194)

when ε→ 0.

We see that the expression for the propagator when x0−y0 > 0 and x0−y0 <
0 differ by a little bit in the sign of ~k in the factor inside the exponent. However,
we note that because of symmetry, by letting ~k → −~k in the x0 − y0 > 0 case
and using symmetry:

ˆ
d3k =

ˆ
d3(−~k) (2.195)

we can re-write:

D(x− y) =
1

(2π)3

ˆ
−i

2wk
d3k e−i[wk(x0−y0)−~k·(~x−~y)] (2.196)

for the x0 − y0 > 0 case.

The next thing we want to do is combining the two propagators into a single
expression. This requires having a function that specifies the correct sign of
x0 − y0, which is exactly what the Heaviside step function does. Define

θ =

{
1 x0 − y0 > 0

0 x0 − y0 < 0
(2.197)

where we will take θ = 1/2 if x0 = y0.

With this and taking y = 0 to be the initial spacetime and x0 = t, we can
write the propagator as

D(x) =
−i

(2π)3

ˆ
d3k

2wk

[
e−i[wkt−

~k·~x]θ(t) + ei[wkt−
~k·~x]θ(−t)

]
(2.198)
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Let us note a few things here before moving on. For spacelike x, i.e., x =
(t, ~x) = (t, 0), we have that if t > 0 (in the future cone), the propagator has the
form

D(x) =
−i

(2π)3

ˆ
d3k

2wk
e−iwkt. (2.199)

This says the propagator is a superposition of plane waves and oscillates. Sim-
ilar with the past cone where t < 0, D also oscillates but with a different phase
(eiwkt).

For timelike x, i.e., x = (0, ~x), we have that

D(x) =
−i

(2π)3

ˆ
d3k

2wk
e−i

~k·~x =
−i

(2π)3

ˆ
d3k

2
√
~k2 +m2

e−i
~k·~x. (2.200)

where we have flipped the sign of ~k again to cancel the factor of 1/2. In order
to evaluate this integral, we will need to understand branch cuts, which we will
cover later.
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2.3.5 From field to particle

Recall that from free scalar with source J(x) we have obtained a functional
W (J):

W (J) = −1

2

¨
d4xd4y J(x)D(x− y)J(y) (2.201)

where W (J) is called the generating function for connected diagrams, and
D(x− y) is basically the Green’s function which carries the effects of the source
at y to x.

In terms of the Fourier transform

J(x) ≡ F−1[J(k)](x) =

ˆ
d4xJ(k)e−ikx (2.202)

D(x− y) ≡ 1

(2π)4

ˆ
d4k

1

k2 −m2
eik(x−y) (2.203)

So we have

W (J) = −1

2

1

(2π)4

ˆ
d4k J(k)∗

1

k2 −m2 + iε
J(k) (2.204)

where we have taken the complex conjugate of J(x) to get the correct Fourier
transform.

Now, consider the case where we have two sources J1, J2 in spacetime such
that J(x) = J1(x) + J2(x) Then W (J) contains four terms involving J1 and J2.

Figure 2.4: From Zee

One of the terms contains J∗2J1:

W (J) = −1

2

ˆ
d4k

(2π)4
J∗2 (k)

1

k2 −m2 + iε
J1(k). (2.205)
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We interpret this as follows: in region 1 in spacetime there is a source that
sends out some disturbance in the field, which is then absorbed by a sink in
region 2 in spacetime.

When k2 = m2, k is said to be on mass shell. For arbitrary k, it is a linguistic
convenience to say that a“virtual particle” of momentum k propagates from the
source to the sink.

Particle to force

Consider the same source J = J1 + J2 again and consider the W (J), neglecting
the J∗1J1 and J∗2J2 self-interactions. And suppose that

Ja(~x) = δ(3)(~x− ~xa). (2.206)

Note that J is real and so we will get a factor of 2 when obtaining W (J).

Plugging everything into

W (J) = −1

2

¨
d4xd4y J(x)D(x− y)J(y). (2.207)

we obtain (remember the factor of 2...)

W (J) = −2

2

¨
dx0dy0

ˆ
d0k

2π
eik

0(x−y)0
ˆ

d3k

(2π)3

ei
~k·(~x1−~x2)

k2 −m2 + iε
(2.208)

= −
¨

dx0dy0

ˆ
d0k

2π
eik

0(x−y)0
ˆ

d3k

(2π)3

ei
~k·(~x1−~x2)

k2 −m2 + iε
(2.209)

where the piece

2

ˆ
d0k

2π
eik

0(x−y)0 (2.210)

comes from the transforms of the source delta functions and the piece

ei
~k·(~x1−~x2)

k2 −m2 + iε
(2.211)

(2.212)

comes from the transform of the propagator D(x− y).

Next, integrating over all y0 and absorbing the delta-function-transform
piece give us a delta function, which sets k0 to zero. As a result,

k2 = k0 − ~k2 = ~k2 (2.213)
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So that W (J) becomes

W (J) =

(ˆ
dx0

)ˆ
d3x

(2π)3

ei
~k·(~x1−~x2)

~k2 +m2
(2.214)

where we have dropped iε because the denominator is can no longer be zero.

Next, recall the generating function we have defined previously

Z = ζeiW (J) ∼ 〈0| e−iHT |0〉 = e−iET (2.215)

where

T =

ˆ
dx0 (2.216)

is the time interval. So we have

E = −
ˆ

d3k

(2π)3

ei
~k·(~x1−~x2)

~k2 +m2
(2.217)

Let us evaluate this integral. First, we write

~x = ~x1 − ~x2 (2.218)

u ≡ cos θ = (~k, ~x). (2.219)

In spherical coordinates where

k =
∣∣∣~k∣∣∣ (2.220)

r = |~x|, (2.221)

we have the volume element is

d3k = k2 sin θ dk, dθ dφ = −k2 d(cos θ) dφ. (2.222)

But notice that even though we get an extra minus sign, the integration bounds
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also flips accordingly, so the overall sign of the integral doesn’t chance. Thus,

E = −
ˆ

d3k

(2π)3

ei
~k·(~x1−~x2)

~k2 +m2

= − 1

(2π)3

ˆ 2π

0

dφ

ˆ ∞
0

dk k2

ˆ 1

−1

d(cos θ)
eikx cos θ

k2 +m2

= − 1

(2π)2

ˆ ∞
0

dk k2

ˆ 1

−1

du
eikru

k2 +m2

= − 1

(2π)2

ˆ ∞
0

dk
1

k2 +m2

(
1

ikr
eikru

) ∣∣∣∣1
−1

= − 1

(2π)2

ˆ ∞
0

dk
1

k2 +m2

[
2i

ikr
sin(kr)

]
= − 2i

(2π)2ir

ˆ ∞
0

dk
k sin(kr)

k2 +m2

= − 1

(2π)2r

ˆ ∞
−∞

dk
k sin(kr)

k2 +m2
(even integrand)

= − 1

(2π)2r

ˆ ∞
−∞

dk

(
1

k − im

)
k sin(kr)

k + im

= − 1

(2π)2r

ˆ ∞
−∞

dk

(
1

k − im

)
1

2i

k(eikr − e−ikr)
k + im

= − 1

(2π)2r

ˆ ∞
−∞

dk

(
1

k − im

)
1

2i

k(eikr + eikr)

k + im

= − 1

(2π)2r

ˆ ∞
−∞

dk

(
1

k − im

)
1

i

keikr

k + im

= − 1

(2π)2ri

ˆ ∞
−∞

dk

(
1

k − im

)
keikr

k + im

= − 1

(2π)2ri

ˆ
C

dk

(
1

k − im

)
keikr

k + im
*contour around im

= − 1

(2π)2ri
(2πi)

imei(+im)r

im+ im

= − 1

4πr
e−mr (2.223)

Thus the energy is negative, which means the two delta function sources
give an attractive force. We identify E as the potential energy between two
static sources. We also note the range of the attractive force generated by the
field ψ is determined inversely by the mass m of the particle. Does this sound
familiar?????
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The Origin of Force

We now see that the exchange of particle (via D) can produce a force, which
is given by the potential. We can associate a particle with each of the known
forces: photon with the electromagnetic force, graviton with gravity(?).

More importantly, however, we see where the inverse square law comes
from, based on the form of the potential. We notice that if the force-carrying
particle has mass 0 (which is the case for photon in electromagnetism and gravi-
ton in gravitation) then the potential energy has the form

E =
1

4πr
. (2.224)

The gradient of this gives the force, which is proportional to 1/r2.

Where does this come from? The answer can be traced all the way back to
the Lagrangian density for the simplest field theory where we have ∂µ and ∂µ,
i.e., two powers of the spacetime derivative. This ensures Lorentz invariance.

Connected versus disconnected

We might want to represent the integrand

J(x)D(x− y)J(y) (2.225)

as a connected path in W (J) to present a disturbance from y to x. This is the
beginning of Feynman diagrams.

Figure 2.5: From Zee

Next, recall the definition of the generation function Z:

Z(J) = Z(0)eiW (J) = Z(J = 0)

∞∑
n=0

[iW (J)]n

n!
(2.226)
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The n = 2 term is given by

1

2!

(
− i

2

)2˘
d4x1d

4x2d
4x3d

4x4D(x1 − x2)D(x3 − x4)J(x1)J(x2)J(x3)J(x4).

(2.227)

The integrand is given by We see this is the correct figure because the 1 → 2

Figure 2.6: From Zee

propagation is independent of 3→ 4.

Like charges repel

Quantum field theory of electromagnetism is called quantum electrodynamics,
or QED for short. For this section we will consider the theory of a massive
spin 1 vector. We will assume that the photon mass is nonzero, only to plug in
m = 0 in the end to see if things are okay.

Recall the Lagrangian:

L = −1

4
FµνF

µν (2.228)

where

Fµν = ∂µAν − ∂νAµ (2.229)

where Aµ(x) is the vector potential. With our assumption that the mass of the
photon is nonzero, we will introduce both a mass term and a source term to the
Lagrangian, which then becomes

L = −1

4
FµνF

µν +
1

2
m2AµA

µ +AµJ
µ. (2.230)

Note that the source here is a just a current, which satisfied the conservation
law:

∂µJ
µ = 0. (2.231)
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The path integral of this theory is

Z =

ˆ
DAeiS[A] = eiW (J) (2.232)

where the functional action in terms of the vector potential

S[A] =

ˆ
d4xL =

ˆ
d4x

[
−1

4
FµνF

µν +
1

2
m2AµA

µ +AµJ
µ

]
(2.233)

=

ˆ
d4x

[
1

2
Aµ
[
(∂2 +m2)gµν − ∂µ∂ν

]
Aν +AµJ

µ

]
(2.234)

where the second equality comes from integration by parts. Now, just like when
we were dealing with the free scalar field with source, we want the propagator
D to be the inverse of the differential operator, i.e.,[

(∂2 +m2)gµν − ∂µ∂ν
]
Dνλ(x) = δµλδ

(4)(x). (2.235)

Just like before, by going into momentum space we can extract the wave vector
k from the differential operator. To do this, we will have to go way back to the
beginning of this section, Fourier transform everything and putting everything
back into a original equation. The propagator in position space is related to the
propagator in momentum space by

Dνλ(x) = F [D(k)](x) =

ˆ
d4k

(2π)4
Dνλ(k)eik(x). (2.236)

Plugging this back into our equation and writing the delta function as a Fourier
transform to getˆ

d4k

(2π)4
Dνλ(k)

[
(∂2 +m2)gµν − ∂µ∂ν

]
eikx = δµλ

ˆ
d4k

(2π)4
eikx. (2.237)

Letting the differential operator act on eikxˆ
d4k

(2π)4
Dνλ(k)

[
−(k2 −m2)gµν + kµkν

]
eikx = δµλ

ˆ
d4k

(2π)4
eik(x). (2.238)

And so it must follow that[
−(k2 −m2)gµν + kµkν

]
Dνλ(k) = δµλ (2.239)

Solving for the propagator, we get

Dνλ(k) =
−gνλ + kνkλ/m

2

k2 −m2
(2.240)

This is the masive vector meson propagator, or the photon propagator
loosely speaking. With this, we can now write the generating function for con-
nected diagrams as

W (J) = −1

2

ˆ
d4k

(2π)4
Jµ(k)∗

−gνλ + kνkλ/m
2

k2 −m2 + iε
Jν(k) (2.241)
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where the iε is added to the denominator because (as you can tell this is coming)
we will need to do a contour integral around a pole to get a finite answer.

We also have that the conservative of current ∂µJ
µ = 0 in momentum space

becomes kµJ
µ = 0, this means the kµkν term in the numerator gets killed by

the J ′s. We also have that gµν ∼ 1, so effectively the generating function is

W (J) ∼ 1

2

ˆ
d4k

(2π)4
Jµ(k)∗

1

k2 −m2 + iε
Jν(k) (2.242)

where the minus sign disappears. So, by comparing this result to what we have
found in the previous section, we see that the energy obtained is positive so long
as the charge densities J ’s have the same sign. This basically says like charges
repel.

With this, no more computation is needed. With

E =
1

4πr
e−mr, (2.243)

we simply let the photon mass go to zero to get

E → 1

4πr
. (2.244)

This is exactly the form of the electric potential in electrostatics.

Planck Mass

The Planck Mass, denoted MPl is defined in terms of the Newton’s law of
gravity:

V (r) =
GNm1m2

r
=
m1m1

M2
Pl

(
1

r

)
. (2.245)

Numerically,

MPl ≈ 1019 GeV. (2.246)

It is clear why gravity is so weak compared to, say, the electromagnetic force.
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2.3.6 Feynman Diagrams

Gaussian Integrals and their Moments

Before getting into how trying to evaluate these integrals gives us Feynman di-
agrams, we should quickly revisit Gaussian integrals, as they are very similar
to many integrals in QFT.

The first basic result is the following:

I =

ˆ
R
dx e−x

2

=
√
π. (2.247)

A very clever way to do this is to move to the two dimensional case and try to
evaluate

I2 =

ˆ
R2

dxdy e−x
2−y2 . (2.248)

We can move into polar coordinates and do a change of variables to get

I2 =

ˆ ∞
0

(2π)rdr e−r
2

. (2.249)

We can evaluate this integral with a u-substitution. to get

I2 = 2π
1

2
= π =⇒ I =

√
π. (2.250)

In general,

ˆ
R
dx exp

(
−a

2
x2 + bx

)
=

√
2π

a
exp

(
b2

2a

)
(2.251)

We do this by completing the square then rescaling and shifting the integration
variables. (This is why we have a left over exponent in the end.)

The next things we want to evaluate are various moments of the Gaussian,
i.e., integrals like

In =

ˆ
R
dxxn exp

(
−a

2
x2
)
. (2.252)

We assume that n is a positive integer. If n is odd then the integrand is an
odd function, so when it is integrated over a symmetric domain we get 0. On
the other hand, when n is even, we use Feynman’s differentiating-under-the-
integral-sign trick. Here is how it works:

Feynman’s integration technique: Consider the previous integral:ˆ
R
dx exp

(
−a

2
x2 + bx

)
. (2.253)
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We notice that when we take the derivative of the integrand with respect to b
we bring down a factor of x:

d

db
exp

(
−a

2
x2 + bx

)
= x exp

(
−a

2
x2 + bx

)
. (2.254)

So, in order to get xn in the integrand of the integral

In =

ˆ
R
dxxn exp

(
−a

2
x2
)
, (2.255)

we will take ∂b of the other integrand n times to bring down xn then set b = 0.
Let’s do this:(

d

db

)n
exp

(
−a

2
x2 + bx

) ∣∣∣∣
b=0

= xn exp
(
−a

2
x2 + bx

) ∣∣∣∣
b=0

= xn exp
(
−a

2
x2
)
,

(2.256)

which is exactly what we wanted. Okay, but we still haven’t successfully evalu-
ated the integral yet. To do this, we will look at the original “guiding” equation
again:

ˆ
R
dx exp

(
−a

2
x2 + bx

)
=

√
2π

a
exp

(
b2

2a

)
. (2.257)

Differentiate wrt b n times and setting b = 0 in the end gives(
d

db

)n ˆ
R
dx exp

(
−a

2
x2 + bx

) ∣∣∣∣
b=0

=

√
2π

a

(
d

db

)n
exp

(
b2

2a

) ∣∣∣∣
b=0ˆ

R

(
d

db

)n
dx exp

(
−a

2
x2 + bx

) ∣∣∣∣
b=0

=

√
2π

a

(
d

db

)n
exp

(
b2

2a

) ∣∣∣∣
b=0

. (2.258)

Therefore,

ˆ
R
dxxn exp

(
−a

2
x2
)

=

√
2π

a

n!

(n/2)!(2a)n/2
(2.259)

Note that n here is even. If n is odd then the integral is zero. Next, to correctly
normalize these integrals, we can find the normalization factor simply by

´
R dxx

n exp
(
−a2x

2
)

´
R dx exp

(
−a2x2

) =
n!

(n/2)!(2a)n/2
(2.260)

These higher moments of the Gaussian are called the correlation functions.

So how are these higher moments related to Feynman diagrams? The answer
is given by the combinatoric interpretation of values of the integrals. Suppose
we would like make (n/2) pairs from n distinguishable things. The answer is(

n

n

)(
n− 2

2

)
. . .

(
2

2

)
× 1

(n/2)!
=

n!

2n/2(n/2)!
. (2.261)
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This is not so different from what we just found, except the factor of 1/a. This
is where the physics come in. Observe that if we add in a weight factor of 1/a
each time we make a pair then we get the same thing from the integral. These
factors of 1/a are the propagators!

Anharmonicity in field theory

So far, integrals in free field theory have been Gaussian, meaning we can evalu-
ate them one way or the other using the prescription laid out above. However,
particles don’t interact in this theory because we don’t have “anharmonic” in
the Lagrangian (these make the equation of motion no longer linear).

Revisit the combinator interpretation of the values of the integrals above. If
we associate to each pair of the n things an edge connecting them, then we see
when things are alreay in pairs they don’t interact with our future choices. This
is quite hand-wavy, but the idea is that if the exponent inside the integrand
is quadratic (or can be square-completed) then we can evaluate things exactly.
But what if there are higher order terms, or alternatively anharmonic terms?

Suppose we add only one anharmonic term −(λ/4!)φ4 to our free field theory
and try to evaluate

Z(J) =

ˆ
Dφ exp

(
i

ˆ
d4x

1

2

[
(∂φ)2 −m2φ2

]
− λ

4!
φ4 + J(x)φ

)
. (2.262)

This isn’t so doable anymore! It’s possible, but imagine adding higher order
terms to the Lagrangian!

Feynman diagrams: A baby problem

Let us try to evaluate a simpler version of the integral above:

Z(J) =

ˆ ∞
−∞

dq exp

(
−1

2
m2q2 − λ

4!
q4 + Jq

)
. (2.263)

Here we don’t have a nice trick to complete the square. However, we can use
the exact result obtained earlier with the higher order moments of the Gaussian
integral to try to approximate this integral. The idea is to Taylor expand the
higher order term and turn it into a polynomial in q4 when appropriate:

exp

(
− 1

2!

λ

4!
q4

)
= 1−

(
λ

4!

)
q4 +

1

2!

(
λ

4!

)2

q8 − . . . (2.264)

With this, we get

Z(J) =

ˆ ∞
−∞

dq

[
1−

(
λ

4!

)
q4 +

1

2!

(
λ

4!

)2

q8 − . . .

]
e−

1
2m

2q2+Jq. (2.265)
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Then, we simply integrate term-by term. This we can do because now they
are just q4n moments of the original Gaussian, i.e., each term has the formˆ

R
dq e(−1/2)m2q2+Jqq4n. (2.266)

To bring down a factor of q4n for each term we have to differentiate wrt J 4n
times:

ˆ
R
dq e(−1/2)m2q2+Jqq4n =

ˆ
R
dq

(
d

dJ

)4n

e(−1/2)m2q2+Jq (2.267)

=

(
d

dJ

)4n ˆ
R
dq e(−1/2)m2q2+Jq. (2.268)

Because Z(J) is a sum of such terms, we get

Z(J) =

[
1−

(
λ

4!

)
d4

dJ4
+

1

2!

(
λ

4!

)2
d8

dJ8
− . . .

] ˆ
R
dq e(−1/2)m2q2+Jq (2.269)

But that’s not all, observe that we have just replaced

q4n → d4n

dJ4n
. (2.270)

So it only makes sense that we write

exp

[
− λ

4!

(
d

dJ

)4
]

=

[
1−

(
λ

4!

)
d4

dJ4
+

1

2!

(
λ

4!

)2
d8

dJ8
− . . .

]
. (2.271)

We also know how to evaluate the leftover integral by completing the squares.
So,

ˆ
R
dq e(−1/2)m2q2+Jq =

√
2π

m2
exp

(
J2

2m2

)
. (2.272)

Thus we have successfully evaluated Z(J):

Z(J) = exp

[
− λ

4!

(
d

dJ

)4
]√

2π

m2
exp

(
J2

2m2

)
=

√
2π

m2
e−

λ
4! (

d
dJ )

4

e
J2

2m2

(2.273)

From now on, we will let

Z(J = 0, λ = 0) =
√

2π/m2 ≡ Z(0, 0) (2.274)

We will also define

Z̃ =
Z(J)

Z(J = 0, λ = 0)
= e−

λ
4! (

d
dJ )

4

e
J2

2m2 (2.275)
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From Integrals to Feynman diagrams

Recall from the previous section that

Z̃(J) = e−
λ
4! (

d
dJ )

4

× e
J2

2m2 . (2.276)

By expanding the two exponential we can obtain any term in a double series
expansion of Z(J) in λ and in J :

Z̃(J) =

[
1−

(
λ

4!

)
d4

dJ4
+

1

2!

(
λ

4!

)2
d8

dJ8
− . . .

][
1 +

J2

2m2
+

1

2!

(
J2

2m2

)2

+ . . .

]
(2.277)

Why do we want to this? Because each Feynman diagram can be associated
with a term of certain orders in λ and in J4. Let’s do a few examples.

Find the term with λ and J4: We first notice that all of the powers of
λ’s come from the first exponential. So if we want λ1, we pick

−
(
λ

4!

)
d4

dJ4
(2.278)

from the first exponential. Then, because we want to be left over with J4 after
d4/dJ4 acts on the J4n term from the second exponential, we pick the J8 term
from the exponential, namely

1

4!

(
J2

2m2

)4

. (2.279)

So the term with λ1 and J4 is

−
(
λ

4!

)
d4

dJ4

1

4!

(
J2

2m2

)4

= −
(
λ

4!

)(
1

4!

)(
1

2m2

)4
d4

dJ4
J8 (2.280)

= −
(
λ

4!

)(
1

4!

)(
1

2m2

)(
8!

4!

)
J4 (2.281)

= (−λ)

[
8!

(4!)3(2m2)4

]
J4 (2.282)

Find the term with λ2 and J4: Since we want λ2, we must pick from the
first exponential the term

1

2!

(
λ

4!

)2(
d4

dJ4

)2

. (2.283)
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Since we want J4 in the end, we must pick a J12 in the second exponential,
which is

1

6!

(
J2

2m2

)6

. (2.284)

So the desired term is

1

2!

(
λ

4!

)2(
d4

dJ4

)2
1

6!

(
J2

2m2

)6

= λ2 1

2!(4!)26!(2m2)6

12!

4!
J4 (2.285)

= λ2 12!

2!(4!)36!(2m2)6
J4 (2.286)

Find the term with λ2 and J6: Let us do this last example before getting
some insights into the patterns here. Since we want λ2, we pick from the first
exponential

1

2!

(
λ

4!

)2(
d4

dJ4

)2

. (2.287)

Since we want to be left with J6, we want to start with J6+8 = J14 in the
second exponential

1

7!

(
J2

2m2

)7

. (2.288)

So the desired term is

1

2!

(
λ

4!

)2(
d4

dJ4

)2
1

7!

(
J2

2m2

)7

= λ2 1

2!(4!)27!(2m2)7

14!

6!
J6 (2.289)

= λ2 14!

2!(4!)26!7!(2m2)7
J6 (2.290)

What is the general pattern here? Let the picking and simplifying sink
in a bit, we get the following pattern. Suppose we want a term with λl and Jj

where j must be even otherwise there is no such Jj term. Then we first want
the λl term in the first exponent, which means we want

1

l!

(
λ

4!

)l(
d4

dJ4

)l
. (2.291)

With this, we next want to be left with a Jj , so we need the (4l+ j)th power of
J in the second exponential. So we take

1

[(4l + j)/2]!

(
J2

2m2

) 4l+j
2

. (2.292)
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So the desired term is

1

l!

(
λ

4!

)l(
d4

dJ4

)l
1

(4l + j)!

(
J2

2m2

) 4l+j
2

(2.293)

=
1

l!(4!)l[(4l + j)/2]!(2m2)(4l+j)/2
λl
(
d4

dJ4

)l
J4l+j (2.294)

=
(4l + j)!

l! (4!)l j! [(4l + j)/2]! (2m2)(4l+j)/2
λl Jj (2.295)

Now, the more practice we have the better we get at doing this. It’s not a
surprise we slowly see a pattern. We observe that we can associate a diagram
with each term and codify some rules, which are follow:

1. Diagrams are made of lines and vertices at which 4 lines meet (because
J4 is the principal factor)

2. For each vertex assign a factor of (−λ)

3. For each line assign 1/m2. Note: this goes back to the combinatoric
interpretation.

4. For each external end assign J .

Let’s go through some examples again:

Diagrams for (1/m2)4λJ4: We notice that because there is only 1 λ term,
so we can only have 1 vertex (a vertex is defined as where four lines meet).
We also have only 4 externals ends, because we have J4. We should also have
only 4 lines because we have (1/m2)4. So the following diagrams satisfy these
conditions:

Figure 2.7: From Zee
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Diagrams for ∼ (−λ)2J4/(m2)6: We expect to get 2 vertices, 4 external
ends, and 6 lines. The following diagrams satisfy these conditions:

Figure 2.8: From Zee

Diagrams for ∼ (−λ)2J6/(m2)7: We expect to get 2 vertices, 6 external
ends, and 7 lines. The following diagrams satisfy these conditions:

Of course, we have seen that if we want a term with λl and Jj (where j is
even), i.e., l vertices and j external ends, then we have (4l + j) lines.

Another approach: Wick contraction

Recall that in the baby problem we evaluated this integral

Z(J) =

ˆ ∞
−∞

dq exp

(
−1

2
m2q2 − λ

4!
q4 + Jq

)
(2.296)

by doing a power expansion in the e∼λ term:

exp

(
− 1

2!

λ

4!
q4

)
= 1−

(
λ

4!

)
q4 +

1

2!

(
λ

4!

)2

q8 − . . . (2.297)
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Figure 2.9: From Zee

If please, we can also re-do this problem starting out with a power expansion
in J :

exp (Jq) =

∞∑
s=0

Jsqs

s!
. (2.298)

With this, we can write and define the G(s) coefficients as

Z(J) =

∞∑
s=0

Js

s!

ˆ
R
dq qs exp

(
−1

2
m2q2 − λ

4!
q4

)
≡ Z(0, 0)

∞∑
s=0

Js

s!
G(s) (2.299)

These G(6) coefficients are analogues of Green’s functions in field theory.

To evaluate the integral from here, we sort of repeat what we did earlier,
except now we expand and differentiate under the integral sign with respect to
λ. The coefficients G(s) can then be evaluated by the Wick contraction. We
won’t go into much detail about this for now.

Connected vs. Disconnected

Looking at a few Feynman diagrams generated by our baby problem, we can
see that some of them are connected while some aren’t. For example, diagram
(a) for the (1/m2)4λJ4 is connected, while (b) and (c) aren’t.

Recall our definition of the generating function

Z(J, λ) = Z(J = 0, λ)eW (J,λ) = Z(J = 0, λ)

∞∑
N=0

[W (J, λ)]N

N !
. (2.300)

By definition the term Z(J = 0, λ) consists of diagrams with no external
source J . These diagrams look like loops such as Figure 2.10.
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Figure 2.10: From Zee

So we see that while W (J) is a sum of only connected diagrams, Z contains
both types of diagrams, connected and disconnected. This is why Z is called
the generating function, and W is called the generating function for connected
diagrams.

A child problem: Integrals, Wick contraction & Propagation

Before graduating to full field theory, let us try a slightly more difficult problem
where we want to evaluate the following multiple integral

Z(J) =

ˆ
RN

N∏
i

dqi exp

(
−1

2
q>Aq − λ

4!
q4 + J · q

)
(2.301)

where

q4 =
∑
i

q4
i . (2.302)

Notice that this an N−dimensional problem, and so q are now vectors in some
N−dimensional space, and A is some matrix. We will assume that A plays the
role of some kind metric, which means it is positive definite and symmetric. In
statistics, A is the covariance matrix. In physics, A can carry information about
the metric.

Recall our previous result:

Z(J) =

√
2π

m2
e−

λ
4! (

d
dJ )

4

e
J2

2m2 (2.303)

starting from

Z(J) =

ˆ ∞
−∞

dq exp

(
−1

2
m2q2 − λ

4!
q4 + Jq

)
. (2.304)
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How do we generalize our result from the baby problem to this one in higher
dimensions? To do this, we must first try an easier n−dimensional “Gaussian
integral” such as

I =

ˆ N∏
i

dxi exp

(
−1

2
x>Ax

)
(2.305)

where A is again an positive definite and symmetric matrix (i.e., metric). We
will first diagonalize A with an orthogonal matrix M :

D = MAM−1 = diag(λ1, λ2, . . . , λN ) (2.306)

where λi are the eigenvalues of A. With this,

det(A) = det(D) =

N∏
i

λi (2.307)

The goal of doing this is so that we can “de-couple” the x’s in the exponent,
by which we can bring the product sign outside of the integral. Once the prod-
uct sign is outside of the integral, we will simply be left with a product of
1-dimensional Gaussian integrals.

We will also let

z = M>x = (x>M)>. (2.308)

The Jacobian of this change of basis is just the identity because det(M) = 1, so
we have

I =

ˆ N∏
i

dzi exp

(
−1

2
z>Dz

)
(2.309)

=

N∏
i

ˆ
dzi exp

(
−1

2
λiz

2
i

)
︸ ︷︷ ︸√

2π/λi

D is diagonal (2.310)

=

N∏
i

√
2π

λi
(2.311)

=

√
(2π)N

det(A)
since det(A) =

N∏
i

λi. (2.312)

Nice! What if we added a source term?

IJ =

ˆ N∏
i

dxi exp

(
−1

2
x>Ax+ J>x

)
(2.313)
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Let x = y +A−1J , then because A = A>, we must have that

−1

2
x>Ax+ J>x = −1

2
(y +A−1J)>A(y +A−1J) + J>(y +A−1J)

= −1

2

[
y>Ay + 2J>y + J>A−1AA−1J

]
+ J>y + JA−1J

= −1

2
y>Ay +

1

2
J>A−1J. (2.314)

Thus,

IJ =

ˆ N∏
i

dxi exp

(
−1

2
y>Ay +

1

2
J>A−1J

)
(2.315)

= exp

(
1

2
J>A−1J

)ˆ N∏
i

dxi exp

(
−1

2
y>Ay

)
(2.316)

=

√
(2π)N

det(A)
exp

(
1

2
J>A−1J

)
(2.317)

Let us now look back to the child problem. What we just did here with
n−dimensional Gaussian integrals suggests expanding in λ inside the integral
first:

Z(J) =

ˆ
RN

N∏
i

dqi exp

(
−1

2
q>Aq − λ

4!
q4 + J>q

)

=

ˆ
RN

N∏
i

dqi exp

(
−1

2
q>Aq + J>q

)
∞∑
j=0

[
− λ

4!q
4
]j

j!


=

ˆ
RN

N∏
i

dqi exp

(
−1

2
q>Aq + J>q

){
1− λ

4!
q4 +

1

2!

(
− λ

4!
q4

)2

+ . . .

}
(2.318)

To evaluate this integral, we integrate term-by-term, using the Feynman’s
differentiating under the integral sign. But we have first be very careful here
because we’re dealing with vectors. Recall that

q4 =
∑
i

q4
i . (2.319)

Every factor of ∂/∂Ji brings down a factor of qi. So, in order to get any q4

term, we need

∑
i

(
∂

∂Ji

)4

. (2.320)
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Thus

exp

(
−λq4

4!

)
∼ exp

−λ
4!

(∑
i

∂

∂Ji

)4
 . (2.321)

Therefore, from integrating term-by-term by differentiating under the integral
sign, then adding the terms up together we get that

Z(J) =

1 +

−λ
4!

(∑
i

∂

∂Ji

)4
+

1

2!

−λ
4!

(∑
i

∂

∂Ji

)4
2

+ . . .


×
ˆ
RN

N∏
i

dqi exp

(
−1

2
q>Aq + J>q

)

= exp

−λq4

4!

(∑
i

∂

∂Ji

)4
× [ˆ

RN

N∏
i

dqi exp

(
−1

2
q>Aq + J>q

)]

=

√
(2π)N

det(A)
exp

−λq4

4!

(∑
i

∂

∂Ji

)4
 exp

[
1

2
J>A−1J

]
, (2.322)

where we of course have just evaluated the last integral by a change of variables.
With this result, we can write more compactly

Z(J) =

√
(2π)N

det(A)
e−(λ/4!)

∑
i(∂/∂Ji)

4

e
1
2J
>A−1J (2.323)

Alternatively, we can first expand in powers of J first, before in powers of
λ. Let’s start with the expansion in J :

Z(J) =

ˆ
RN

N∏
i

dqi exp

(
−1

2
q>Aq − λ

4!
q4 + J>q

)

=

ˆ
RN

N∏
i

dqi exp

(
−1

2
q>Aq − λ

4!
q4

){ ∞∑
s=0

(J>q)s

s!

}

=

ˆ
RN

N∏
i

dqi exp

(
−1

2
q>Aq − λ

4!
q4

)
∞∑
s=0

[∑N
ls

(Jlsqls)
]s

s!


=

∞∑
s=0

N∑
l1=1

· · ·
N∑
ls=1

1

s!
Jl1 . . . Jls

ˆ
RN

(
N∏
i

dqi

)
exp

(
−1

2
q>Aq − λ

4!
q4

)
ql1 . . . qls

≡ Z(0, 0)

∞∑
s=0

N∑
l1=1

· · ·
N∑
ls=1

1

s!
Jl1 . . . JlsG

(s)
l1...ls

(2.324)
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where we defined the Green’s function coefficients such that

Z(0, 0)G
(s)
l1...ls

≡
ˆ
RN

(
N∏
i

dqi

)
exp

(
−1

2
q>Aq − λ

4!
q4

)
ql1 . . . qls (2.325)

One main difference between the child problem and the baby problem is that
the Green’s function coefficients in the child problem have indices. What this
means is that we have propagation from here to there. Also, notice that these
coefficients with an odd number of indices are zero, since the integrand in these
cases are odd functions.

To see what these G coefficients are we should try to evaluate a few illu-
minating examples. Let us start with the “2-point Green’s function” to zeroth
order in λ. The strategy to evaluate this integral is to put back a J into the
exponent and differentiate in order to get the q terms in the integrand, then set
J = 0. We note that every factor of ∂/∂Jls gives a factor of qls . Let’s proceed:

G
(2)
l1l2

(λ = 0) =
1

Z(0, 0)

ˆ
RN

(
N∏
i

dqi

)
exp

(
−1

2
q>Aq

)
ql1ql2

=
1

Z(0, 0)

ˆ
RN

(
N∏
i

dqi

)
exp

(
−1

2
q>Aq + J>q

)
ql1ql2

∣∣∣∣
J=0

=
1

Z(0, 0)

ˆ
RN

(
N∏
i

dqi

)
∂

∂Jl1

∂

∂Jl2
exp

(
−1

2
q>Aq + J>q

) ∣∣∣∣
J=0

=
1

Z(0, 0)︸ ︷︷ ︸
∂

∂Jl1

∂

∂Jl2

ˆ
RN

(
N∏
i

dqi

)
exp

(
−1

2
q>Aq + J>q

)
︸ ︷︷ ︸

∣∣∣∣
J=0

=

(√
(2π)N

det(A)

)−1

∂

∂Jl1

∂

∂Jl2

(√
(2π)N

det(A)

)
exp

(
1

2
J>A−1J

) ∣∣∣∣
J=0

=
∂

∂Jl1

∂

∂Jl2
exp

(
1

2
J>A−1J

) ∣∣∣∣
J=0

=

{
∂

∂Jl1

∂

∂Jl2

(
1

2
J>A−1J

)}
exp

(
1

2
J>A−1J

) ∣∣∣∣
J=0

=
∂

∂Jl1

∂

∂Jl2

(
1

2
J>A−1J

)
=

1

2

(
A−1
l1l2

+A−1
l1l2

)
= A−1

l1l2
(2.326)

where we have used the fact that A−1 is symmetric. The last equality follows
from the fact that because we have J and J> and the derivatives ∂/∂l1 and
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∂/∂l2 , which together annihilate all other matrix elements of A−1 except A−1
l1l2

and A−1
l2l1

, which are equal because A−1 is symmetric just as A. We thus have
an important result:

G
(2)
ij (λ = 0) = A−1

ij = A−1
ji (2.327)

The matrix element A−1
ij describes propagation from i→ j.

What about a “4-point Green’s function” to order λ?

G
(4)
l1l2l3l4

=
1

Z(0, 0)

ˆ
RN

(
N∏
i

dqi

)
exp

(
−1

2
q>Aq

)
ql1ql2ql3ql4

[
1− λ

4!
q4 + o(λ2)

]

=
1

Z(0, 0)

ˆ
RN

(
N∏
i

dqi

)
e−

1
2 q
>Aqql1ql2ql3ql4

[
1− λ

4!

∑
n

q4
n + o(λ2)

]
.

(2.328)

Here, we note that because A−1 is a matrix, it can only carry two indices
at a time. So, to evaluate the first part of this integral (the part multiplied by
λ0), we do it with two q terms at a time. By inspection, we get a product of
two matrix elements of A−1. There are six ways to pick 2 things out of 4, but
because A−1 symmetric, we are left with three terms. The factor of 1/2 from
the exponent comes down to annihilate the factors of 2 in each of the three
terms.

1

Z(0, 0)

ˆ
RN

(
N∏
i

dqi

)
e−

1
2 q
>Aqql1ql2ql3ql4 = A−1

l1l2
A−1
l3l4

+A−1
l1l3

A−1
l2l4

+A−1
l1l4

A−1
l3l2

.

(2.329)

What about the λ/4! integral? Well first notice that it by itself is a sum. So it
suffices just to evaluate it for n = k. Consider:

1

Z(0, 0)

ˆ
RN

(
N∏
i

dqi

)
e−

1
2 q
>Aqql1ql2ql3ql4

[
− λ

4!
q4
k

]
(2.330)

=
1

Z(0, 0)

(
−λ
4!

) ˆ
RN

(
N∏
i

dqi

)
e−

1
2 q
>Aqql1ql2ql3ql4qkqkqkqk. (2.331)

Now, we observe that ql1 has four choices of qk’s to contract with, ql2 has
three choices of qk’s to contract with, and so on, producing a factor of 4!. This
is exactly why we originally define the λ term along with the factor of 1/4!.
They conveniently cancel and leave us with

1

Z(0, 0)

(
−λ
4!

)ˆ
RN

(
N∏
i

dqi

)
e−

1
2 q
>Aqql1ql2ql3ql4

∑
n

q4
n

= − λ
∑
n

A−1
l1n
A−1
l2n
A−1
l3n
A−1
l4n

+ . . . (2.332)
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where the overall constants are all canceled out in the end. We are also leav-
ing out the contractions of qn’s with themselves. This is because these self-
contractions give us the first three terms (involving l1, l2, l3, l4) multiplied by
A−1
nnA

−1
nn . We will simply deal with this later.

With that said, the 4-point Green’s function is

G
(4)
l1l2l3l4

= A−1
l1l2

A−1
l3l4

+A−1
l1l3

A−1
l2l4

+A−1
l1l4

A−1
l3l2

− λ
∑
n

A−1
l1n
A−1
l2n
A−1
l3n
A−1
l4n

+ · · ·+O(λ2) (2.333)

The first three terms describe one excitation propagating from l1 to l2 and
another propagation from l3 to l4, plus the two possible permutations on this
history. The order λ term tells us that four excitations, propagating from l1
to n, l2 to n, l3 to n, nd l4 to n, meet at n and interact with an amplitude
proportional to λ, where n anywhere on the lattice.

Perturbative field theory

Now that we’re done with the baby and child problems, let us turn to the
integral we’ve been wanting to evaluate:

Z(J) =

ˆ
D[φ] exp

(
i

ˆ
d4x

1

2

[
(∂φ)2 −m2φ2

]
− λ

4!
φ4 + J(x)φ

)
(2.334)

There are a few key differences between this integral and the ones in the
baby and child problems. First, there is a factor of i in the exponent. Sec-
ond, we no longer have a single variable y or a single vector q but instead have
φ(x), which is a function of a continuous four-vector x. Third, the source J is
also a function of a continuous variable x. This is very different from what we
had before where we were dealing with points on a lattice and things are discrete.

However, it turns out that the structure of things are quite the same. Re-
member that in the child problem if we first expand in λ, followed by in J , then
we have

Z(J) =

√
(2π)N

det(A)
e−(λ/4!)

∑
i(∂/∂Ji)

4

e
1
2J
>A−1J . (2.335)

In our new problem, things are continuous, so we simply replace sums by Rie-
mann integrals.

If we again start by expanding in the λ term, then

Z(J) = exp

[
−iλ
4!

ˆ
d4w

(
δ

iδJ(w)

)4
] ˆ

Dφei
´
d4x 1

2 [(∂φ)2−m2φ2]+J(x)φ.

(2.336)
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Now, recall that with

Z̃J =

ˆ
D[φ] exp

{
i

ˆ
d4x

[
1

2
∂µφ∂

µφ− 1

2
m2φ2 + J(x)φ(x)

]}
, (2.337)

integrating by parts in the integrand in the exponent:ˆ
d4x ∂µ [φ∂µφ] =

ˆ
d4x ∂µφ∂

µφ+

ˆ
d4xφ�φ (2.338)

φ∂µφ

∣∣∣∣∞
−∞

=

ˆ
d4x ∂µφ∂

µφ+

ˆ
d4xφ�φ (2.339)

0 =

ˆ
d4x ∂µφ∂

µφ+

ˆ
d4xφ�φ (2.340)

which gives

Z =

ˆ
D[φ] exp

{
i

ˆ
d4x

[
−1

2
φ(� +m2)φ+ J(x)φ(x)

]}
. (2.341)

Also, remember that earlier in this section we called

A = −(� +m2) (2.342)

and defined the propagator D as the inverse of A such that

−(� +m2)D(x− y) = δ4(x− y). (2.343)

Therefore, we must have that

Z̃J =

ˆ
D[φ] exp

{
i

ˆ
d4x

[
1

2
φAφ+ J(x)φ

]}
= exp

{
−i
2
JA−1J

}
Gaussian integral, remember?

= exp

{
− i

2

¨
d4xd4y J(x)D(x− y)J(y)

}
by definition. (2.344)

With this, we have

Z(J) = Z(0, 0)e−iλ/4!
´
d4w [δ/iδJ(w)]4e(−i/2)

˜
d4xd4y J(x)D(x−y)J(y) (2.345)

And thus the structure of the answer is exactly the same as before.

Next, let us look at how the form of the propagator has changed. The the
baby problem, the propagator is essentially 1/M2. In the child problem, the
propagator is given by A−1. Here, however, the propagator in momentum space
is given by

D(x− y) =

ˆ
d4k

(2π)4

eik·(~x−~y)

k2 −m2 + iε
(2.346)
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which we should quite familiar with at this point. To remember how this prop-
agator is constructed, simply think of D(x − y) as the inverse of −(� + m2).
Write down the equation that says this that involves the delta function, then
look at the Fourier transform of both sides. Then, use the relationship between
D(x−y) and its transform D(k) to work out what D(x−y) ought to be. Please
refer to the beginning of this section for details.

We also know that J(x) corresponds to sources and sinks. So, if we expand
Z(J) as a series of J first, the powers of J would indicate the number of particles
involved in the process. This is why in particle physics it makes sense to specify
the power of J . So, let us start evaluating the integral by an expansion first in
J . From

Z(J) =

ˆ
D[φ] exp

(
i

ˆ
d4x

1

2

[
(∂φ)2 −m2φ2

]
− λ

4!
φ4 + J(x)φ

)
(2.347)

we get from expanding in J :

Z(J) =

ˆ
D[φ] exp

(
i

ˆ
d4x

1

2

[
(∂φ)2 −m2φ2

]
− λ

4!
φ4

)
exp

(
i

ˆ
d4xJ(x)φ

)
=

ˆ
D[φ] exp

(
i

ˆ
d4x

1

2

[
(∂φ)2 −m2φ2

]
− λ

4!
φ4

){ ∞∑
s=0

[
i
´
d4xJ(x)φ

]s
s!

}

=

∞∑
s=0

is

s!

ˆ
dx1 . . . dxsJ(x1) . . . J(xs)×

×
ˆ

D[φ] exp

(
i

ˆ
d4x

1

2

[
(∂φ)2 −m2φ2

]
− λ

4!
φ4

)
φ(x1) . . . φ(xs)

=

∞∑
s=0

is

s!

ˆ
dx1 . . . dxsJ(x1) . . . J(xs)

[
Z(0, 0)G(s)(x1, . . . , xs)

]

= Z(0, 0)

∞∑
s=0

is

s!

ˆ
dx1 . . . dxsJ(x1) . . . J(xs)G

(s)(x1, . . . , xs)

where we define

Z(0, 0)G(s)(x1, . . . , xs) =

ˆ
D[φ]ei

´
d4x [ 1

2 (∂φ)2−m2φ2]− λ
4!φ

4

φ(x1) . . . φ(xs)

(2.348)

and of course

Z(0, 0) ≡
ˆ

D[φ]ei
´
d4x 1

2 [(∂φ)2−m2φ2] (2.349)

Just as before, let us look at the 2-point Green’s function:

G(2)(x1, x2) ≡ 1

Z(0, 0)

ˆ
D[φ]ei

´
d4x 1

2 [(∂φ)2−m2φ2]− λ
4!φ

4

φ(x1)φ(x2). (2.350)
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And the 4-point Green’s function is

G(4)(x1, x2, x3, x4) ≡ 1

Z(0, 0)

ˆ
D[φ]ei

´
d4x 1

2 [(∂φ)2−m2φ2]− λ
4!φ

4

φ(x1)φ(x2)φ(x3)φ(x4).

(2.351)

We can generate more at will, of course (hence why Z(J) is called the generating
function). Because the propagators are translation invariant, G(2)(x1, x2) only
depends on x1−x2, but not explicitly x1 and x2. Similarly, the 4-point Green’s
function only depends on the spacings between the xi’s. For λ = 0, we see that
the 2-point Green’s function reduces to iD(x1 − x2). We can show this first
generally by recalling that

Z(J) ≡ Z(0, 0)Z(0, 0) exp

{
− i

2

¨
d4x1d

4x2 J(x1)D(x1 − x2)J(x2)

}
(2.352)

which comes from the very beginning when we defined generating function and
propagators in terms of the transforms, etc. What we will do now is do a power
series expansion:

Z(J)

Z(0, 0)
=

∞∑
s=0

1

s!

(
−i
2

)2 ˆ
d4x1 . . . d

4
x2s
J(x1) . . . J(x2s)

×D(x1 − x2) . . .D(x2n−1 − x2x) (2.353)

where only even powers of J can appear. Now, compare this to the equation we
have just gotten:

Z(J)

Z(0, 0)
=

∞∑
s=0

is

s!

ˆ
dx1 . . . dxsJ(x1) . . . J(xs)G

(s)(x1, . . . , xs). (2.354)

By reading off the correct terms, we have roughly that

i2n

(2n)!
G(2n)(x1, . . . , x2n) ∼ 1

n!

(
−i
2

)n
[D(x1 − x2) . . .D(x2n−1 − x2n)] (2.355)

where ∼ simply denotes that we’re close up to symmetrization. However, for
s = 2 ⇐⇒ n = 1, we have exactly that

−1

2!
G(2)(x1, x2) =

1

1!

(
−i
2

)
D(x1 − x2). (2.356)

This means

G(2)(x1, x2) = iD(x1, x2) (2.357)

as desired.
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The relationship between the Green’s function and the propagators D will
be explored in the following subsections as we better understand Feynman rules
and Feynman diagrams.

We observe that while D(x1 − x2) describes the propagation of a particle
between x1 and x2 in the absence of interaction (we have pointed out this
fact before), G(2)(x1, x2), which is called the correlation function, describes the
propagation of a particle between x1 and x2 with interaction. This nomen-
clature possibly comes from the resemblance between G(s) and higher moments
of the Gaussian, which are called correlation functions. This resemblance is
reflected in Eq (2.350). We see that this integral looks like a second moment of
the Gaussian.

To summarize, we said that G(2) is a correlation function describing a prop-

agation with interaction. In general, G
(4)
ijkl, say, describes the scattering of par-

ticles.

In some sense, it seems that we can do QFT in two ways:

1. Schwinger: Starting with expansion in λ, then expand in J .

2. Wick: Starting with expansion in J , then expand in λ.

But Feynman diagrams capture both approaches by representing terms in
the final double expansion.

Collision between particles

In this section, we will set up two sources and two sinks to watch two particles
(mesons) scatter off each other. Here’s the setup:

It suffices to find in Z a term containing J(x1)J(x2)J(x3)J(x4). But we
notice that this is just G(4)(x1, x2, x3, x4).

Let’s start from the Wick way first. Recall that G(4) is given by

G(4)(x1, x2, x3, x4) =
1

Z(0, 0)

ˆ
D[φ]ei

´
d4x 1

2 [(∂φ)2−m2φ2]− λ
4!φ

4

φ(x1)φ(x2)φ(x3)φ(x4).

(2.358)

Expanding in λ gives

G(4)(x1, x2, x3, x4) =
1

Z(0, 0)

ˆ
D[φ]ei

´
d4x 1

2 [(∂φ)2−m2φ2]

× φ(x1)φ(x2)φ(x3)φ(x4)

∞∑
s=0

(
− iλ4!

´
d4wφ4(w)

)s
s!

.

(2.359)
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Figure 2.11: From Zee

To first order, i.e., s = 1, we have

G(4)(x1, x2, x3, x4) =
1

Z(0, 0)

(
−iλ
4!

)ˆ
d4w

ˆ
D[φ]ei

´
d4x 1

2 [(∂φ)2−m2φ2]

× φ(x1)φ(x2)φ(x3)φ(x4)φ4(w). (2.360)

By staring at this integral for a bit we recognize that it is a more complicated
case of the high-moment Gaussian integral we have encountered before in Eq
(2.332), where the sum in simply replaced by an integral, and the overall integral
is multiplied by a factor of i. Once again, φ(x1) has four choices of φ(w) to
contract with, and so on, so that in the end the factor of 4! is canceled. Once
the Feynman’s trick to differentiate under the integral sign is done correctly, we
will get

G(4)(x1, x2, x3, x4) =
−iλ
Z(0, 0)

ˆ
d4wD(x1 − w)D(x2 − w)D(x3 − w)D(x4 − w)

(2.361)

which not surprisingly completely shares the structure of Eq (2.332). Now,
compare this to what we found when we tried to show G(2) = iD, we see that
we wouldn’t be quite right to just set G = products of D. What we see here
is that G is a summation over all possible products of Diw over all w. This is
the accurate relationship between the Green’s functions and the propagators.

It follows from this that G
(2)
ab = iDab.
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What about the Schwinger way where we first expand in J? Well, we start
out with

Z(J) = Z(0, 0)e−iλ/4!
´
d4w [δ/iδJ(w)]4e(−i/2)

˜
d4xd4y J(x)D(x−y)J(y) (2.362)

and replace the first exponential with only first order terms in J . Once this is
done, we get

Z(J) = Z(0, 0)

[
−
(
iλ

4!

)ˆ
d4w

(
δ

δJ(w)

)4
]
e(−i/2)

˜
d4xd4y J(x)D(x−y)J(y).

(2.363)

Next, we expand the exponential and find the term with the fourth order of D
(since we’re looking for a term describing four propagations)

e(−i/2)
˜
d4xd4y J(x)D(x−y)J(y) =

∞∑
s=0

[(−i/2)
˜
d4xd4y J(x)D(x− y)J(y)]s

s!
.

(2.364)

The fourth order term is

1

4!

(
−i
2

)4 [¨
d4xd4y J(x)D(x− y)J(y)

]4

. (2.365)

Thus the term in first order λ and fourth order D is[
−
(
iλ

4!

)ˆ
d4w

(
δ

δJ(w)

)4
](

1

4!

)(
−i
2

)4 [¨
d4xd4y J(x)D(x− y)J(y)

]4

.

(2.366)

After some cleaning up the algebra and renaming we get

∼ iλ
ˆ
w

(
δ

δJ(w)

)4

ˆ
(8)

DaeDbfDcgDdhJaJbJcJdJeJfJgJh (2.367)

where the very big integral denotes 8 integrals; Dij ≡ D(xi − xj); J(xa) = Ja;´
a

=
´
d4xa.

We notice that the four [δ/δJ(w)]’s will hit the J ’s of course. The δ/δJ(w)
acts like a delta function:

δ

δJ(w)
Ja = δ(a− w). (2.368)

So, for example.

δ

δJ(w)

ˆ
DaeJe =

ˆ
Daeδ(e− w)Je = Daw. (2.369)
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We can write all this out, but in the end not all terms will be of interest of us.
In particular, there will be three terms, two of which are disconnected (so the
Dij ’s don’t share any common xi). The only connected term is:

∼ −iλ
ˆ
w

˘
DawDbwDcwDdwJaJbJcJd (2.370)

where we have reduced the number of integrals because of the delta function.

Okay. Why did we do all of this? The goal here is to see two particles
(mesons) created by some localized source, scatter off each other, and disappear
into localized sinks. So, if we set the source and sinks to be delta functions:

Ji = δ(x− xi), x = 1, 2, 3, 4 (2.371)

then we have

− iλ
ˆ
w

˘
DawDbwDcwDdwJaJbJcJd (2.372)

= iλ

ˆ
w

˘
DawDbwDcwDdwδ(1)δ(2)δ(3)δ(4) (2.373)

= −iλ
ˆ
w

D1wD2wD3wD4w (2.374)

This is exactly what we found in Eq (2.361), up to some constants we haven’t
accounted for of course.

What does it all mean? The result is this: 2 particles from x1 and x2

propagate to the spacetime point w (every possible w), with amplitude D(x1 −
w)D(x2 − w), scatter with amplitude −iλ, then propagate from w to x3 and
x4 with amplitude D(x3 − w)D(x4 − w). The integration over all spacetime´
w
≡
´
d4w just means that the propagation to w could have been anywhere.

This comes back to the child problem!

Figure 2.12: From Zee
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Feynman diagrams: The rules

So what are the rules for Feynman diagrams? Do we have to do all this inte-
gration and expansion every time to calculate the Green’s function/correlation
function? I think it’s clear at this point a lot we have done so far has been by
analogy: we begin to form associations between objects such as q → φ, sum →
integral, and so on. What are the underlying rules here? What is the relation-
ship between Feynman diagrams in position (spacetime) space and momentum
space?

Sometimes it is easier for us to go pass to momentum space. Hypothetically,
a particle with momentum k1 and a particle with momentum k2 collide and
scatter, emerging with momentum k3 and k4. Each spacetime propagator has
the form

D(xa − w) = F [D(ka)](xa) =

ˆ
d4ka
(2π)4

e±ika(xa−w)

k2
a −m2 + iε

(2.375)

where F denotes the Fourier transform of course and the sign assignment to ka
can be made arbitrary because the “volume” element always corrects for that.
Thus the overall G(4) (or the correlation function) up to leading constants has
the form:

−iλ
ˆ
w

D1wD2wD3wD4w ∼
ˆ
d4w exp (−i(k1 + k2 − k3 − k4)) (2.376)

= (2π)4δ(4)(k1 + k2 − k3 − k4). (2.377)

So, the fact that the interaction can occur anywhere in spacetime translate to
conservation of momentum:

k1 + k2 = k3 + k4. (2.378)

So we have Feynman diagrams for both position and momentum space. Space-

Figure 2.13: From Zee
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time Feynman diagrams are just literal pictures of what happened. For mo-
mentum space Feynman diagrams, here are the rules to calculate the Green’s
function for a given process:

1. Draw a Feynman diagram of the process.

2. Label each line with a momentum k and associate with it the propagator

D(k) =
i

k2 −m2 + iε
. (2.379)

Note that we are in momentum space, so the propagator is just this.

3. Associate with each interaction vertex (where four lines meet) the coupling

−iλ and 2π4δ(4)

∑
i

ki −
∑
j

kj

 , (2.380)

forcing the sum of momenta
∑
i ki coming into the vertex to be equal to

the sum of momenta
∑
j kj going out of the vertex. (Note that the act of

associating λ to an interaction vertex is exactly what we did in the baby
problem.)

4. Momenta associated with internal lines are to be integrated over with the
measure d4k/(2π)4, where k denotes the internal/intermediate momen-
tum. Incidentally, this corresponds to the summation over intermediate
states in ordinary perturbation theory.

5. We have to be careful about symmetry factors. They are the analogs of
those numerical factors in the baby problem. As a result, some diagrams
are to be multiplied by a symmetry factor such as 1/2. These come from
various combinatorial factors counting the different ways in which the
δ/δJ ’s can hit the J ’s in the multiple integral like (2.367).

6. We also do not associate a propagator with external lines.

7. A delta function for overall momentum conservation is understood.

For example, we can try the diagram we just saw:
Applying the rules, we obtain

(−iλ)(2π)4δ(4)(k1 + k2 − k3 − k4)

4∏
a=1

(
i

k2
a −m2 + iε

)
. (2.381)

The big multiplicative factor is common to all diagrams in which two mesons
scatter into two mesons. So we will just assume it is there and ignore that it
is there. This procedure is called “amputating external legs.” We also have
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Figure 2.14: From Zee

that in real experiments k2
a = m2 since the momentum and mass are equivalent

when c = 1. There are some technical things which we will deal with later. We
also see that because momentum must be conserved, we shouldn’t worry too
much about the delta function either. So same with the other factor, we will
just assume it’s there and don’t write it.

With these rules, the amplitude we obtain is denoted byM. For the diagram
above,

M = −iλ. (2.382)

Birth of particles

In this section we will describe how two colliding mesons can produce four
mesons.

The process above can occur in λ2 perturbation theory. Let us use Feyn-
man’s rules to calculate the Green’s function/correlation function G for this
process.

First, the Feynman diagram is already given to us. Good. We would like to
calculate the Green’s function associated with this diagram.

Second, there are 6 external vertices, so we drop the factor

6∏
a=1

i

k2
a −m2 + iε

, (2.383)

keeping only the propagator associated with the one internal line, which is

i

q2 −m2 + iε
(2.384)
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Figure 2.15: From Zee

Third, we associate with each interaction vertex a −iλ. Since there are two
of these, we will have a factor of (−iλ)2. Next, at the lower vertex we have a
factor of (2π)4δ(4) (k1 + k2 − p− k3). At the higher vertex we have a factor of
(2π)4δ(4) (q − k4 − k5 − k6). This leaves us with the integrand:

(−iλ)2(2π)4δ(4) (k1 + k2 − p− k3) (2π)4δ(4) (q − k4 − k5 − k6) . (2.385)

Fourth, we integrate the whole term over with the measure dp/(2π)4, since
p is the internal momentum here

(−iλ)2

ˆ
d4q

(2π)4

i

q2 −m2 + iε
(2π)4δ(4) (k1 + k2 − p− k3)

×(2π)4δ(4) (q − k4 − k5 − k6) . (2.386)

Integrals involving delta functions are very easy to do. We simply take q =
k4 + k5 + k6. We should get

(−iλ)2 i

(k4 + k5 + k6)2 −m2 + iε
(2π)4δ(4)(k1 + k2 − k3 − k4 − k5 − k6).

(2.387)

Finally, the delta function for overall momentum conservation is understood,
so

M = (−iλ)2 i

(k4 + k5 + k6)2 −m2 + iε
(2.388)

is our answer.



2.3. QUANTUM FIELD THEORY & THE PATH INTEGRAL 173

Cost of not being real

So what is this relativistic 4-momentum q = k4 + k5 + k6? It is the momen-
tum associated with the virtual particle! We notice that (k4 + k5 + k6)2 is not
necessarily m2, as it would have to be if the particle were real. The farther
the momentum of the virtual particle is from the mass shell m2 the smaller the
amplitude, from Eq (2.388). This makes good sense as the “cost of not being
real.”

We can in fact compute Eq (2.388) up to some delta functions and multi-
plicative factors, just to make sure we understand how the path integral works.
But we won’t worry about that for now since we have been quite detailed in the
previous section. It would be a very good but rather time-consuming exercise.

Loops and a first look at divergence

Now, recall from the baby problem that we have both loop and tree diagrams.
Loop diagrams are associated with at least a λ but no J . It is quite similar here
in the actual problem. Consider the following Feynman diagram:

Figure 2.16: From Zee

We see that there are 2 internal vertices where 4 lines cross. So we get a
factor of (−iλ)2. We also have 2 factors of internal momentum, after taking
into account two delta functions for k:

i

k2 −m2 + iε
and

i

(k1 + k2 − k)2 −m2 + iε
. (2.389)

There is a symmetry factor of 1/2, since there are two ways this process can
occur. We also have some extra factors of (2π)4 but we will eventually drop
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then in the end with one leftover delta function. So the Green’s function up to
some factor is

1

2
(−iλ)2

ˆ
d4k

(2π)4

i

k2 −m2 + iε

i

(k1 + k2 − k)2 −m2 + iε
. (2.390)

This integral blows up only if one of the integrals blow up, i.e., the virtual
particle is closest to being real. This is also a cost of not being real.

But notice that for large k, the integrand goes as 1/k4, which means the
integral diverges. This is no good! We will come back to this later.

Success comes with practice. The more we calculate Feynman diagrams the
better we get at doing them by inspection. Here is another example. I won’t go
into detail what the steps involved are, but we can convince ourselves that the
Green’s function associated with the following Feynman diagram

Figure 2.17: From Zee

up to symmetry factors and other factors that we don’t write down is

(−iλ)4

ˆ
d4p

(2π)4

d4q

(2π)4

d4r

(2π)4

i

p2 −m2 + iε

i

(k1 + k2 − p)2 −m2 + iε

× i

q2 −m2 + iε

i

(p− q − r)2 −m2 + iε

i

r2 −m2 + iε

i

(k1 + k2 − r)2 −m2 + iε
(2.391)



2.3. QUANTUM FIELD THEORY & THE PATH INTEGRAL 175

Vacuum fluctuations

Let us revisit the self-interaction term we neglected in the full expression

iλ

ˆ
w

(
δ

δJ(w)

)4

ˆ
(8)

DaeDbfDcgDdhJaJbJcJdJeJfJgJh (2.392)

for the Green’s function in first order of λ. Recall that we only kept terms
without DwwDww when the δ/δJ(w) could have hit Jc, Jd, Jh, Jg, resulting in

−iλ
˘

DaeDbfJaJbJeJf
(ˆ

w

DwwDww
)
. (2.393)

How exactly does this happen? Well,

δ

δJ(w)
Jj = δ(xj − w), (2.394)

setting w → c, d, g, h, creatingDwwDww. In this case, the coefficient of J(x1)J(x2)J(x3)J(x4)
us then

D13D24(−iλ)

ˆ
w

DwwDww (2.395)

plus other terms by permuting. Because the subscripts of D13 and D24 don’t
overlap (obviously), we get disconnected diagrams. Also, because we have
DwwDww, we also get a self-interaction. The associated spacetime Feynman
diagram is then

Figure 2.18: From Zee
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Let’s describe the underlying physical process: The source at x1 produces
a particle that propagates freely without any interaction to x3, where it disap-
pears. A similar thing happen to a particle starting at x2 and ending at x4.
These two particles don’t interact (disconnected). Now, somewhere off at the
point w, which could really be anywhere, there was an interaction with ampli-
tude −iλ. This is known as a vacuum fluctuation.

Now, when quantum mechanics and special relativity comes together, par-
ticles inevitably pop in and out of the vacuum. They could also even interact
before vanishing again into the vacuum. From the figure, we see that in the far
past, the universe has no particles. Then there are two, then four, then two,
then none. We will deal with these fluctuations in better details later.

Note that we have seen vacuum fluctuations in the Feynman diagrams in
our baby and child problems. We just didn’t talk about them!
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2.3.7 Canonical Quantization

Heisenberg & Dirac

Consider a classical Lagrangian for a single particle

L =
1

2
q̇2 − V (q) (2.396)

setting the mass to 1. The canonical momentum is defined by

p ≡ δL
δq̇
. (2.397)

The Hamiltonian is then given by

H = pq̇ − L =
p2

2
+ V (q). (2.398)

In the Heisenberg formulation, position q(t) and momentum p(t) are pro-
moted to operators which follow the commutation relations:

[p, q] = −i (2.399)

where we have set ~ = c = 1. Operators evolve in time according to Heisenberg’s
equation of motion

dp

dt
= i[H, p] = −∂qV (q) and

dq

dt
= i[H, q] = p (2.400)

where we have assumed these operators are not explicitly time-dependent.

Any operator O constructed out of p, q evolves according to

O(t) = eiHtO(0)e−iHt. (2.401)

In particular, consider the following operator:

a ≡ 1√
2w

(wq + ip) (2.402)

defined with some parameter w. From the commutation relations between q
and p, we have that

[a, a†] = 1 (2.403)

The evolution of this operator is given by

da

dt
= i

[
H, 1√

2w
(wq + ip)

]
= −iw

2

(
ip+

1

w
V ′(q)

)
(2.404)
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The a operator is called the lowering operator, defined such that

a |0〉 = 0 (2.405)

In the special case of the harmonic oscillator, V (q) = w2q2/2, we have that

da

dt
= −iwa (2.406)

L =
1

2
q̇2 − 1

2
w2q2 (2.407)

H =
1

2
(p2 + w2q2) = w

(
a†a+

1

2

)
(2.408)

[p, q] = −i. (2.409)

In general, with multi-particle systems,

L =

N∑
a

1

2
q̇2
a − V (q1, q2, . . . , qN ) (2.410)

p2 =
δL
δq̇a

(2.411)

[pa(t), qb(t)] = −iδab. (2.412)

where pa, qb can be written in terms of the lowering and raising operators.

We can also generalize this Lagrangian even further in field theory in D-
dimensional space:

L =

ˆ
dDx

{
1

2
[φ̇2 − (∇φ)2 −m2φ2]− u(φ)

}
︸ ︷︷ ︸

L

(2.413)

where u(φ) denotes anharmonic terms.

In this case, the canonical momentum density conjugate to the field φ(~x, t)
is given by

π(~x, t) =
δL

δφ̇(~x, t)
= ∂0φ(~x, t) (2.414)

And it follows that the commutation relation (at equal times) now reads

[π(~x, t), φ(~x′, t)] = [∂0φ(~x, t), φ(~x′, t)] = −iδ(D)(~x− ~x′) (2.415)
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The Hamiltonian can be found from the Lagrangian (density) similar to Eq.
(2.398) via

H =

ˆ
dDx

π(~x, t) ∂0φ(~x, t)︸ ︷︷ ︸
π(~x,t)

−L

 =

ˆ
dDx

{
1

2

[
π2 + (∇φ)2 +m2φ2

]
+ u(φ)

}
.

(2.416)

When we don’t have any anharmonic terms, i.e. u(φ) = 0, we recover the
harmonic oscillator. In this case, we have a free scalar field theory, where φ
solves the Klein-Gordon equation:

(∂2 +m2)φ = 0 (2.417)

where

∂2 =
∂2

∂t2
−∇. (2.418)

The Klein-Gordon equation is obtained from varying the Lagrangian with re-
spect to the field.

We can verify that the solution to this Klein-Gordon equation has the form

φ(~x, t) =

ˆ
dDk√

(2π)D2wk

[
a(~k)e−i(wkt−

~k·~x) + a†(~k)ei(wkt−
~k·~x)
]

(2.419)

where

wk =

√
~k2 +m2. (2.420)

The factor
√

2wk
−1

is chosen so that we have

[a(~k), a†(~k)] = δ(D)(~k − ~k′), (2.421)

which implies the correct commutation relation for the field and canonical mo-
mentum

[∂0φ(~x, t), φ(~x′, t)] = −iδ(D)(~x− ~x′). (2.422)

In quantum mechanics, the ground state or vacuum is denoted by |0〉, fol-
lowing the condition

a(~k) |0〉 = 0. (2.423)

Any single particle state with momentum ~k is given by

a†(~k) |0〉 = |k〉 . (2.424)
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Consider the expectation value 〈0|φ(~x, t) |k〉. We can compute this

〈0|φ(~x, t) |k〉

= 〈0|
ˆ

dDk′√
(2π)D2w′k

[
a(~k′)e−i(wk′ t−

~k′·~x) + a†(~k′)ei(wk′ t−
~k′·~x)

] (
a†(k) |0〉

)

= 〈0|
ˆ

dDk′√
(2π)D2w′k

a(~k′)a†(~k)e−i(wk′ t−
~k′·~x) + a†(~k′)a†(~k)ei(wk′ t−

~k′·~x)︸ ︷︷ ︸
makes an orthogonal vector to |0〉 ∀k

 |0〉
= 〈0|

ˆ
dDk′√

(2π)D2w′k

[
a(~k′)a†(~k)e−i(wk′ t−

~k′·~x)
]
|0〉

=

ˆ
dDk′√

(2π)D2w′k

[
〈0| a(~k′)a†(~k) |0〉 e−i(wk′ t−~k

′·~x)
]

=

ˆ
dDk′√

(2π)D2w′k

[
e−i(wk′ t−

~k′·~x)
]
δ(D)(~k − ~k′)

=
1√

(2π)D2wk
e−i(wkt−

~k·~x) (2.425)

To make contact with the path integral formulation let us evaluate 〈0|φ(~x, t)φ(~0, 0) |0〉
for t > 0. Before attempting this by writing the entire expression out, we will
notice that of the four possible terms a†a†, a†a, aa†, and aa in the product of
the two fields only aa† survives because of orthogonality relations and the fact
that we’re staring out with the ground state. With this, we will proceed:

〈0|φ(~x, t)φ(~0, 0) |0〉

=

¨
dDk√

(2π)D2wk

dDk′√
(2π)D2wk′

〈0|
{
a(~k)e−i(wkt−

~k·~x) + a†(~k)ei(wk−
~k·~x)
}{

a(~k′) + a†(~k′)
}
|0〉

=

¨
dDk dDk′

(2π)D(2wk)(2wk′)
e−i(wkt−

~k·~x) 〈0| a(~k)a†(~k′) |0〉

=

¨
dDk dDk′√

(2π)D(2wk)(2wk′)
e−i(wkt−

~k·~x)δ(D)(~k − ~k′)

=

¨
dDk dDk′√

(2π)2D(2wk)(2wk′)
e−i(wkt−

~k·~x)δ(D)(~k − ~k′)

=

ˆ
dDk

(2π)D2wk
e−i(wkt−

~k·~x) (2.426)

With this, if we define the time-ordering product

T [φ(x)φ(y)] = θ(x0 − y0)φ(x)φ(y) + θ(y0 − x0)φ(y)φ(x) (2.427)
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then we have

〈0|T [φ(~x, t)φ(~0, 0)] |0〉
= 〈0| θ(t)φ(x)φ(0) + θ(−t)φ(0)φ(x) |0〉
= 〈0| θ(t)φ(x)φ(0) |0〉+ 〈0| θ(−t)φ(0)φ(x) |0〉

=

ˆ
dDk

(2π)D2wk

[
θ(t)e−i(wkt−

~k·~x) + θ(−t)ei(wkt−~k·~x)
)

(2.428)

where

〈0|φ(x)φ(0) |0〉 =

ˆ
dDk

(2π)D2wk
e−i(wkt−

~k·~x) (2.429)

〈0|φ(0)φ(x) |0〉 =

ˆ
dDk

(2π)D2wk
e+i(wkt−~k·~x) (2.430)

which we can check by inspection. Comparing this result to Eq. (2.198), which
we will repeat here:

D(x) =
−i

(2π)3

ˆ
d3k

2wk

[
e−i[wkt−

~k·~x]θ(t) + ei[wkt−
~k·~x]θ(−t)

]
, (2.431)

we immediately see that

〈0|T [φ(~x, t)φ(~0, 0)] |0〉 = iD(x) = G(2)(x, 0) (2.432)

This nicely connects quantum mechanics to the path integral formalism.

The moral here is that we always create before we annihilate, not the other
around. This is a form of causality as formulated in quantum field theory.

Scattering amplitude

In this section we will show how the invariant scattering amplitude M arises
from this formalism. Suppose we would like to evaluate the quantity:〈

~k3
~k4

∣∣∣ e−iHT ∣∣∣ ~k1
~k2

〉
=
〈
~k3
~k4

∣∣∣ ei ´ d4xL(x)
∣∣∣ ~k1

~k2

〉
(2.433)

for the following meson scattering process

~k1 + ~k2 → ~k3 + ~k4 (2.434)

in order λ, with the anharmonic term u(φ) = λφ4/4!. The “sandwiched” term
is given by

exp

{
i

ˆ
d4x

1

2
∂µφ∂µφ−

1

2
m2φ2 − λ

4!
φ4(x)

}
(2.435)
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Next, let us expand in λ and collect only the term in order λ. This term is
ˆ
d4x

[
i
λ

4!
φ4(x)

]
× exp

{
−i
ˆ
d4x

1

2

[
∂µφ∂µφ−m2φ2

]}
. (2.436)

Next, recall from the Perturbative Field Theory section that we can inte-
grate the integral in the exponent above by parts and show that

exp

{
−i
ˆ
d4x

1

2

[
∂µφ∂µφ−m2φ2

]}

= exp

−i
ˆ
d4x
−1

2
φ

� +m2︸ ︷︷ ︸
A

φ


= exp

{
i

ˆ
d4x

(
1

2
φAφ

)}
. (2.437)

Now, because φ is the solution to the free field (Klein-Gordon) equation, we
must have that

(� +m2)φ = Aφ = 0 =⇒ exp

{
−i
ˆ
d4x

1

2

[
∂µφ∂µφ−m2φ2

]}
≡ 1. (2.438)

Thus, 〈
~k3
~k4

∣∣∣ e−iHT ∣∣∣ ~k1
~k2

〉
≈
(
−i λ

4!

)ˆ
d4x

〈
~k3
~k4

∣∣∣φ4(x)
∣∣∣ ~k1

~k2

〉
(2.439)

How do we actually calculate this? There is some similarity between what
we have done and what we have here. Before, we have a product of two fields
sandwiched between the ground states. Now, we have four, sandwiched between
two four-particle states. In order to correct describe the picture, we need to

annihilate
∣∣∣ ~k1

〉
and

∣∣∣ ~k2

〉
then create

∣∣∣ ~k3

〉
and

∣∣∣ ~k4

〉
. Thus we look for the term

a†( ~k4)a†( ~k3)a( ~k2)a( ~k1). The a( ~k1) term could come from any of the four fields

φ. The a( ~k2) terms cold come from any of the leftover three fields, and so on.

In the end, we have 4! of a†( ~k4)a†( ~k3)a( ~k2)a( ~k1) terms. This 4! cancels with the
term in the denominator. The exponential corresponding to this term is

ei((w4t−~k4·~x)+(w3t−~k3·~x)−(w2t−~k2·~x)−(w1t−~k1·~x)) ≡ ei(k3+k4−k1−k2)·x. (2.440)

So, the matrix element is(
4∏

α=1

1√
(2π)D2wα

) ˆ
d4x ei(k3+k4−k1−k2)·x (2.441)

Finally, recall that

δ(4)(x− y) = F [1](x− y)
1

(2π)4

ˆ
d4p ei(x−y)p, (2.442)
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so we have the full amplitude:

(−iλ)

(
4∏

α=1

1√
(2π)D2wα

)
(2π)4δ(4)(k3 + k4 − k2 − k1) (2.443)

where we recall that M(f ← i) = −λ.

It is conventional to refer to

Sfi = 〈f | e−iHT |i〉 (2.444)

as the matrix elements of the S-matrix. From here, we can define the transition
matrix T by

S ≡ I + iT ⇐⇒ Sfi = δfi + iTfi. (2.445)

With this, and expressing the change in momentum in general as the sum of
final minus the sum of initial momenta, we get

iTfi = (2π)4δ(4)

∑
f

k −
∑
i

k

( 4∏
α=1

1√
(2π)D2wα

)
M(f ← i) (2.446)

Energy of the vacuum

In this section we will find the expectation value 〈0|H |0〉 in the free scalar field
theory where we have constructed the Hamiltonian from the Lagrangian:

H = π2 + (∇φ)2 +m2φ2. (2.447)

Recall that we have computed φ:

φ(~x, t) =

ˆ
dDk√

(2π)D2wk

[
a(~k)e−i(wkt−

~k·~x) + a†(~k)ei(wkt−
~k·~x)
]
. (2.448)

It follows that

π2(~x, t) = [∂0φ(~x, t)]2 = w2
kφ

2(~x, t)

(∇φ)2 = ~k2φ2(~x, t).

So we only have to look at 〈0|φ(~x, t)φ(~x, t) |0〉:

〈0|φ(~x, t)φ(~x, t) |0〉 = (2.449)
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We also have that

〈0|φ2(~x, t) |0〉
= 〈0|φ(~x, t)φ(~x, t) |0〉

= 〈0|

(ˆ
dDk√

(2π)D2wk

{
a(~k)eik·x + a†(~k)e−ik·x

})2

|0〉

=

¨
dDk dDk′√

(2π)2D(2wk)(2w′k)
〈0|
{
a(~k)eik·x + a†(~k)e−ik·x

}{
a(~k′)eik

′·x + a†(~k′)e−ik
′·x
}
|0〉

=

¨
dDk dDk′√

(2π)2D(2wk)(2w′k)
〈0| a(~k)a†(~k′)ei(k−k

′)·x |0〉︸ ︷︷ ︸
δ

=

¨
dDk dDk′√

(2π)2D(2wk)(2w′k)
δ(D)(k − k′)

=

ˆ
dDk

(2π)D2wk
. (2.450)

Putting this together, we find

〈0|H |0〉 =

ˆ
dDx

1

2
〈0|
(
π2 + (∇φ)2 +m2φ2

)
|0〉

=

ˆ
dDx︸ ︷︷ ︸
V

ˆ
dDk

(2π)D2wk

1

2
(w2

k + ~k2 +m2)

= V

ˆ
dDk

(2π)D2wk

1

2
(w2

k + ~k2 +m2︸ ︷︷ ︸
w2
k

)

= V

ˆ
dDk

(2π)D
1

2
wk. (2.451)

Once ~ is restored, we get

〈0|H |0〉 = V

ˆ
dDk

(2π)D
1

2
~wk (2.452)

where V the volume of the space.

We immediately recognize this as the zero-point energy of the harmonic
oscillator integrated over all momentum modes k and over all space. However,
we should worry here because this integral over k clearly diverges. However, in
reality, we always measure relative to the vacuum, i.e., we are often interested
in

H − 〈0|H |0〉 . (2.453)

Thus, we won’t have to worry about getting infinities here.
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Complex scalar field

In the previous section, our field is hermitian (or “real”). In this section, we
will look at the formalism for a complex scalar field governed by the Lagrangian
density:

L = ∂φ†∂φ−m2φ†φ (2.454)

According to Heisenberg, the canonical momentum is given by

π(~x, t) =
δL

δφ̇(~x, t)
= ∂0φ

†(~x, t) (2.455)

and so

[π(~x, t), φ(~x′, t)] = −iδ(D)(~x− ~x′) (2.456)

just as before. Similarly, we can show that

π′(~x, t) =
δL

δφ̇†(~x, t)
= ∂0φ(~x, t) (2.457)

Varying the Lagrangian with respect to the (conjugate of the) field, we get
two Klein-Gordon equations:

(� +m2)φ = 0; (� +m2)φ† = 0 (2.458)

The Fourier expansion is similar to what we’ve seen before. However, because
φ is no longer hermitian, we are required to use two independent sets of creation
and annihilation operators (a, a†) and (b, b†):

φ(~x, t) =

ˆ
dDk√

(2π)D2wk

[
a(~k)e−i(wkt−

~k·~x) + b†(~k)ei(wkt−
~k·~x)
]

(2.459)

The interpretation here is that the particle created by a† and the particle created
by b† are antiparticles.
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2.4 The Dirac Equation, Spinors, & QED

2.4.1 Review & Introduction

The four dimensional del operator is given by

∂µ =

(
1

c
∂t, ∂x, ∂y, ∂x

)
. (2.460)

With a Minkowskian associated metric

ηµν = diag(1,−1,−1,−1), (2.461)

the Laplacian becomes the d’Alembertian

� ≡ ∂µ∂µ = ∂µ∂µ = ηµν∂
µ∂ν =

1

c2
∂2
t − ∂2

x − ∂2
y − ∂2

z . (2.462)

When we do quantum field theory, c→ 1 so as to be “natural,” so

�→ ∂2
t − ∂2

x − ∂2
y − ∂2

z . (2.463)

The non-relativistic Schrödinger equation is given by(
−~2

2m
∇2 + U

)
ψ = i~∂tψ. (2.464)

In the natural units, ~ = c = 1, so

i∂tψ =

(
− 1

2m
∇2 + U

)
ψ. (2.465)

The free particle (U = 0) solution is

ψ(~x, t) ∝ eiEtψ(~x). (2.466)

For a four-current of the form

Jµ = (cρ,~j) = (ρ,~j), (2.467)

the probability density is

ρ = |ψ(x)|2. (2.468)

and the 3-current density is

~j = − i

2m
(ψ∗∇ψ − ψ∇ψ∗) . (2.469)

These quantities are related via the continuity equation, which is a statement
about the conservation of 4-current in spacetime, i.e., jµ is divergenceless.

∂µJ
µ = 0 ⇐⇒ ∂tρ+∇ ·~j = 0. (2.470)

We see that the SE is first order in the time derivative but second order in
the space derivative. This is problematic in relativistic theories, since space and
time should treated as equivalent.
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The Klein-Gordon Equation & Its problem

For a relativistic particle, the energy-momentum relationship is

p · p = pµp
µ = E2 − |~p|2 = m2. (2.471)

If we promote energy and momentum to operators and use

Ê = i~∂t = i∂t (2.472)

and

p̂ = −i~∇ = −i∇ (2.473)

then we get the Klein-Gordon equation

(� +m2)ψ = 0 ⇐⇒
(
−∂2

t +∇2
)
ψ = m2φ (2.474)

whose free particle solutions m2 = 0 are plane waves:

ψ ∝ e−ip·x = e−i(Et−~p·~x). (2.475)

As we have already seen (many many times!), the Klein-Gordon equation
successfully describes spin 0 particles in relativistic quantum field theory.
However, problems arise with the interpretation of the positive and negative
energy solutions:

E = ±
√
p2 +m2. (2.476)

The problems with the Klein-Gordon equation led Dirac to search for an al-
ternative relativistic wave equation in 1928, in which the time and space deriva-
tives are first order.

The Dirac Equation

This section is inspired by Freeman Dyson’s notes from 1951, the proof by fellow
internet user Small Perturbation, and various other online sources.

Dirac (1928) was looking for a covariant wave equation that was first-order
in spacetime. But he also wanted an equation whose solution solves the Klein-
Gordon equation (at least component-wise).

Suppose this new equation has the form

i∂tψ = βmψ − iα ·∇ψ ≡ HDiracψ. (2.477)

https://arxiv.org/pdf/quant-ph/0608140.pdf
http://www.smallperturbation.com/physics-proof
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Since any ψ that solves the Dirac equation also solves the KG equation, we
must have after separating the time and space pieces:

−∂2
t ψ = βmi∂tψ + ∂t(α ·∇)ψ

= βmi∂tψ + α ·∇∂tψ
= βm {βmψ − i(α ·∇)ψ}+ α ·∇∂tψ
= β2m2ψ − (im)β(α ·∇)ψ + (α ·∇)(∂tψ)

= β2m2ψ − (im)β(α ·∇)ψ + (α ·∇) {−iβmψ − i(α ·∇)ψ}
= β2m2ψ − (im)[α · β + β · α]∇ψ − (α ·∇)2ψ

= −∇2ψ +m2ψ (2.478)

This means 
β · α+ α · β = 0

β2 = 1

(α ·∇)2 = ∇2.

(2.479)

So we must have that{
β2 = α2

x = α2
y = α2

z = I
αjβ + βαj = αjαk + αkαj = O ∀j 6= k = x, y, z.

(2.480)

Thus we could not possibly factorize the 2nd order equation into two first-
order operators involving ordinary numbers. But we can do it with matrices.

Lemma: The β, αj matrices are at least 4× 4.

Proof: We introduce new matrices defined by:

γ0 ← β (2.481)

γj ← βαj j = 1, 2, 3. (2.482)

With this, we are able to combine all of the above conditions into a single
statement:

{γµ, γν} = γµγν + γνγµ = 2ηµνI (2.483)

where I is some n×n identity matrix. We can verify that this equation exactly
captures the relationship between β and αj ’s. First, between β and itself:

{γ0, γ0} = 2η00I = 2I = 2{β, β}

since we have that β2 = 1. Next, between β and αj where j 6= 0

2η0jI = 0 = {γ0, γj}
= {β, βαj}
= β2αj + βαjβ

= β(βαj + αjβ)

= 0 since [βaj + ajβ] = 0. (2.484)
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Finally, between the αj ’s with j, k = 1, 2, 3:

−2δjkI = 2ηjkI = {γj , γk}
= {βαj , βαk}
= βαjβαk + βαkβαj

= β(αjβ)αk + β(αkβ)αj

= −β(βαj)αk − β(βαk)αj

= −β2{αj , αk}
= −2δjk. (2.485)

With that done, it now suffices to show γµ has to be at least 4 × 4. To do
this, we show that it can’t be 2 × 2 or 3 × 3. It’s easy to rule out the 3 × 3
option. We observe that

γµγν + γνγµ = 0 ⇐⇒ γµγν = −γνγµ. (2.486)

This means

det(γµ) det(γν) = (−1)n det(γν) det(γµ) ⇐⇒ (−1)n = 1 (2.487)

where n is the dimension of γµ. This holds if and only if n is even. So now we
only need to show why 2× 2 matrices don’t work.

We observe that the anti-commutation rule holds under similarity trans-
formations, i.e.,

{SγµS−1, SγνS−1} = SγµγνS−1 + SγνγµS−1

= S{γµ, γν}S−1

= 2SηµνIS−1

= 2ηµνISS−1 since ηµν diagonal

= 2ηµνI since ηµν = ηµν . (2.488)

Without loss of generality, assume that γ0 is already in Jordan canonical
form. Note: please refer to my Matrix Analysis quick guide for more informa-
tion about Jordan forms.

Case 1: If γ0 is 2× 2 and diagonalizable, then its two diagonal entries can
only be ±1 because we need (γ0)2 = 1. If both of these have the same sign,
then γ0 becomes ±I, which commutes with everything. Therefore, in this case,
we can pick

γ0 = σz =

(
1 0
0 −1

)
. (2.489)

https://huanqbui.com/LaTeX projects/Matrix_Analysis/HuanBui_MatrixAnalysis.pdf
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Now, because {γ0, γj} = 0, we must have that(
1 0
0 −1

)(
a b
c d

)
= −

(
a b
c d

)(
1 0
0 −1

)
(
a b
−c −d

)
=

(
−a b
−c d

)
(2.490)

which means

γj =

(
0 bj
cj 0

)
. (2.491)

From {γj , γk} = −2δjkI, we must have the following (the algebra is getting too
long for this proof so I won’t do it here, but it is very easy to show why this is
true) 

b1c2 = −c1b2
b2c3 = −c2b3
b1c3 = −c1b3
b1c1 = b2c2 = b3c3 = −1.

(2.492)

We realize after some more algebra that these there is no solution to this system.
This means that assuming a diagonalizable γ0 leads to a contradiction.

Case 2: Suppose γ0 is not diagonalizable. Then it is in Jordan form (because
we assume γµ is already in Jordan form) of the form

γ0 =

(
λ 1
0 λ

)
. (2.493)

This gives

(
γ0
)2

=

(
λ2 2λ
0 λ2

)
. (2.494)

But this is diagonal if and only if λ = 0, which makes (γ0)
2

= [0] 6= 1. So
this is also a contradiction. Therefore this 2 × 2 Dirac matrix assumption is a
contradiction too and we must use matrices that are 4× 4 or larger.

With this, we can try to find 4× 4 matrices γµ that work. It turns out that
one possible set of αk and β is

αk =

(
0 σk
σk 0

)
β =

(
I2 0
0 −I2

)
. (2.495)
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where the σk are Pauli matrices:

σ1 = σx =

(
0 1
1 0

)
σ2 = σy =

(
0 −i
i 0

)
σ3 = σz =

(
1 0
0 −1

)
(2.496)

With this we find

γ0 =

(
I 0
0 −I

)
γj =

(
0 σi
−σi 0

)
(2.497)

The Dirac equation is thus a set of 4 simultaneous linear partial differential
equations in the four functions ψα:

i∂t −m 0 i∂z i∂x + ∂y
0 i∂t −m i∂x − ∂y −i∂z
−i∂z −i∂x − ∂y i∂t −m 0

−i∂x + ∂y i∂z 0 i∂t −m



ψ1

ψ2

ψ3

ψ4

 =


0
0
0
0

 (2.498)

We note that the four-component ψ wavefunction is NOT a four-vector.

Spinors

The Dirac equation describes the behavior of spin-1/2 fermions in relativistic
quantum field theory. For a free fermion the wavefunction is the product of a
plane wave and a Dirac spinor, u(pµ):

ψ(xµ) = u(pµ)e−ip·x. (2.499)

Plugging this into the Dirac equation:

0 = (iγµ∂µ −m)ψ

= (iγµ∂µ −m)u(p)e−ip·x

= (iγµ∂µ −m)u(p)e−ipµx
µ

= iγµu(p)∂µe
−ipµxµ −mu(p)e−ipµx

µ

0 = (γµpµ −m)u(p) (2.500)

The last equality is also known as the Dirac equation in momentum space.
For a particle at rest, i.e., ~p = 0, we find(

iγ0∂t −m
)
ψ = (γ0E −m)ψ = 0 (2.501)

and

Êu =

(
mI 0
0 −mI

)
u. (2.502)
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The solutions are the four eigenspinors:

u1 =


1
0
0
0

 u2 =


0
1
0
0

 u3 =


0
0
1
0

 u4 =


0
0
0
1

 (2.503)

And so the associated wavefunctions are

ψ1 = e−imtu1

ψ2 = e−imtu2

ψ3 = e+imtu3

ψ4 = e+imtu4. (2.504)

We note that the spinors are NOT eigenvectors. They are 1 × 4 matrices.
The four components are a surprise: we would expect only two spin states for
a spin-1/2 fermion! We also note the sign change in the exponents of the plane
waves in the states ψ3 and ψ4. We see that these equations describes four pos-
sible states with spin ↑, ↓, and E = ±m.

To describe the negative energy states, Dirac postulated that an electron in
a positive energy states is product from the vacuum accompanied by a hole with
negative energy. The hold corresponds o a physical antiparticle, the position,
with charge +e.

Another interpretation (Feynman-Stükelberg) is that the E = −m solutions
can either describe a negative energy particle which propagates backwards in
time, or a positive energy antiparticle propagating forward in time:

e−i[(−E)(−t)−(−~p)·(~x)] = e−i[Et−~p·~x]. (2.505)

Particles in Motion

Recall that the momentum space Dirac equation is

(γµpµ −m)u(p) = 0. (2.506)

By simply expanding the operator and assuming ~p = 6= 0 and p = (E, ~p), we get

γµpµ −m = Eγ0 − pxγ1 − pyγ2 − pzγ3 −m

=

(
I 0
0 −I

)
E −

(
0 ~σ
~σ 0

)
~p−m

(
I 0
0 I

)
=

(
(E −m)I −~σ · ~p
~σ · ~p −(E +m)I

)
. (2.507)
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Note that each element of this matrix is a 2 × 2 matrix. Let any spinor
solution be

u ≡
(
uA
uB

)
. (2.508)

Then we have

(γµpµ −m)

(
uA
uB

)
=

(
(E −m)I −~σ · ~p
~σ · ~p −(E +m)I

)(
uA
uB

)
= 0 (2.509)

i.e.,

(~σ · ~p)uB = (E −m)uA (2.510)

(~σ · ~p)uA = (E +m)uB (2.511)

Let’s be more specific and expand the dot product:

~σ · ~p = σxpx + σypy + σzpz

=

(
0 1
1 0

)
px +

(
0 −i
i 0

)
py +

(
1 0
0 −1

)
pz

=

(
pz px − ipy

px + ipy −pz

)
. (2.512)

With this, we can write the relationship between uB and uA:

uB =
~σ · ~p
E +m

uA

=
1

E +m

(
pz px − ipy

px + ipy −pz

)
uA. (2.513)

Remember that we want u, and so it is only necessary to find the ratio
between uB and uA. Let’s pick some simple uA:

uA =

(
1
0

)
uA =

(
0
1

)
. (2.514)

These give

u1 = N1


1
0
pz

E+m
px+ipy
E+m

 and u2 = N2


0
1

px−ipy
E+m
−pz
E+m

 (2.515)

where N1, N2 are just normalization factors. Note that when ~p = 0, we get the
results from the previous section, which is good.
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Repeating this for uB = (1, 0)> and uB = (0, 1)> gives

u3 = N3


pz

E−m
px+ipy
E−m

1
0

 and u4 = N4


px−ipy
E−m
−pz
E−m

0
1

 (2.516)

We can readily check that E2 = p2 +m2 holds. We also identify that u1, u2

correspond to the positive energy solutions while u3, u4 correspond to the neg-
ative energy solutions.

Now, if the z-axis is aligned with the motion of the particle, we have

u1 ∝


1
0

± |p|
E+m

0

 u2 ∝


0
1
0

∓ |p|
E+m

 u3 ∝


± |p|
E−m
0
1
0

 u4 ∝


0

∓ |p|
E−m
0
1


(2.517)

We define in the Feynman-Stuckelberg interpretation to describe positive
energy antiparticles states

v2(pµ) ≡ u3(−pµ) (2.518)

v1(pµ) ≡ u4(−pµ) (2.519)

where u3, u3 are describe negative energy particles. With this

v2(pµ) ≡ u3(−pµ) =


± |p|
E+m

0
1
0

 v1(pµ) ≡ u4(−pµ) =


0

∓ |p|
E+m

0
1


(2.520)

Spin & Helicity

The two different solutions for each of the fermions and antifermions corresponds
to two possible spin states. For a fermion with momentum ~p along the z-axis,
ψ = u1(pµ)eip·x describes a spin-up fermion and ψ = u2(pµ)eip·x describes a
spin-down fermion. For an antifermion with momentum ~p along the z-axis,
ψ = v1(pµ)eip·x describes a spin-up antifermion and ψ = v2(pµ)eip·x describes a
spin-down antifermion.

The following figure summarizes this
The u1, u2, v1, v2 spinors are only eigenstates of Sz for momentum ~p along

the z-axis. Theres nothing special about projecting out the component of spin
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along the z-axis, that’s just the conventional choice. For our purposes it makes
more sense to project the spin along the particles direction of flight, this defines
the helicity, h of the particle.

ĥ =
~S · ~p∣∣∣~S∣∣∣|~p| =

2~S · ~p
|~p|

(2.521)

For a spin-1/2 fermion, the two possible values of h are h = +1 or h = 1. We call
h = +1 right-handed and h = 1 left-handed. Massless fermions, are purely
left-handed (only u2); massless antifermions are purely right handed (only v1).

Probability & Currents

Just to be absolutely clear, the metric tensor we are using here is

ηµν = ηµν =


1
−1

−1
−1

 . (2.522)

Fermion currents

To define a Lorentz-invariant quantity to describe fermion currents for QED,
we define the adjoint spinor

ψ̄ ≡ ψ†γ0 (2.523)

where ψ† is the hermitian conjugate of ψ, i.e.,

ψ = (ψ1, ψ2, ψ3, ψ4)> =⇒ ψ† = (ψ∗1 , ψ
∗
2 , ψ

∗
3 , ψ

∗
4). (2.524)

With this we have

ψ̄ ≡ ψ†γ0 = (ψ∗1 , ψ
∗
2 ,−ψ∗3 ,−ψ∗4) (2.525)
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where recall that

γ0 =

(
I 0
0 I

)
. (2.526)

In order to understand the probability density and probability flow we will
want to derive an equation of continuity for the probability. This requires us
write down the Dirac equation for ψ†, or equivalently ψ̄. The first step is to
write the Dirac equation out longhand:

iγ0∂tψ + iγ1∂xψ + iγ2∂yψ + iγ3∂zψ −mψ = 0. (2.527)

Next, take the hermitian conjugate of this equation:[
iγ0∂tψ + iγ1∂xψ + iγ2∂yψ + iγ3∂zψ −mψ = 0

]†
(2.528)

We have look at the form of each of Dirac’s gamma matrices to take the correct
hermitian conjugates, which turn out to be:

γµ† =

{
γµ µ = 0

−γµ µ 6= 0.
. (2.529)

With this we write

−i(∂tψ†)γ0 − i(∂xψ†)(−γ1)− i(∂yψ†)(−γ2)− i(∂zψ†)(−γ3) = mψ†. (2.530)

Now, we multiply both sides by γ0 to get

−i(∂tψ†)γ0γ0 − i(∂xψ†)(−γ1)γ0 − i(∂yψ†)(−γ2)γ0 − i(∂zψ†)(−γ3)γ0 = mψ†γ0.
(2.531)

But we note that γµ are just matrices of constants, which means we can combine
them with ψ† to get ψ̄. But in order to do that, we will have to move γ0 closer
to ψ†. To do this, we use the relation: γ0γj = −γjγ0:

−i(∂tψ̄)γ0 − i(∂xψ̄)γ1 − i(∂yψ̄)γ2 − i(∂zψ̄)γ3 = mψ̄. (2.532)

But of course we can succinctly write this as what known as the adjoint Dirac
equation

ψ̄(i∂µγ
µ +m) = 0 (2.533)

where ∂µ acts on ψ̄ from the right.

Okay, so now we have two versions of the Dirac equation:{
ψ̄(i∂µγ

µ +m) = 0

(i∂µγ
µ −m)ψ = 0

=⇒

{
ψ̄(i∂µγ

µ +m)ψ = 0

ψ̄(i∂µγ
µ −m)ψ = 0

. (2.534)
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Adding them gives us

ψ̄(∂µγ
µψ) + ψ̄(i∂µγ

µ)ψ = 0. (2.535)

But this is just the product rule, so we get

∂µ(ψ̄γµψ) = 0 (2.536)

If we define the current as

jµ ≡ (ρ,~j) = ψ̄γµψ (2.537)

where ρ is the probability density and ~j is the probability 3-current, then we
have the conservation law:

∂µj
µ = 0 (2.538)

This is just the covariant form for an equation of continuity. The probability
density is

ρ = ψ̄γ0ψ = ψ†γ02
ψ = ψ†ψ (2.539)

and the probability 3-current ~j is

~j = γ†(γ0γµ)ψ (2.540)

This current is the same one which appears in Feynman diagrams. It is
called a vector current, and is the current responsible for the electromagnetic
interaction.

Maxwell’s Equations

The photon is described by Maxwell’s equations. For EM interactions, Maxwell’s
equations can be written covariant form as

�Aµ = 4πjµ ∂µA
µ = 0 ∂µj

µ = 0 (2.541)

The plane wave solution can be written as

Aµ = εµ(s)e−ip·x (2.542)

where εµ(s) is of course the polarization vector, which depends on the spin s of
the photon.

QED rules
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Figure 2.19: From Wikipedia
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2.4.2 The Dirac Equation

History

Clifford Algebra

Cousins of the gamma matrices

Lorentz transformation

Dirac bilinears

Parity

The Dirac Lagrangian

Slow & Fast electrons

Chirality & Handedness

Interactions

Charge conjugation & antimatter

CPT theorem
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2.4.3 Quantizing the Dirac Field

Anticommutation

The Dirac field

Energy of the vacuum

Fermion propagator
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2.4.4 Lorentz Group & Weyl Spinors

Lorentz algebra

From algebra to representation

Spinor representations

The Dirac equation



202 PART 2. QUANTUM & CLASSICAL FIELD THEORIES

2.4.5 Spin-statistics connection
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2.4.6 Vacuum Energy, Grassmann Integrals, & Feynman
Diagrams for Fermions

Fermions are weird

Vacuum energy

A peculiar sign for fermions

Grassmann Math

Grassmann Path Integrals

Dirac propagator

Feynman rules for fermions
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2.4.7 Electron Scattering & Gauge Invariance

Electron-proton scattering

Potential scattering

Electron-electron scattering
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2.4.8 Diagrammatic Proof of Gauge Invariance

Gauge invariance

A specific example

Photon landing on an internal line

Ward-Takahashi identity

The longitudinal mode

Emission and absorption of photons
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2.4.9 Photon-Electron Scattering and Crossing

Photon scattering on an electron

Electron-positron annihilation

Crossing

Special relativity and quantum mechanics require antimatter
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2.5 Renormalization & Gauge Invariance

2.5.1 Cutoffs

Field theory blowing up

Recall the scattering amplitude (or the Green’s function) for a λ2 loop diagram
is given by:

M =
1

2
(−iλ)2

ˆ
d4k

(2π)4

i

k2 −m2 + iε

i

(k1 + k2 − k)2 −m2 + iε
. (2.543)

The associated Feynman diagram is

Figure 2.20: From Zee

We have mentioned in Loops and a first look at divergence that this integral
diverges when all momentum modes are considered. How do we deal with this?
First, let K ≡ k1 + k2 denote the total initial momentum. We can rewrite the
scattering amplitude as

M =
1

2
(−iλ)2

ˆ
d4k

(2π)4

i

k2 −m2 + iε

i

(K − k)2 −m2 + iε
. (2.544)

We say that this integral diverges logarithmically as
´
d4k/k4 for large k.

We also call this “ultraviolet divergence” since the integral diverges when k is
large.

To deal with this integral, we have to look at “regularization” and “renormal-
ization.” Regularization is the process of making divergent integrals converge
by integrating up to a cutoff Λ. Physically, this means that whatever quantum
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field theory we’re working with is an effective low energy theory that is valid up
to some energy associated with Λ. Λ should be thought of as physical, “param-
eterizing our threshold of ignorance.” When we evaluate integrals with a cutoff
Λ, we literally integrate only up to Λ. If the integral is convergent, we say it is
“regularized.” So what is

M =
1

2
(−iλ)2

ˆ Λ d4k

(2π)4

i

k2 −m2 + iε

i

(K − k)2 −m2 + iε
? (2.545)

We might be tempted to evaluate this integral directly by the Cauchy integral
formula and the residue theorem. But notice that we are not allowed to do that
here because we are integrating over 4-dimensional Minkowskian spacetime. We
will learn how to actually do this in the following sections.

Evaluating Feynman diagrams - Zee’s Appendix D

Before trying to evaluating the integral from the previous section, we will first
try to evaluate the following integral:

I =

ˆ
d4k

(2π)4

1

(k2 − c2 + iε)3
=

ˆ
d3k

(2π)3

ˆ
dk0

2π

1

(k2
0 − (~k2 + c2) + iε)3

(2.546)

where we have used the fact that

k2 = k2
0 − ~k2 (2.547)

based on the Minkowskian metric.

Focusing first on the k0 integral, we observe that if we can somehow turn
the denominator into the form:

k2
0 − (~k2 + c2) + iε→ k′2 + c2 + iε (2.548)

then we no longer have to worry about poles. Whether we can do this depends
on whether we can somehow flip the sign of k0 from a plus to a minus to agree
with the spatial part of k. It turns out this is possible, with a slight change of
variables and tricks. Define k4 such that

k0 = ik4. (2.549)

Then

dk0 = idk4; k2
0 = −k2

4. (2.550)

Next, instead of integrating over the real line and close the contour with the
northern semi-contour (or southern semi-contour), we can rotate the contour
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such that we are integrating over the imaginary line and closing the contour
using the east/west contour:

This means

ˆ ∞
−∞

dk0
1

(k2
0 − (~k2 + c2) + iε)3

=

ˆ i∞

−i∞

1

(k2
0 − (~k2 + c2) + iε)3

=

ˆ −∞
∞

idk4
1

(−k2
4 − (~k2 + c2) + iε)3

=

ˆ ∞
−∞

idk4
1

(k2
4 + ~k2︸ ︷︷ ︸+c2)3

; ε→ 0

=

ˆ ∞
−∞

idk4
1

(k2
E + c2)3

(2.551)

where

k2
E = k2

4 + ~k2 (2.552)

is the norm square of the Euclidean 4-vector (rather than Minkowskian). With
this, we can replace the integration measure

d4k → d4
Ek (2.553)

where dEk is the integration measure in Euclidean 4-dimensional space. So,

I = i(−1)3

ˆ
d4
Ek

(2π)4

1

(k2
E + c2)3

(2.554)

Good, but how do we evaluate this integral? It is not obvious how we could get
integrate out all the angular elements. It turns out that it is more useful for us
to look at a more general case where we evaluate

H =

ˆ
ddEk F (k2) (2.555)

where

k2 = k2
1 + k2

2 + · · ·+ k2
d. (2.556)
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We assume that the integral converges. We will also drop the E subscript for
convenience. Suppose we integrate over the (d− 1) angular variables to get

H = C(d)

ˆ ∞
0

dk kd−1F (k2) (2.557)

where our k can be thought of as only the radial component. What is C(d)?
Well, we know that

J =

ˆ
ddk e−k

2/2 =
(√

2π
)d
, (2.558)

from our results in Gaussian integrals and their moments. But we also know
that alternatively,

J =

ˆ
ddk e−k

2/2

= C(d)

ˆ ∞
0

dk kd−1e−k
2/2 angular-integrated

= C(d)2d/2−1

ˆ ∞
0

dxxd/2−1e−x

= C(d)2d/2−1Γ

(
d

2

)
(2.559)

where we have made the necessary change of variables in order to the get the
integral representation of the Gamma function, which shows up quite often in
probability theory:

Γ(z) =

ˆ ∞
0

xz−1e−x dx, Re(z) > 0 (2.560)

which satisfies the definition of the Gamma function defined for positive integers:

Γ(n) = (n− 1)! ⇐⇒ Γ(n+ 1) = nΓ(n), (2.561)

which we can show by integration by parts. It follows that

(2π)
d/2

= C(d)2d/2−1Γ

(
d

2

)
, (2.562)

which means

C(d) =
2πd/2

Γ (d/2)
(2.563)

As a little “sanity check,” when d = 2, when C(d) = 2π. When d = 3, C(d) =
4π, which are familiar angular elements in 2 and 3 dimensions. With this, we
have in general,

H =

ˆ
ddEk F (k2) = C(d)

ˆ ∞
0

dk kd−1F (k2) =
2πd/2

Γ (d/2)

ˆ ∞
0

dk kd−1F (k2)

(2.564)
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So, when d = 4 (which is the value of d we are interested in),ˆ
d4
Ek F (k2) = (2π2)

ˆ ∞
0

dk k3F (k2). (2.565)

With this, we can now evaluate the original I:

I =

ˆ
d4k

(2π)4

1

(k2 − c2 + iε)3

= . . .

= i(−1)3

ˆ
d4
Ek

(2π)4

1

(k2
E + c2)3

=
−i

(2π)4

ˆ
d4
Ekk

3 1

(k2 + c2)3

=
−i

(2π)4
(2π2)

ˆ ∞
0

dk k3 1

(k2 + c2)3︸ ︷︷ ︸
=
−i

(2π)4
(2π2)

1

4c2

=
−i

32π2c2
, (2.566)

where the final integral can be evaluated in Mathematica as follows:

In[9]:= Integrate[k^3/(k^2 + c^2)^3, {k, 0, Infinity }]

Out [9]= ConditionalExpression [1/(4 c^2), Re[c] != 0]

Thus, we have derived the basic formula for doing Feynman integrals:

ˆ
d4k

(2π)4

1

(k2 −m2 + iε)3
=

−i
32π2m2

(2.567)

Okay, what if now we only integrate to a cutoff Λ and with a power of 2 (not
3) in the denominator, i.e.,

ˆ k=Λ d4k

(2π)4

1

(k2 −m2 + iε)2
=? (2.568)

Essentially, we can work through the same steps again. Notice that the cutoff
is only in k but not in the angular pieces, so we still have that

ˆ k=Λ d4k

(2π)4

1

(k2 −m2 + iε)2
=
−i

(2π)4
(2π2)

ˆ k=Λ

dk k3 1

(k2 +m2)2

=
−i
8π2

ˆ k=Λ

dk k3 1

(k2 +m2)2
(2.569)

This last integral can be evaluated in Mathematica as follows:
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In: Integrate[k^3/(k^2 + a^2)^2 , {k, 0, L}]

Out: 1/2(-1-Log[a^2])+(a^2+(a^2+L^2)Log[a^2+L^2])/(2(a^2+L^2))

Technical side note: In reality Mathematica gives a bunch of conditional
statements, but we can just ignore those since we’re only working with real mo-
menta here.

So, we have

ˆ Λ d4k

(2π)4

1

(k2 −m2 + iε)2
=
−i

16π2

{
−1− log

(
m2
)

+ log
(
m2 + Λ2

)
+

m2

m2 + Λ2

}
=
−i

16π2

{
−1 + log

(
m2 + Λ2

m2

)
+

m2

m2 + Λ2

}
.

(2.570)

Assuming λ2 � m2, we have that

ˆ Λ d4k

(2π)4

1

(k2 −m2 + iε)2
≈ i

16π2

[
log

(
Λ2

m2

)
− 1 + . . .

]
(2.571)

As an exercise, let’s try to evaluate

ˆ Λ d4k

(2π)4

k2

(k2 −m2 + iε)2
. (2.572)

Well, most things are similar except for the form of F (k2). So we have

ˆ k=Λ d4k

(2π)4

k2

(k2 −m2 + iε)2
=
−i

(2π)4
(2π2)

ˆ k=Λ

dk k3 k2

(k2 +m2)2

=
−i
8π2

ˆ k=Λ

dk
k5

(k2 +m2)2
. (2.573)

Once again with the help of Mathematica, we find

In: Integrate[k^5/(k^2 + a^2)^2 , {k, 0, L}]

Out: ((2a^2 L^2+L^4+2a^2(a^2+L^2)( Log[a^2]-Log[a^2+L^2]))/(2(a^2+L^2)))

Thus,

ˆ k=Λ d4k

(2π)4

k2

(k2 −m2 + iε)2
≈ −i

16π2

{
m2 + Λ2 + 2m2 log

(
m2

m2 + Λ2

)}
=
−i

16π2

{
m2 + Λ2 − 2m2 log

(
Λ2

m2

)
+ . . .

}
(2.574)
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where once again we assume Λ2 � m2. So we have

ˆ k=Λ d4k

(2π)4

k2

(k2 −m2 + iε)2
=
−i

16π2

{
m2 + Λ2 − 2m2 log

(
Λ2

m2

)
+ . . .

}
(2.575)

Denominator Combination Identity - Zee’s Appendix D

Now, for general Feynman integrals/diagrams, we don’t often have a single term
raised to some power in the denominator such as

1

(k2 −m2 + iε)n
. (2.576)

For loop diagrams where there are multiple inner loops and possible intermediate
momenta, we will have things like

1

(k2
1 −m2 + iε)l

. . .
1

(k2
n −m2 + iε)p

(2.577)

and so on. It would be nice if we could somehow split this product into a sum
of integrals that we can evaluate. Fortunately, we have a useful identity in
combining denominators:

1

x1 . . . xn
= (n− 1)!

ˆ 1

0

. . .

ˆ 1

0

dα1 . . . dαn δ

1−
n∑
j=1

αj

 1

(α1x1 + · · ·+ αnxn)n

(2.578)

For example, when n = 2, we have

1

xy
=

ˆ 1

0

dα
1

[αx+ (1− α)y]2
(2.579)

For n = 3, we have

1

xyz
= 2

ˆ 1

0

ˆ 1

0

ˆ 1

0

dαdβdγ δ(α+ β + γ − 1)
1

[αx+ βy + γz]3

= 2

¨
triangle

dαdβ
1

[z + α(x− z) + β(y − z)]3
(2.580)

where the integration region is the triangle in the α − β plane bounded by
0 ≤ β ≤ 1− α and 0 ≤ α ≤ 1.

These identities will be extremely useful in the following sections.
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Pauli-Villars regularization

Now we’re getting closer to evaluatingM up to cutoff Λ. To turn the integrand
of

M =
1

2
(−iλ)2

ˆ
d4k

(2π)4

i

k2 −m2 + iε

i

(K − k)2 −m2 + iε
. (2.581)

into something we can integrate over, we first apply the following identity from
the previous section

1

xy
=

ˆ 1

0

dα
1

[αx+ (1− α)y]2
(2.582)

with

y = k2 −m2 + iε x = (K − k)2 −m2 + iε. (2.583)

Then we have

M =
1

2
(−iλ)2i2

ˆ
d4k

(2π)4

ˆ 1

0

dα
1

D
(2.584)

where

D = . . . some approximations here

= [α(K − k)2 + (1− α)k2 −m2 + iε]2

= [(k − αK)2 + α(1− α)K2 −m2 + iε]2 completing the squares.

Consider the change of variables (called Feynman variables)

κ = k − αK =⇒ d4k → d4κ, (2.585)

then we get

D = [κ2 + α(1− α)K2 −m2 + iε]2 = [κ2 −M2
0 + iε]2 (2.586)

where

M2
0 = m2 − α(1− α)K2. (2.587)

Thus,

M =
1

2
(−iλ)2i2

ˆ
d4κ

(2π)4

ˆ 1

0

dα
1

D

=
1

2
(−iλ)2i2

ˆ
d4κ

(2π)4

ˆ 1

0

dα
1

[κ2 −M2
0 + iε]2

=
1

2
(−iλ)2i2

ˆ 1

0

dα

ˆ
d4κ

(2π)4

1

[κ2 −M2
0 + iε]2

(2.588)
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Imposing a cutoff, we get

M =
1

2
(−iλ)2i2

ˆ 1

0

dα

ˆ Λ d4κ

(2π)4

1

[κ2 −M2
0 + iε]2

(2.589)

Aha! In integral over d4κ is something we know how to do. Repeating the
steps in the previous sections regarding evaluating Feynman integrals, we first
go to Euclidean space, then integrate over all angular components so that we
are left with a dEk k

3 integral. In fact, we have evaluated the k integral.

Applying the result from (2.571) to get

M =
1

2
(−iλ)2i2

ˆ 1

0

dα

ˆ Λ d4κ

(2π)4

1

(κ2 −M2
0 + iε)2

≈ 1

2
(−iλ)2i2

ˆ 1

0

dα
i

16π2

[
log

(
Λ2

M2
0

)
− 1 + . . .

]
=

iλ2

32π2

ˆ 1

0

dα

[
log

(
Λ2

M2
0

)
− 1 + . . .

]
. (2.590)

We have to keep in mind that M2
0 (α) = m2 − α(1 − α)K2. For Λ2 � M2

0 ,
the log term dominates the square brackets, so we can just ignore the −1 term.
With this, we have

M =
iλ2

32π2

ˆ 1

0

dα log

(
Λ2

m2 − α(1− α)K2 − iε

)
(2.591)

Thus we see that the integrand scales logarithmically.

Alternatively, Pauli-Villars regularization tells us that we can do the
following (justified) substitution:

ˆ Λ d4κ

(2π)4

1

[κ2 −M2
0 + iε]2

→
ˆ Λ d4κ

(2π)4

[
1

(κ2 −M2
0 + iε)2

− 1

(κ2 − Λ2 + iε)2

]
(2.592)

where Λ2 � M2
0 . This is a reasonable proposition because for Λ2 that is very

large this additive term is negligible compared to the first term.

We know from the previous section with the Feynman integrals that

ˆ
d4k

(2π)4

1

(k2 − c2 + iε)3
=

−i
32π2c2

(2.593)
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So, if we differentiate (2.592) with respect to M2
0 (so that we get a power of

3 in the denominator), we get

∂

∂M2
0

ˆ Λ d4κ

(2π)4

[
1

(κ2 −M2
0 + iε)2

− 1

(κ2 − Λ2 + iε)2

]
=

ˆ Λ d4κ

(2π)4

2

(κ2 −M2
0 + iε)3

=
−i

16π2M2
0

according to (2.593). (2.594)

Thus, by reintegrating we get

ˆ Λ d4κ

(2π)4

[
1

(κ2 −M2
0 + iε)2

− 1

(κ2 − Λ2 + iε)2

]
=
−i

16π2
log
(
M2

0

)
+ C.

(2.595)

Repeating this process, but starting with differentiating with respect to Λ2

then reintegrating, we get

ˆ Λ d4κ

(2π)4

[
1

(κ2 −M2
0 + iε)2

− 1

(κ2 − Λ2 + iε)2

]
=

i

16π2
log
(
Λ2
)

+ C̃.

(2.596)

This is true when

C =
i

16π2
log
(
Λ2
)

and C̃ =
−i

16π2
log
(
M2

0

)
. (2.597)

And therefore, we deduce that

ˆ Λ d4κ

(2π)4

[
1

(κ2 −M2
0 + iε)2

− 1

(κ2 − Λ2 + iε)2

]
=

i

16π2
log

(
Λ2

M2
0

)
(2.598)

So, the scattering amplitude is

M =
iλ2

32π2

ˆ 1

0

dα log

(
Λ2

M0(α)2

)
(2.599)

This matches up exactly with what we found in Eq. (2.591), where again
M0(α) = m2 − α(1− α)K2.

Evaluating M - my attempt

From (2.590), we have roughly

M =
iλ2

32π2

ˆ 1

0

dα

[
−1 + log

(
Λ2

m2 − α(1− α)K2 − iε

)]
, (2.600)
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in the m2 � K2 � Λ2 limit, we can just set m2 = 0 and actually evaluate this
integral in Mathematica to find

M =
iλ2

32π2

[
1 + log

(
Λ2

−K2

)]
(2.601)

Here’s the Mathematica code:

In [37]:= Integrate[Log[L^2/(-a (1 - a) K^2) ] - 1, {a, 0, 1}]

Out [37]= 1 + Log[-(L^2/K^2)]

Now this is not what Zee got, and I can’t seem to see why. But this source
from Johns Hopkins, page 113/260, confirms my answer.

Parameterizing M0 - (Zee way)

We have seen that the expression for the scattering amplitude after Pauli-Villars
regularization is

M =
iλ2

32π2

ˆ 1

0

dα log

(
Λ2

m2 − α(1− α)K2 − iε

)
(2.602)

For simplicity let’s just assume that m2 � K2, so that we can ignore the m2

term in the integrand when necessary.

From here, I’ll just take Zee’s words for it. Essentially, this leftover is not an
easy integral to evaluate without assuming m2 → 0. Zee says that this one-loop
φ4 amplitude comes out to be

M = 2iλ2C log

(
Λ2

K2

)
(2.603)

where C is some numerical constant. At this point, we use kinematics variables

s ≡ K2 = (k1 + k2)2 (2.604)

t ≡ (k1 − k3)2 (2.605)

u ≡ (k1 − k4)2 (2.606)

whose relations are given in II.6 in Zee’s book. It turns out that we can write
the scattering amplitude for meson-meson scattering (which includes both a tree
and a loop) as

Mmeson = −iλ+ iCλ2

[
log

(
Λ2

s

)
+ log

(
Λ2

t

)
+ log

(
Λ2

u

)]
+ . . . (2.607)

This says after regularization, we speak of cutoff-dependent quantities instead
of divergent quantities, and M depends logarithmically on the cutoff (or more
precise the square of it).

http://sites.krieger.jhu.edu/jared-kaplan/files/2016/05/QFTNotes.pdf
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What is actually measured

Suppose experiments measure a scattering amplitude of iλP . By the our calcu-
lation, it has to be true that

−iλP = −iλ+ iCλ2

[
log

(
Λ2

s

)
+ log

(
Λ2

t

)
+ log

(
Λ2

u

)]
+ . . . . (2.608)

Calling the sum of the logarithms in the square brackets L, we can write

M = −iλP = −iλ+ iCλ2L+ . . . . (2.609)

Let

−iλP = −iλ+ iCλ2L0 (2.610)

where

L0 ≡
[
log

(
Λ2

s0

)
+ log

(
Λ2

t0

)
+ log

(
Λ2

u0

)]
(2.611)

This gives the relationship between λP and λ. With this, we can solve for λ in
terms of λP :

−iλ = −iλP − iCλ2L0 +O(λ3) = −iλP − iCλ2
PL0 +O(λ3

P ). (2.612)

So we have

M = −iλP − iCλ2
PL0 + iCλ2

PL+O(λ3
P ). (2.613)

Now, we see that in the scattering amplitude of M there is a combination
of

L− L0 = log
(s0

s

)
+ log

(
t0
t

)
+ log

(u0

u

)
, (2.614)

i.e.,

M = −iλP + iCλ2
P

[
log
(s0

s

)
+ log

(
t0
t

)
+ log

(u0

u

)]
+O(λ3

P ) (2.615)

This tells us that when the scattering amplitude is expressed in terms of the
physical coupling constant λP , the cut off Λ disappears.

And so the take-away point here is that we should express physical quan-
tities not in terms of fictitious quantities such as λ, but in terms of physical,
measurable quantities such as λP .

The quantity λP is often referred to as the “renormalization coupling con-
stant,” or “physical coupling constant” in Zee’s words.
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2.5.2 Renormalizable vs. Nonrenormalizable

It turns out that there are theories that are “renormalizable,” which means
scattering amplitudes can be written in terms of physical quantities with no de-
pendence on cutoffs (at least to some orders of λ2

P ). There are, however, theories
in which this cannot happen. These are called “nonrenormalizable theories.”

Einstein’s theory of gravity is an example of a nonrenormalizable theory.

Dimensional Analysis as Test

It also turns out that by looking at dimensions of particular terms we can tell
if a theory is renormalizable or not.

First, we have

~ = c = 1. (2.616)

This says length and time has the same dimension, which is the inverse of the
dimension of mass.

The action has the form

S ≡
ˆ
d4xL (2.617)

which appears in the path integral as

eiS (2.618)

so both the path integral and the action have to be dimensionless. Therefore,
the Lagrangian density must have dimension of space raised to to the minus 4
power, i.e., the Lagrangian density has dimension as the 4th power of mass. We
denote this as

[L] = 4. (2.619)

And so in this notation

[x] = 1 (2.620)

[∂] = −1. (2.621)

Based on the scalar field theory

L =
1

2
[(∂φ)2 −m2φ2]− λφ4. (2.622)

To make [L] = 4, we must have

[φ] = 1 (2.623)
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which implies

[λ] = 0. (2.624)

So, the coupling λ is dimensionless.

For fermion field φ, the Lagrangian density is

L = ψ̄iγµ∂µψ + . . . (2.625)

must have dimension 4. But because [∂] = 1 and [L] = 4 and there are two
factors of ψ, we must have

[ψ] =
3

2
. (2.626)

From the Maxwell Lagrangian density

L = −1

4
FµνF

µν . (2.627)

This has dimension 4 as always, and so the vector potential must have dimension
1, because each Fµν has dimensions of a ∂νAµ. This tells us that

[Aµ] = [φ] = 1, (2.628)

i.e., vectors fields have the same dimension as scalar fields.

Scattering amplitudes blowing up

Suppose we have a theory where the scattering amplitude up to second order is

M∼ G+G2(?) (2.629)

where

[G] = −2. (2.630)

Then the (?) must take dimension 2. The only possibility for (?) is Λ2, since
[Λ] = 1. Cutoffs have units of mass/energy/momentum. Without a cutoff on
the theory, Λ =∞. An example of this is Fermi’s weak interaction theory.

Einstein’s gravity blowing up

Einstein’s GR is nonrenormalizable. Newton’s gravitation constant (or should
we say the physical coupling constant) has dimension of −2. So just as before,
a Λ2 is needed in writing out the scattering amplitude, but this blows up as
Λ→∞ (without a cutoff).
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2.5.3 Perturbation Theory & Degree of Divergence

Renormalizability

From the last section, we see that theories whose coupling constant λ,G, etc have
negative (mass) dimensions are nonrenormalizable. QED and the φ4 theory
which have the dimensionless coupling constant are renormalizable. However, it
is difficult to prove in general that a given theory is renormalizable. It is often
easier to prove that a theory is nonrenormalizable.

Let’s revisit the φ4 theory. We know that the scattering amplitude has some
form (correct as far as dimensions are concerned) of

−iλP = −iλ+ 3iC log

(
Λ2

µ2

)
+O(λ3). (2.631)

We saw that to order λ2 the meson-meson scattering amplitude when ex-
pressed in terms of the physical coupling constant is independent of the cutoff Λ.
But how can we be sure that Λ isn’t going to appear at higher orders? Dimen-
sional analysis only tells us that to any order in λ the dependence of the meson
scattering amplitude on the cutoff must be a sum of terms going as logp(Λ/µ)
where p is some power.

Let’s look at a few examples. Consider the following two Feynman diagrams.

The amplitude associated with the first diagram has the form

M1 ∝ −iλ
ˆ Λ d4q

(2π)4

i

q2 −m2 + iε
. (2.632)

since there is one loop of variable momentum q. Because we are integrating
over four dimensions of q and taking away two dimensions of q, we get that this
amplitude depends quadratically on the cutoff Λ, but not on k2.
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On the other hand, the second diagram has a double integral because there
are two variable momenta. There are two vertices and three internal lines, so

M2 ∝ (−iλ)2

¨ Λ d4p

(2π)4

d4q

(2π)4

i

p2 −m2 + iε

i

q2 −m2 + iε

i

(p+ q + k)2 −m2 + iε
.

(2.633)

We see that we are integrating over 8 total dimensions of momentum, but taking
away 6, so this integral depends quadratically on the cutoff Λ as well.

We also notice that this integral is a function of k2. So (by Lorentz invari-
ance) we can expand it has the series

D + Ek2 + Fk4 + . . . (2.634)

D must have the same dimension as the integral, so it depends quadratically on
Λ. E can be obtained by differentiating with respect to k twice. This decreases
the power of q, p in the integrand by 2 (since the power 2 now becomes 4) and so
E depends logarithmically on Λ (the integral now looks like

´
d8x 1/x8). Sim-

ilarly, we can reason that F looks like the integral
´
d8x 1/x10 since we need

to differentiate with respect to k 4 times, increasing the power of q, p in the
exponential by 4. All this means that F converges and is cutoff-independent.
Therefore, we know that F and higher order terms of k2 converge and are Λ-
independent as well. We, then, don’t have to worry about them.

With this, M2 is both quadratically and logarithmically cutoff-dependent.
Now, suppose we do a mass renormalization by shifting the energy-momentum-
mass:

1

k2 −m2
→ 1

(1 + b)k2 − (m2 − a)
. (2.635)

Obviously the pole in k2 is now shifted to

m2
P ≡ m2 + δm2 ≡ (m2 − a)(1 + b)−1 (2.636)

We refer to this as the physical mass. With this, we can write the propagator
(in momentum space of course) as

1

k2 −m2
→ (1 + b)−1

k2 −m2
P

(2.637)

Notice here that the residue of the pole in this propagator is no longer 1 but
(1 + b)−1. What is this shift in residue?

We note that the coefficient of k2 in 1/D(k) is identically 1 because the co-
efficient of (1/2)(∂φ)2 is identically 1 in the Lagrangian density. Let’s elaborate
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a little bit. Recall that the spacetime propagator is defined as the inverse of
the operator (� + m2). It follows from here and some properties of Gaussian
integrals that the propagator in momentum space has the form 1/(k2 − m2).
This is essentially the derivation we did very early on. So, we see that there
is certainly no guarantee that with higher order corrections included the coeffi-
cient of (1/2)(∂φ)2 in an effective L, say Leff, will stay at 1.

In fact, by inspection, the coefficient is shifted from 1 to (1 + b). This is
called wavefunction renormalization, or field renormalization.

Physical Perturbation Theory

The physical perturbation theory is given by

L =
1

2
(∂φ)2 +

1

2
m2φ2 − λP

4!
φ4 +A(∂φ)2 +Bφ2 + Cφ4. (2.638)

This theory basically says for each order of φ in the regular Lagrangian,
there is a perturbative term A, B, or C of the same order the perturbative
Lagrangian. This perturbative Lagrangian also carries the physical coupling
constant λP instead of the theoretical λ.

Here’s how the theory works: The Feynman rules are as before, but with the
crucial different that the coupling constant is λP , and the propagator has the
form

i

k2 −m2
P + iε

, (2.639)

where the physical mass is used instead. The last three terms with coefficients
A, B, and C are called counterterms. These coefficients are determined it-
eratively as we go to higher and higher order in perturbation theory. These
perturbations are represented as crosses in Feynman diagrams:

We note that all momenta are integrated up to cutoff.
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The coefficients A, B, C are determined iteratively as follows. Suppose they
are determined up to order λNP . Let these values be AN , BN , and CN . We
then draw all diagrams that appear in order λN+1

P . We determine AN+1, BN+1,
and CN+1 by requiring that the propagator calculated to the order λN+1

P has
a pole at mp with a residue equal to 1, and that the meson=meson scattering
amplitude evaluated at some specified values of the kinematic variables has the
value −iλP . We note that there are exactly 3 conditions to determine the these
three unknown coefficients.

Degree of Divergence - Power Counting

Definition: A diagram is said to have a superficial degree of divergence D if it
diverges as ΛD. A logarithmic divergence log Λ counts as D = 0.

φ-Theorem: For a diagram with BE external φ lines, the degree of divergence
is given by

D = 4−BE (2.640)

Proof by Zee: The proof of this theorem follows from simple power counting.
In addition to BE and D, let us define BI as the number of internal lines, V as
the number of vertices (where 4 lines meet), and L as the number of loops.

The number of loops is just the number of
´
d4k/(2π)4 that we have to do,

i.e., it is the number of independent internal momenta. Each internal line carries
with it a momentum to be integrated over, so we seem to have BI integrals to do.
However, the actual number of integrals to be done to reduced by the momentum
conservation delta function associated with the vertices, one to each vertex. By
assumption, there are V delta functions, with one of them is associated with
the conservation momentum of the entire diagram. It follows that the number
of loops is

L = BI − (V − 1). (2.641)

Now, for each vertex, there are four lines. Each external line comes out of
one vertex. Each internal line connects two vertices. Thus we have

4V = BE + 2BI . (2.642)

Finally, for each loop there is a
´
dk while for each internal line there is a

i/(k2 −m2 + iε), bringing the powers of momentum down by 2. So,

D = 4L− 2BI . (2.643)

Putting these relationship together, we obtain

D = 4−BE (2.644)



2.5. RENORMALIZATION & GAUGE INVARIANCE 225

as desired.

Proof by Me: I find my proof more intuitive. But I’m of course biased. To show:

D = 4−BE (2.645)

where D is the degree of divergence and BE is the number of external lines.
Well, we know that the number D, or the number of divergence is equal to the
total number of momentum dimensions in the integral measure, minus the total
number of momentum dimensions in the denominator of the integrand, which
is a product of propagators. In general, the scattering amplitude integral as the
form

ˆ
. . .

ˆ
d4p1 . . . d

4pn

{
i

k2

}n′
. (2.646)

So we first have

D = 4n− 2n′. (2.647)

Now, what are n and n′? n is the total number of integrals, which is equal
to the number of “momentum unknowns” or “internal momentum variables” in
a Feynman diagram. This number is completely determined by the number of
vertices V and internal lines BI . If we associate to each internal line a variable
momentum then we have BI variables to integrate over, but for each vertex
there are two internal lines going out/in to it, so the number of variables is
reduced by V − 1. Note that we only consider internal lines going either in or
out of a vertex to avoid double-counting. Thus we have

# integrals = BI − (V − 1). (2.648)

Next, n′ is the number of propagators, which is identically the number of
internal lines BI . So,

D = 4(BI − (V − 1))− 2BI = 2(2 +BI − 2V ). (2.649)

Okay, but we often know the number of external lines BE , and also know that
the total number of lines is 4 times the number of vertices (4 lines per vertex)
minus the number of internal lines BI (accounting for double counting), so

BE +BI = 4V −BI ⇐⇒ 2(2 +B − 2V ) = 4− 2BE . (2.650)

Therefore,

D = 4−BE . (2.651)

Example. Consider the attached diagram
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By inspection, we have BE = 6. So the theorem says D = −2. But we
can also verify that this is true. Consider particles coming in from below.
Then we have only 2 unknown variable momenta (since the momentum on the
internal line in the middle is completely determined by the outgoing momenta
and two variable momenta directly above and below). This means we integrate
over 8 dimensions of momentum, while carrying 5 propagators, each with −2
dimensions of momentum. This means the degree of divergence is 8− 10 = −2.
So things work as expected.

Degree of Divergence with Fermions

The theorem is modified for a different kind of particles. In this case, we have
fermions instead of mesons like last time.

Consider the following Lagrangian for fermions, called the Yukawa theory

L = ψ̄(iγµ∂µ −mP )ψ +
1

2
[(∂φ)2 − µ2

Pφ
2]− λPφ4 + fPφψ̄ψ. (2.652)

Here we have FI and FE as the number of internal and external lines as
before, but there are two kinds of coupling: λ and f . Also recall that [φ] = 1
and [ψ] = 3/2. We now want to express D in terms of external lines: bosonic
external lines BE and fermionic external lines FE .

It turns out that

D = 4−BE −
3

2
FE (2.653)

So the degree of divergence for this theory has an extra dependence on the num-
ber of external fermionic lines.
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To prove this, we will need to know what the fermion propagators are, but
since we haven’t discussed fermionic propagator up to this point I will present
the proof later in this section. However, we can get a feel for why this holds by
looking at some Feynman diagrams with fermions and photons. First, we have
that vertex amplitudes are assigned as

With this, some simple Feynman diagrams with no loops look like

or (with photon lines)

Proof: Here we show that in fact in Yukawa theory

D = 4−BE −
3

2
FE . (2.654)
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The number of loop integrals is given by the number of independent four-
momenta in a given diagram. Each propagator has its own four-momentum,
while each vertex enforces four-momentum conservation. However, there always
remains one overall four-momentum conservation of the diagram. Hence,

L = Pf + Ps − VY − Vλ + 1 (2.655)

where L is the number of loop integrals, Pf , Ps the number of fermion or scalar
propagators, respectively, VY the number of Yukawa vertices, and Vλ is the
number of φ4 vertices. Since each Yukawa vertex comes with two fermion lines
and one scalar line,

VY =
1

2
(2Pf +Nf ) (2.656)

Here, Nf , Ns are the number of external fermion or scalar lines, respectively.
Each propagator is counted twice as it connects two vertices, while an external
line connects to only one vertex. The superficial degrees of divergence is

D = 4L− Pf − 2Ps (2.657)

since each fermion propagator is associated with −1 dimension of momentum,
while each scalar propagator is associated with −2 dimensions of momentum.

From the previous section, we also know that in the φ4 theory,

4Vλ = 2BI +BE (2.658)

where BI is the number of φ4-scalar propagators, and BE is the number of
φ4-external scalar lines. With this,

VY + 4Vλ = 2Ps +Ns (2.659)

because each Yukawa vertex is associated with 1 internal/external scalar line
and each 4 φ4 vertices is associated with 2 internal scalar lines and 1 external
scalar line.

Therefore,

D = 4(Pf + Ps − VY − Vλ + 1)− Pf − 2Ps

= 4

(
Pf + Ps −

1

2
(2Pf +Nf )− Vλ + 1

)
− Pf − 2Ps

= 4

(
Pf + Ps −

1

2
(2Pf +Nf )− 1

4
(2Ps +Ns − VY ) + 1

)
− Pf − 2Ps

= 4

(
Pf + Ps −

1

2
(2Pf +Nf )− 1

4

(
2Ps +Ns −

1

2
(2Pf +Nf )

)
+ 1

)
− Pf − 2Ps

= 4−Ns −
3

2
Ns. (2.660)
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Thus,

D = 4−Ns −
3

2
Nf (2.661)

Note: This proof is collected and corrected from Hitoshi’s notes.

Remark 1: We notice that both this result and the result from last section
are independent of the number of vertices. This means for a given number of
external lines, no matter to what order of perturbation theory we go, the su-
perficial degree of divergence remains the same.

Remark 2: We also notice that the leading coefficient of BE and FE cor-
respond to the dimension of the respective fields: [φ] = 1, and [ψ] = 3/2.

Nonrenormalizable field theories

Suppose we have a theory where

D = 4− 3

2
Nf + 2V. (2.662)

D now depends on V . Thus, if we calculate fermion-fermion scattering, for
example, the divergence gets worse and worse as we go to higher and higher or-
ders in the perturbation series. This forces us to include more and more counter
terms in the Lagrangian. This makes the theory very limited in predictive power.

http://hitoshi.berkeley.edu/230A/Yukawa.pdf
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2.5.4 Gauge Invariance: A Photon Can Find No Rest

When the central identity blows up

Recall that the central identity of quantum field theory is

ˆ
D[φ] exp

(
−1

2
φ ·K · φJ · φ0V (φ)

)
= exp

(
−V δ

δJ

)
exp

(
1

2
J ·K−1 · J

)
(2.663)

For any field theory, we can always gather up all the fields, put them into
one column vector, and call the vector φ. We then single out the term quadratic
in φ and write it as (1/2)φ ·K · φ, and call the rest V (φ).

Question: what is K is not invertible?

This happens in the Maxwell action:

S(A) =

ˆ
d4xL =

ˆ
d4x

[
1

2
Aµ(∂2gµν − ∂µ∂ν)Aν +AµJ

µ

]
(2.664)

where the matrix K is proportional the differential operator:

K ∝ Qµν = (∂2gµν − ∂µ∂ν) (2.665)

We observe that the kernel of K is non-trivial, i.e., for some non-zero vector,
say, ∂µΛ(x), we have

Qµν(∂νΛ(x)) = ∂2gµν∂νΛ(x)− ∂µ∂ν∂νΛ(x) = ∂µ∂2Λ(x)− ∂µ∂2Λ(x) = 0
(2.666)

where

∂2 = ∂µ∂
µ = ∂µ∂µ. (2.667)

And so we conclude Qµν is not invertible. This is actually no surprise. We
have learned from EM that adding a constant to an electrostatic potential makes
no change to the electric field. We also learned that in order to “solve” for a
potential, we have to “fix” a reference point. We sort of do the same thing
here: we must impose an additional constant on the gauge potential Aµ. This
is called “fixing the gauge.”

Restricting the functional integral: Faddeev & Popov

Suppose we want to evaluate some integral of the form

I ≡
ˆ

D[A] eiS(A), (2.668)
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where this can be an ordinary integral or a path integral. We assume further
that under the transformation

A→ Ag (2.669)

the integrand and the measure do not change, i.e.,

S(A) = S(Ag) DA = DAg. (2.670)

The set of these transformations form a group (and we can verify this quite
easily by checking: “closure”, “identity”, “associativity”, and “inverse”). We
would like to write the integral I in the form

I =

ˆ
D[g] J (2.671)

where J is independent of g. In other words, we want to factor out the redundant
integration over g. For example, in order to evaluate

I =

ˆ
dxdy eiS(x,y), S(x, y) = x2 + y2, (2.672)

we can go to polar coordinates and write

I =

ˆ
rdrdθ eir

2

=

ˆ
dθ J = 2πJ (2.673)

where

J =

ˆ
dr reir

2

(2.674)

which is completely independent of θ.

Faddeev & Popov showed how to do this “going over to polar coordinates”
in a unified and elegant way. First, we write

1 = ∆(A)

ˆ
D[g] δ[f(Ag)] (2.675)

This is just a way for us to define ∆(A), the Faddeev-Popov determinant, which
of course depends on the function f . From this definition, we can see that

[∆(Ag′)]
−1 =

ˆ
D[g] δ[f(Ag′g)] =

ˆ
D[g′′]δ[f(Ag′′)] = [∆(A)]−1 (2.676)

from our assumptions about the transformations (of the same group) and defin-
ing g′′ = g′g and noting D[g′′] = D[g′′]. In other words, because the transfor-
mations change neither the value of f nor the integration measure, we have

∆(A) = ∆(Ag) (2.677)
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i.e., the Faddeev-Popov determinant is gauge invariant. With this,

I =

ˆ
D[A] eiS(A)

=

ˆ
D[A] eiS(A) × 1

=

ˆ
D[A] eiS(A)∆(A)

ˆ
D[g] δ[f(Ag)]

=

(ˆ
D[g]

)ˆ
D[A] eiS(A)∆(A)δ[f(Ag)] (2.678)

Since ∆(A) is invariant under transformations, we can write

I =

(ˆ
D[g]

)ˆ
D[A] eiS(A)∆(A)δ[f(A)] (2.679)

where we have made the transformation A→ Ag−1 .

So, the group integration
´
D[g] has been factored out.

The Faddeev-Popov argument is an alternative to Feynman argument re-
garding evaluating Z. The Faddeev-Popov method is useful in Einstein theory.

Fixing the electromagnetic gauge

We will now apply Faddeev-Popov to electromagnetism. We notice that the
transformation that leaves the EM action invariant is

Aµ → Aµ − ∂µΛ. (2.680)

This means we can’t find the photon propagator (i.e., the inverse of the differ-
ential operator) unless we fix this gauge (i.e., making this differential operator
at least one-to-one).

To do this, we notice that the original integral

I =

ˆ
D[A] eiS(A) =

(ˆ
D[g]

)ˆ
D[A] eiS(A)∆(A)δ[f(A)] (2.681)

is not explicitly dependent on f despite its appearance in the second equality.
So, we are free to choose f . In particular, let us choose

f(A) = ∂A− σ (2.682)

where σ = σ(x). Because I is ultimately independent of σ, we can integrate I
with an arbitrary functional of σ. Let this functional be

e−(i/2ξ)
´
d4xσ2(x). (2.683)
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With this, we turn the Faddeev-Popov crank:

[∆(A)]−1 ≡
ˆ

D[g] δ[f(Ag)] =

ˆ
D[Λ] δ[∂A− ∂2Λ− σ]. (2.684)

If we set f(A) = ∂A− σ = 0, then

∆A ∼
[ˆ

D[Λ]δ(∂2Λ)

]−1

(2.685)

which doesn’t depend on A and cancels with the
´
D[Λ] in the I integral. And

so

I ∼
ˆ

D[A]eiS(A)δ(∂A− σ). (2.686)

Integrating over σ(x) to obtain

Z =

ˆ
D[σ]e−(i/2ξ)

´
d4xσ2(x)

ˆ
D[A]eiS(A)δ(∂A− σ)

=

ˆ
D[A]eiS(A)−(i/2ξ)

´
d4x (∂A)2 . (2.687)

Thus, the action is effectively

Seff = S(A)− 1

2ξ

ˆ
d4x (∂A)2 (2.688)

where

S(A) =

ˆ
d4xL =

ˆ
d4x

[
1

2
Aµ(∂2gµν − ∂µ∂ν)Aν +AµJ

µ

]
. (2.689)

So we find after some simple simplifications that

Seff =

ˆ
d4x

{
1

2
Aµ

[
∂2gµν −

(
1− 1

ξ

)
∂µ∂ν

]
Aν +AµJ

µ

}
(2.690)

And so we replace Qµν by

Qµνeff = ∂2gµν −
(

1− 1

ξ

)
∂µ∂ν . (2.691)

In momentum space,

Qµνeff,k = −k2gµν +

(
1− 1

ξ

)
kµkν . (2.692)

This operator has an inverse. It is straightforward to verify that

Qµνeff,k

[
−gνλ + (1− ξ)kνkλ

k2

]
1

k2
= δµλ . (2.693)

And so we can choose the photon propagator to be

−i
k2

[
gνλ − (1− ξ)kνkλ

k2

]
(2.694)
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2.5.5 Field Theory without Relativity

Nonrelativistic limit of QFT

In this section we learn how to take the nonrelativistic limit of QFT. The Lorentz
invariant scalar field theory is given by

L = (∂Φ†)(∂Φ)−m2Φ†Φ− λ(Φ†Φ)2 (2.695)

with λ > 0. This describes interacting bosons, so it should also contain physics
of slow moving bosons.

Let’s now consider the (relativistic) Klein-Gordon equation:

(� +m2)Φ = 0 (2.696)

for a free scalar field. A mode with energy E = m+ ε would oscillate in time as

Φ ∝ e−iEt. (2.697)

In the nonrelativistic limit, the kinetic energy ε� m, so we can write

Φ(~x, t) = e−imtφ(~x, t) (2.698)

where φ(~x, t) oscillates much more slowly than e−imt. Since Φ(~x, t) solves the
Klein-Gordon equation we have

0 = (� +m2)e−imtφ(~x, t)

= (∂2
t −∇2 +m2)e−imtφ

= ∂2
t (e−imtφ)− e−imt∇2φ+ e−imtm2φ

= ∂t[(−imφ+ ∂tφ)e−imt]− e−imt∇2φ+ e−imtm2φ

= e−imt[−im(−imφ+ ∂tφ) + (−im∂tφ+ ∂2
t φ)]− e−imt∇2φ+ e−imtm2φ

= (−m2φ+m2φ)− 2im∂tφ+ ∂2
t φ−∇2φ

≈ −2im∂tφ−∇2φ. (∂2
t φ→ 0 ε� m) (2.699)

So we recover the Schrödinger equation:

i∂tφ = − 1

2m
∇2φ. (2.700)

With this result, we can take the nonrelativistic limit of QFT by plugging

Φ(~x, t) =
1√
2m

e−imtφ(~x, t) (2.701)

into the Lagrangian in the beginning, where the factor 1/
√

2m is only for con-
venience. We will leave the spatial derivatives untouched and only look at the
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time derivative piece of the Lagrangian:

∂tΦ
†∂tΦ−m2Φ†Φ =

1

2m

{[
imφ† + ∂tφ

†] [−imφ+ ∂tφ]−m2φ†φ
}

≈ i

2

(
φ†∂tφ− ∂tφ†φ

)
. (2.702)

With

∂t(φ
†φ) = ∂tφ

† φ+ φ†∂tφ =⇒ ∂tφ
† φ = ∂t(φ

†φ)− φ†∂tφ→ −φ†∂tφ (2.703)

we argue that φ†φ no longer has any time dependence because of the conjugation.
So we can just set this term to zero.

L = (∂Φ†)(∂Φ)−m2Φ†Φ− λ(Φ†Φ)2

=
i

2

(
φ†∂tφ− ∂tφ†φ

)
− 1

2m
∂iφ
†∂iφ−

λ

4m2
(φ†φ)2

= iφ†∂tφ−
1

2m
∂iφ
†∂iφ−

λ

4m2
(φ†φ)2. (2.704)

We note that the spatial derivatives carry a minus sign because of the Minkowskian
metric.
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2.6 Gravity and Beyond

2.6.1 Gravity as a Field Theory

Recall the Einstein-Hilbert action for gravity:

S =
1

16πG

ˆ
d4x
√
−gR ≡

ˆ
d4x
√
−gM2

PR (2.705)

where g = det(gµν), R is the scalar curvature, and G is Newton’s constant.

The Riemann curvature tensor is given by

Rλµνκ = ∂νΓλµκ − ∂κΓλµν + ΓσµκΓλνσ − ΓσµνΓλκσ. (2.706)

The Christoffel symbols are constructed out of the metric tensor:

Γλµν =
1

2
gλρ(∂νgρµ + ∂µgρν − ∂ρgµν). (2.707)

The Ricci tensor is a contraction of the Riemann tensor:

Rµκ = Rνµνκ (2.708)

and the scalar curvature is a contraction of the Ricci tensor

R = gµνRµν . (2.709)

Varying S, i.e., with δS = 0, we get the Einstein field equation:

Rµν −
1

2
gµνR = −8πGTµν (2.710)

Gravity as a field theory

When we write the metric as Minkowskian plus a perturbation piece (weak-field
expansion):

gµν = ηµν + hµν (2.711)

the Einstein tensor becomes

Gµν =
1

2

(
∂σ∂µh

σ
ν + ∂ν∂σh

σ
µ − ∂µ∂νh−�hµν − ηµν∂ρ∂λhρλ + ηµν�h

)
(2.712)

and so the action becomes (schematically)

S =

ˆ
d4x

1

16πG
(∂h∂h+ h∂h∂h+ h2∂h∂h+ . . . ) (2.713)

where the Lorentz indices have been suppressed and second derivatives have
been written out in terms like ∂h∂h, etc. The field hµν(x) describes a graviton
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in flat pace and is to be treated like any other field. The first term ∂h∂h is
analogous to ∂φ∂φ or ∂A∂A in the usual field theory, and so it also governs
how the graviton propagates. The terms cubic and higher in h determine the
interaction of the graviton with itself.

Gravity is not renormalizable. The Einstein-Hilbert action is an infinite se-
ries in the graviton field hµν due to the presence of

√
−g and the inverse of gµν .

With the stress-energy tensor being

Tµν(x) = − 2√
−g

δSM
δgµν(x)

(2.714)

as defined in the CFT notes, in Sec 8.3, the coupling of the graviton to matter
(in the weak field limit of course) can be included by adding the term

−
ˆ
d4x

1

2
hµνT

µν (2.715)

to the action so that schematically,

S =

ˆ
d4x

[
1

16πG
(∂h∂h+ h∂h∂h+ h2∂h∂h+ . . . ) + (hT + . . . )

]
(2.716)

We can rescale hµν →
√
Ghµν as absorb 16π whenever convenient so that we

can just write the action as

S =

ˆ
d4x (∂h∂h+

√
Gh∂h∂h+Gh2∂h∂h+ · · ·+

√
GhT ) (2.717)

Because the Planck mass MP ≡ 1/
√

16πG is enormous, we see once again that
the coupling strength of the graviton to itself and any other field is very weak.

The weak field action

From Sean Carroll’s Spacetime & Geometry, or from the CFT notes, we have
seen the weak field action:

S =

ˆ
d4x
√
−gL =

ˆ
d4xL (2.718)

where

L =
1

2

[
(∂µh

µν)(∂νh)− (∂µh
ρσ)(∂ρh

µ
σ) +

1

2
ηµν(∂µh

ρσ)(∂νhρσ)− 1

2
ηµν(∂µh)(∂νh)

]
.

(2.719)

We know that when requiring δS = 0 ⇐⇒ δS/δhµν = 0, i.e., the variational
derivative of S with respect to hµν is zero, we get the Einstein tensor Gµν given

https://huanqbui.com/LaTeX projects/Classical_Fields_Theory/HuanBui_ClassicalFieldTheory.pdf
https://huanqbui.com/LaTeX projects/Classical_Fields_Theory/HuanBui_ClassicalFieldTheory.pdf
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by

Gµν = Rµν −
1

2
ηµνR

=
1

2

(
∂σ∂µh

σ
ν + ∂ν∂σh

σ
µ − ∂µ∂νh−�hµν − ηµν∂ρ∂λhρλ + ηµν�h

)
(2.720)

Let’s check this in xACT, as an exercise in indexing and of course in using
xACT. Here are the things we will need to do, in order: (1) importing the pack-
ages, (2) defining the manifold, (3) turning on the metric variations option, (4)
defining the metric ηµν (don’t worry about making it Minkowskian), (5) defin-
ing the perturbation hµν , (6) defining the Lagrangian, (7) taking the variational
derivative of the Lagrangian with VarD (assuming

√
−η = 1, of course).

... (import packages here)

...
DefManifold[M4 , 4, {a, b, c, d, e, f, i, k, l, m, n}]

DefMetricPerturbation /. Options@DefMetric

DefMetric[-1, \[Eta][-a, -b], CD, {"%", "\[Del]"}]

DefMetricPerturbation [\[ Eta], h, \[ Epsilon ]]

Lag := (1/
2)*((CD[-m][h[LI[1], m, n]])*(CD[-n][h[LI[1], -c, c]]) - (CD[-m][
h[LI[1], c, d]])*(CD[-c][h[LI[1], m, -d]]) + (1/2)*\[ Eta][m,
n]*(CD[-m][h[LI[1], c, d]])*( CD[-n][h[LI[1], -c, -d]]) - (1/
2)*\[ Eta][m,
n]*(CD[-m][h[LI[1], c, -c]])*(CD[-n][h[LI[1], d, -d]]))

(VarD[h[LI[1], c, d], CD][Lag*Sqrt[-Det\[Eta ][]]]/
Sqrt[-Det\[Eta ][]]) /. delta[-LI[1], LI[1]] -> 1 //
ExpandPerturbation // ContractMetric // ToCanonical

Here’s what we get:

Putting this back into LATEX after doing some manual contractions/simplifi-
cations, plus noting that the covariant derivative here is just the regular partial
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derivatives, we find that

Gµν =
1

2

(
−�hµν + ∂σ∂νh

σ
µ + ∂σ∂µh

σ
ν − ηµν∂λ∂σhλσ + ηµν�h− ∂µ∂νh

)
(2.721)

which matches exactly with the Einstein tensor Gµν provided earlier.

Note that when calling the perturbation metric hµν in xACT, make sure
that you are calling it by h[LI[order],-m,-n], so that xACT knows you mean
to call the perturbation metric.

Thus we confirm that the Lagrangian above gives the correct Einstein tensor.
But how is it found? Consider a general coordinate transformation:

x′µ → xµ − εµ(x). (2.722)

Then the metric changes according to

g′µν =
∂x′µ

∂xa
∂x′ν

∂xb
gab, (2.723)

where, as before,

gµν = ηµν − hµν + . . . (2.724)

How does hµν transform under this transformation? Well, we first have that

∂x′µ

∂xa
=

∂

∂xa
(xµ − εµ(x)) = δµa − ∂aεµ. (2.725)

And so treating ∂µεν as the same order as hµν we find

g′µν =
∂x′µ

∂xa
∂x′ν

∂xb
(
ηab − hab

)
= (δµa − ∂aεµ)(δνb − ∂bεν)

(
ηab − hab

)
≈ (δµa − ∂aεµ)(ηaν − haν − (∂be

ν)ηab + . . .)

≈ ηµν − hµν − (∂aε
ν)ηµa − (∂bε

µ)ηbν . (2.726)

Next, we lower the index to get h′µν :

ηcµηdνg
′µν = ηcµηdν

(
ηµν − hµν − (∂aε

ν)ηµa − (∂bε
µ)ηbν

)
ηcd − h′cd = ηcd − hcd − (∂aεd)δ

a
c − (∂bεc)δ

b
c

h′cd = hcd + ∂cεd + ∂dεc. (2.727)

And so we have

h′µν = hµν + ∂µεν + ∂νεµ (2.728)
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and of course as a side product:

h′µν = hµν + ∂µεν + ∂νεµ (2.729)

and so the infinitesimal change in hab or hab is

δhµν = ∂µεν + ∂νεµ (2.730)

δhµν = ∂µεν + ∂µεµ (2.731)

which, by the way, are actually the Lie derivatives of the perturbative metric
hµν and its inverse hµν . These formulas represent the change of the metric
perturbation under an infinitesimal diffeomorphism along the vector field εµ.

Since we want to get Gµν that is linear in hµν , we look for quadratic terms
in h and in ∂. Lorentz invariance tells us that there are four possible terms. So
the action has the form

S =

ˆ
d4x (a∂λh

µν∂λhµν + b∂λh
µ
µ∂

λhνν + c∂λh
λν∂µhµν + d∂µhλλ∂

νhµν)

(2.732)

where a, b, c, d are unknown constants. Next, we require that δS/δhµν = 0 with
δhµν = ∂µεν + ∂νεµ. This should give 3 equations with 4 unknowns. Upon
writing three unknowns in terms of the remaining unknown we can find the
form of the Lagrangian. In the end, we should be able to fix the action up to
an overall constant factor.

With δS = 0, we bring the δ into the integrand and let δL = 0. The next
step is to do variational derivatives with respect to hµν on each term in the
integrand. We shall proceed, first with the first term:

δ(∂λh
µν∂λhµν) = ∂λ(δhµν)(∂λhµν) + (∂λh

µν)∂λ(δhµν)

= ∂λ(∂µεν + ∂νεµ)(∂λhµν) + (∂λh
µν)∂λ(∂µεν + ∂νεµ)

= ∂λ(∂µεν + ∂νεµ)(∂λhµν) + (∂λhµν)∂λ(∂µεν + ∂νεµ)

= 2∂λ(∂µεν + ∂νεµ)(∂λhµν)

= 4[∂λ(∂µεν)](∂λhµν), (2.733)

where the fourth equality follows from the symmetry µ ↔ ν in a summation.
Zee says

[∂λ(∂µεν)](∂λhµν) ∼ εν∂2∂µhµν (2.734)

from “integrating by parts” freely. It turns out we have to integrate by parts
twice to get this equality. We shall proceed with the first integration by parts
with respect to some measure dω which we are not going to worry about. We
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shall also assume that everything vanishes when evaluated at infinity and that
differential operators such as δ, ∂α, ∂

β ,� commute.

ˆ
dω ∂λ[(∂µεν)(∂λhµν)] =

ˆ
dω [∂λ(∂µεν)](∂λhµν) +

ˆ
dω (∂µεν)(∂λ∂

λhµν)

(∂µεν)(∂λhµν)

∣∣∣∣∞
−∞

=

ˆ
dω [∂λ(∂µεν)](∂λhµν) +

ˆ
dω (∂µεν)(∂λ∂

λhµν)

0 =

ˆ
dω [∂λ(∂µεν)](∂λhµν) +

ˆ
dω (∂µεν)(∂λ∂

λhµν)

=⇒ [∂λ(∂µεν)](∂λhµν) = −∂µεν∂λ∂λhµν . (2.735)

We evaluate this term (again) by integration by parts, again over some arbitrary
measure dω we won’t worry about:

∂µ(εν∂λ∂
λhµν)

∣∣∣∣∞
−∞

=

ˆ
dω ∂µεν∂λ∂

λhµν +

ˆ
dω εν∂λ∂

λ∂µhµν

0 =

ˆ
dω ∂µεν∂λ∂

λhµν +

ˆ
dω εν∂λ∂

λ∂µhµν

=⇒ −∂µεν∂λ∂λhµν = εν ∂λ∂
λ︸ ︷︷ ︸

�

∂µhµν . (2.736)

And so, we have for the first term:

δ(∂λh
µν∂λhµν) = 4eν�∂µhµν (2.737)

Moving on the second term:

δ[(∂λh)(∂λh)] = δ[(∂λh
µ
µ)(∂λhνν)]

= (∂λδh
µ
µ)(∂λhνν) + (∂λh

µ
µ)(∂λδhνν). (2.738)

We notice that this term is very similar to the first term, except for the “position
of the index of h.” That is to say, we are finding δ of the contraction. However,
we can always write

hµµ = ηµxh
µx (2.739)

hνν = ηνyhνy. (2.740)

From here we can do some mental prepping for what to come: the metric is
constant in the eyes of δ, so we can just pull the η’s out to the left and treat
them as constants. By doing this, we’re left with ηµxηνy times a term of the form
similar to the first term except for the appearance of the indices x, y. However,
by symmetry arguments, we should be able to get

δ[(∂λh)(∂λh)] = 4εν�∂νh (2.741)
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where the factor of 4 is explicitly shown here for reasons we will see later. We
shall see why this is true. First we write the contractions in terms of the original
tensor h times the metric

δ[(∂λh)(∂λh)] = (ηµxη
νy) δ[(∂λh

µx)(∂λhνy)]. (2.742)

Invoking the fact that

δhab = ∂aεb + ∂bεa

δhab = ∂aεb + ∂bεa (2.743)

and the b↔ a symmetry argument in a summation, we find

δ[(∂λh)(∂λh)] = 2 (ηµxη
νy) [(∂λ∂

µεx)(∂λhνy) + (∂λhµx)(∂λ∂
νεy)]

= 2 (ηµxη
νy) [(∂λ∂

µεx)(∂λhνy) + (∂λh
µx)(∂λ∂νεy)]

= 4 (ηµxη
νy) [(∂λ∂

µεx)(∂λhνy)]

= 4(∂λ∂
µεµ)(∂λh)

= 4(∂λ∂µε
µ)(∂λh). (2.744)

Time to integrate by parts (again over some measure dω we won’t worry about)

∂λ[(∂µε
µ)(∂λh)]

∣∣∣∣∞
−∞

=

ˆ
dω (∂λ∂µε

µ)(∂λh) +

ˆ
dω (∂µε

µ)�h

0 =

ˆ
dω (∂λ∂µε

µ)(∂λh) +

ˆ
dω (∂µε

µ)�h

=⇒ (∂λ∂µε
µ)(∂µh) = −(∂µε

µ)�h. (2.745)

We integrate by parts again:

∂µ[εµ�h]

∣∣∣∣∞
−∞

=

ˆ
dω (∂µε

µ)�h+

ˆ
dω eµ�∂µh

0 =

ˆ
dω (∂µε

µ)�h+

ˆ
dω εµ�∂µh

=⇒ (∂µε
µ)�h = −εµ�∂µh. (2.746)

So we have for the second term

δ[(∂λh)(∂λh)] = 4εν�∂νh (2.747)

Very nice! What about the third term? We claim:

δ[(∂λh
λν)(∂µhµν)] = 2εν�∂µhµν + 2εν∂ν∂

λ∂µhµλ. (2.748)

The only way to verify this is integration by parts (surprise!). But first we have
to let δ act on the h’s and write things out in terms of ε’s:

δ[(∂λh
λν)(∂µhµν)] = (∂λ(∂λεν + ∂νελ))(∂µhµν) + (∂λh

λν)(∂µ(∂µεν + ∂νεµ)).
(2.749)
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We will treat these two terms differently, despite the symmetry. For the first
term, we simply integrate by parts twice to get

(∂λ(∂λεν + ∂νελ))(∂µhµν) = 2(∂λ∂
λεν)(∂µhµν)

= −2(∂λεν)(∂λ∂
µhµν)

= 2(εν)(∂λ∂λ∂
µhµν)

= 2(εν)�∂µhµν . (2.750)

We recognize that, for the second term, by exchanging the indices µ → ν →
λ→ µ, then appropriately lowering and raising the indices on the second term,
then use the λ ↔ ν symmetry argument in the Lie derivative summation, we
get

(∂µh
µλ)(∂ν(∂λεν + ∂νελ)) = (∂µhµλ)(∂ν(∂λεν + ∂νελ))

= 2(∂µhµλ)(∂ν∂
λεν). (2.751)

From here, we will integrate by parts twice to get what we want. I won’t be
showing all the steps here because we can now do this integration by parts
“internally:”

2(∂µhµλ)∂ν(∂λεν) = −2(∂ν∂
µhµλ)(∂λεν) = 2εν∂λ∂ν∂

µhµλ = 2εν∂ν∂
λ∂µhµλ,

(2.752)

where the last equality follows from the fact that these differential operators
commute. Recognize the pattern in the first two equalities? Every time we
integrate by parts, we essentially let one derivative act on another factor (say
let ∂ν act on the ∂h instead of on ε). Since the total derivative is zero when
evaluated at infinity, this new quantity is equal to minus the original quantity.
We keep doing this until all derivatives are sandwiched between εν and hµλ.

So we have for the third term

δ[(∂λh
λν)(∂µhµν)] = 2εν�∂µhµν + 2εν∂ν∂

λ∂µhµλ (2.753)

What about the fourth term? Once again we have a contraction, which
means we need to write it out in terms of the metric η, then pull it outside of
the derivative since it is just a constant in the eyes of δ. We also invoke the
symmetry argument once again with derivatives of the ε’s. So,

δ[∂µhλλ∂
νhµν ] = δ[ηλx∂

µhλx∂νhµν ]

= (ηλx)δ[∂µhλx∂νhµν ]

= (ηλx)
{
∂µ(∂λεx + ∂xελ)∂νhµν + ∂µhλx∂ν(∂µεν + ∂νεµ)

}
= 2(∂µ∂λελ)∂νhµν + (2∂µh)∂ν(∂µεν). (2.754)

Integrate by parts the first term (twice) to get

2(∂µ∂λελ)∂νhµν = 2ελ∂
λ∂µ∂νhµν . (2.755)
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Integrate by parts the second term (twice) to get

(2∂µh)∂ν(∂µεν) = 2εν�∂νh. (2.756)

So we have

δ[∂µhλλ∂
νhµν ] = 2ελ∂

λ∂µ∂νhµν + 2εν�∂
νh = 2ελ∂λ∂

µ∂νhµν + 2εν�∂νh

(2.757)

Very nice! Putting everything we’ve done so far together, we find

δ(a∂λh
µν∂λhµν + b∂λh∂

λh+ c∂λh
λν∂µhµν + d∂µh∂νh)

= 4a(εν�∂µhµν) + 4b(εν�∂νh) + c(2εν�∂µhµν + 2εν∂ν∂
λ∂µhµλ)

+ 2d(ελ∂λ∂
µ∂νhµν) + 2d(εν�∂νh)

= (4a+ 2c)(εν�∂µhµν) + (4b+ 2d)(εν�∂νh) + (2c+ 2d)(εν∂ν∂
λ∂µhλµ)

= 0. (2.758)

When holds when we let a = 1/2, then c = −1, so d = 1, which implies
b = −1/2. Thus the correct action up to an overall factor is

S =

ˆ
d4x

1

2
∂λh

µν∂λhµν −
1

2
∂λh∂

λh− ∂λhλν∂µhµν + ∂µh∂νhµν (2.759)

So we have successfully constructed the linearized action.

Thus even if we had never heard of the Einstein-Hilbert action we could still
determine the action gravity in the weak field limit by requiring that the action
be invariant under the transformation

xµ → x′µ − εµ(x) (2.760)

or equivalently

δhµν = h′µν − hµν = ∂µεν + ∂νεµ. (2.761)

So based on our argument in the previous section, we can now write the weak
field expansion of the action S as

Swfg =

ˆ
d4x

(
1

32πG
I − 1

2
hµνT

µν

)
(2.762)

where

I =
1

2
∂λh

µν∂λhµν −
1

2
∂λh∂

λh− ∂λhλν∂µhµν + ∂µh∂νh (2.763)

and Tµν is the stress-energy tensor associated with matter.
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Graviton propagator

From the previous section we see that the weak field action Swfg has the same
quadratic structure of all the field theories we have studied, and so the graviton
propagator is once again the inverse of a differential operator. But just as in
Maxwell’s theory the relevant differential operator in the Einstein-Hilbert the-
ory does not have an inverse because of the “gauge invariance,” i.e., under a
transformation the action remains invariant. In other terms, we see that the
kernel of the differential operator is not trivial, i.e., it is not one-to-one and
therefore cannot have a well-defined inverse.

To deal with this, we need to rely on the Faddeev-Popov method. Recall
that the Faddeev-Popov method allows us to split our integration over physi-
cally distinct configurations and those over gauge orbits.

We observe that by adding(
∂µhµν −

1

2
∂νh

λ
λ

)2

(2.764)

to the invariant Lagrangian

1

2
∂λh

µν∂λhµν −
1

2
∂λh

µ
µ∂

λhνν − ∂λhλν∂µhµν + ∂µhλλ∂
νhµν (2.765)

we get

1

2
∂λh

µν∂λhµν −
1

2
∂λh

µ
µ∂

λhνν −���
���∂λh

λν∂µhµν +���
���∂µhλλ∂
νhµν

+((((
(((((∂µhµν)(∂λhλν) −���

���∂µhµν∂νh
λ
λ +

1

4
(∂νh)(∂νh)

=
1

2
∂λh

µν∂λhµν −
1

4
∂λh

µ
µ∂

λhνν . (2.766)

the weak field action effectively becomes

Swfg =

ˆ
d4x

1

2

[
1

32πG

(
∂λh

µν∂λhµν −
1

2
∂λh∂

λh

)
− hµνTµν

]
(2.767)

Why is this addition justified? Recall in the subsection Gauge Invariance: A
Photon Can Find No Rest where we introduced the Faddeev-Popov trick, we
find that by adding (∂A)2 to the Lagrangian we were able to replace the original
action by a new action whose Lagrangian contains has a differential operator
with an inverse. We are doing a similar thing here.

But of course we can’t just add whatever we want to the Lagrangian and
expect it to describe the same physics. One way to keep the Lagrangian the
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same is to require whatever we are adding to be zero. In our case, the freedom
in choosing hµν makes this a necessary condition, which means

∂µhµν −
1

2
∂νh

λ
λ = 0 ⇐⇒ ∂µhµν =

1

2
∂νh

λ
λ (2.768)

This is called the harmonic gauge condition. It turns out that this is the
linearized version of

∂µ
(√
−ggµν

)
= 0. (2.769)

With these results, we can write the action as

Swfg =

ˆ
d4x

1

2

[
1

32πG

(
∂λh

µν∂λhµν −
1

2
∂λh∂

λh

)
− hµνTµν

]
=

1

32πG

ˆ
d4x

[
hµνKµν;λσ(−∂2)hλσ +O(h3)

]
(2.770)

where

Kµν;λσ ≡
1

2
(ηµληνσ + ηµσηνλ − ηµνηλσ) (2.771)

where we regard λν and λσ as two indices. We can work backwards to check
writing the action in this form makes sense, but let’s not worry too much about
that for now.

Note that we are dealing with matrices acting in a linear space spanned by
symmetric two-index tensors. Thus, the identity matrix is actually

Iµν;λσ ≡
1

2
(ηµληνσ + ηµσηνσ). (2.772)

We can check that

Kµν;λσK
λσ

;ρω = Iµν;ρω, (2.773)

so that

K−1 = K, (2.774)

similar to how ηµν = ηµν . Thus in the harmonic gauge the graviton propagator
in flat spacetime, in momentum space, is given by (up to Newton’s constant)

Dµν;λσ(k) =
1

2

Kµν;λσ

k2 + iε
=

1

2

ηµληνσ + ηµσηνλ − ηµνηλσ
k2 + iε

(2.775)

where the final k2 comes from the ∂2 in the Lagrangian when moving to mo-
mentum space, as always.

So there is our graviton propagator, in the weak field limit.
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Newton from Einstein

Suppose we want to find the equation of motion corresponding to the action
given above

Swfg =

ˆ
d4x

1

2

[
1

32πG

(
∂λh

µν∂λhµν −
1

2
∂λh∂

λh

)
− hµνTµν

]
. (2.776)

To find the equation of motion for this theory we take the variational derivative
of Swfg with respect to hµν .

We will rely on xACT to do this. Assuming that the rest has been setup
correctly, we will just define the effective Lagrangian, vary it with respect to
hµν , and set everything to zero.

In [15]:= DefTensor[T[m, n], M4]

During evaluation of In [15]:= ** DefTensor: Defining tensor T[m,n].

In [16]:= DefConstantSymbol[G]

During evaluation of In [16]:= ** DefConstantSymbol: Defining constant symbol G.

In [19]:= LagEff := (1/
2)*( (1/(32* Pi*G))*(CD[-l][h[LI[1], m, n]]*
CD[l][h[LI[1], -m, -n]] - (1/2)* CD[-l][h[LI[1], a, -a]]*
CD[l][h[LI[1], b, -b]]) - h[LI[1], -m, -n]*T[m, n] )

In [20]:= LagEff

Out [20]= 1/2 (- h[
xAct ‘xTensor ‘LI[1], -m, -n] T[m, n] + ( -(1/2) CD[-l][
h[
xAct ‘xTensor ‘LI[1], a, -a]] CD[l][
h[
xAct ‘xTensor ‘LI[1], b, -b]] + CD[-l][
h[
xAct ‘xTensor ‘LI[1], m, n]] CD[l][
h[
xAct ‘xTensor ‘LI[1], -m, -n]])/(32 G \[Pi]))

In [23]:= (VarD[h[LI[1], c, d], CD][ LagEff*Sqrt[-Det\[Eta ][]]]/
Sqrt[-Det\[Eta ][]]) == 0 /. delta[-LI[1], LI[1]] -> 1 //
ExpandPerturbation // ContractMetric // ToCanonical

We quickly find Since the stress-energy tensor is symmetric, we can combine
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Tcd and Tdc in the output to get the Euler-Lagrange equation of motion:

1

32πG
(−2�hµν + ηµν�h)− Tµν = 0 (2.777)

Easy! Contracting this (i.e., taking the trace):

ηµν

[
1

32πG
(−2�hµν + ηµν�h)− Tµν

]
=

1

32πG
(−2�h+ 4�h)− T

=
1

16πG
�h− T

= 0. (2.778)

Therefore

�h = 16πGT = 16πGηµνTµν . (2.779)

And so plugging things back into the Euler-Lagrange equation we can find

�hµν = −16πG

(
Tµν −

1

2
ηµνT

)
(2.780)

In the static limit, T00 is the dominant component of the stress-energy tensor,
and so this equality reduces to

∇2φ = 4πGT00 (2.781)

where the Newtonian gravitational potential is φ ≡ h00/2. We have just derived
Poisson’s equation for φ.

The gravity of light

We now have the objects required for doing perturbative quantum gravity: the
propagator, the interactions between gravitons (h− h interactions), and the in-
teractions between gravitons and other matter (h−T interactions). The problem
is that we might drown in a sea of indices.

Since gravitons not only interact with other fields but also with themselves,
we can ask whether light gravitationally affect light. Tolman, Ehrenfest, and
Podolsky discovered that in the weak field limit two lights beams moving in the
same direction do not interact gravitationally, but two light beams moving in
the opposite directions do. What calculation did they do to find this?

Consider the scattering of two photons

k1 + k2 → p1 + p2 (2.782)
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via the exchange of a graviton. This interaction is given by the Feynman dia-
gram: The momentum transfer is

q ≡ p1 − k1. (2.783)

The Feynman rule for coupling a graviton to two photons can be read off from

hµνTµν = −hµν
(
FµλF

λ
ν −

1

4
ηµνFρλF

ρλ

)
(2.784)

but all we need is that the interaction involve two powers of spacetime derivatives
∂ acting on the EM potential Aµ so that the graviton-photon-photon vertex
involves 2 powers of momenta, one from each photon. The scattering amplitude
has the schematic form (k1p1)D(k2p2) where D is the propagator. By the form
of the propagator

Dµν;λσ(k) =
1

2

Kµν;λσ

k2 + iε
=

1

2

ηµληνσ + ηµσηνλ − ηµνηλσ
k2 + iε

(2.785)

we see that the amplitude is the sum of three terms such as (k1 · p1)(k2 · p2)/q2,
(k1 ·k2)(p1 ·p2)/q2, and (k1 ·p2)(k2 ·p1)/q2. According to the Fourier transform,
the long distance part of the interaction potential is given by the small q behav-
ior of the scattering amplitude, we need only evaluate these terms in the limit
q → 0. This means k1 ·p1 ∼ k1 ·k1 = 0, and k1 ·p2 = k1 · (k1 +k2−p1)→ k1 ·k2.
So the final amplitude looks like (k1 · k2)(p1 · p2)/q2. If k1 and k2 point in the
same direction, k1 · k2 ∼ k1 · k1 = 0, i.e. two photons moving in the same
direction do not interact gravitationally.

We can also do a rough calculation to justify all this. The stress-energy
tensor Tµν of a light beam moving in the x−direction has four nonzero compo-
nents: the energy density T 00, T x0 = T 00 since photons carry the same energy
and momentum, T x0 = T 0x by symmetry, and T xx = T 00 since the stress-energy
tensor of the EM field is traceless. (Note: x here stands for the x−direction, so
T x0 refers to a single component of the tensor). We also know that h00 = h.
The metric around the light beam is given by g00 = 1 + h, g0x = gx0 = −h, and
gxx = −1 + h, and gzz = gyy = −1. Consider a photon moving parallel to the
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light beam. Its world line is determined by

d2xρ

dζ2
= −Γρµν

dxµ

dζ

dxν

dζ
. (2.786)

(This just says light follows a geodesic.) To find whether light gets deflected by
another beam of light we wish to calculate d2y/dζ2 and d2z/dζ2 and show they
are both identically zero. Of course we can just do the y and the z follows by
symmetry. We also assume that dy/dζ, dz/dζ � dt/dζ and dx/dζ:

d2y

dζ2
=
d2xy

dζ2
= −Γyµν

dxµ

dζ

dxν

dζ

= −1

2
gyρ (∂νgρµ + ∂µgρν − ∂ρgµν)

dxµ

dζ

dxν

dζ
, gyy = −1, gyλ = 0 else

= +
1

2
(∂νgyµ + ∂µgyν − ∂ygµν)

dxµ

dζ

dxν

dζ

= . . .

= −1

2
(∂yh)

[(
dt

dζ

)2

+

(
dx

dζ

)2

− 2
dt

dζ

dx

dζ

]

= −1

2
(∂yh)

(
dt

dζ
− dx

dζ

)2

= 0 (2.787)

since dt = dx for a photon beam traveling in the same direction as the light
beam:

(1 + h)dt2 − 2h dtdx− (1− h)dx2 = 0 ⇐⇒ dx/dt = ∓1± h
1− h

(2.788)

and that y = x(2) (2 here is an index). Similarly, we have d2z/dζ2 = 0.

So we have that the photon’s trajectory isn’t bent/deflected by light when
it is moving in the same direction with the light beam.
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2.7 Massive Gravity

2.7.1 A Brief History

Massive gravity has a long-winded history. In 1939, Fierz-Pauli wrote down a
linearized massive gravity theory for massive spin-2 field hµν . (j = 2,mj =
−2,−1, 0, 1, 2).

Later in 1970, van Dam, Veltman, and Zakharov (vDVZ) discovered what
called the vDVZ discontinuity. They showed that in the m → 0 limit, Fierz-
Pauli theory no longer agrees with GR.

Then, in 1872 Vainshtein studied non-linear Fierz-Pauli and found a screen-
ing mechanism where near some object like the sun for r < rV ∼ (M/m4M2

Pl)
1/5 =

Λ5 agreement with GR is obtained in the m→ 0 limit.

In the same year, however, Boulware & Desen showed that in the nonlinear
regime, a ghost mode emerges (BD ghost).

In 2003, Arkani-Hamed et al wrote a expository paper on this theory. We
will spend some time on this paper.

Then, in 2010, de Rham-Gabadadze-Tolley (dRGT) found that for a special
non-linear potential in place of the Fierz-Pauli mass term the DB ghost goes
away. This new theory is valid up to Λ5 cutoff scale. This theory also has
self-accelerating solutions. This implies less need for dark energy.

https://arxiv.org/pdf/hep-th/0210184.pdf
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2.7.2 Quick review of Field Dimensions

Here we will quickly go over basic field dimensions. We first establish the natural
units: ~ = c = 1. With this E ∼ m ∼ p ∼ ω GeV. x ∼ t ∼ 1/E. We will use
mass dimension m as units. With this.

[x] = [t] = [K]−1 = m−1. (2.789)

The action looks something like

S =

ˆ
d4x dtL. (2.790)

S has units of ~ = J · s, so S has no units. So

[S] = [K]0 = m0. (2.791)

We can figure out field dimensions from S. Relativistically,

S =

ˆ
d4xL. (2.792)

The action is dimensionless, while [d4x] = [K]−4. So

[L] = [K]4. (2.793)

Now suppose for the scalar field theory

L = ∂φ∂φ (2.794)

schematically. Then because [∂] = [t]−1 = [x]−1 = [K], we find that

[φ] = [K]. (2.795)

So, scalars have mass dimension of 1.

Next, we look at vector field theory with

L ∼ FµνFµν (2.796)

where

Fµν = ∂µAν − ∂νAµ. (2.797)

Since [L] = [K]4 and [∂] = [K], we find

[Aµ] = [K]. (2.798)

So vector fields also have mass dimension 1. What about a mass term? Suppose

L =
1

2
∂µφ∂6µφ− 1

2
m2φ2. (2.799)



2.7. MASSIVE GRAVITY 253

We see that [m] = [K] = m is consistent with [φ] = m and [L] = [K]4 = m4.

What about gravity? What is the dimension of the metric? Well, we look
at

ds2 = gµνdX
µdXν . (2.800)

There are two units of length on both sides of the equation so

[gµν ] = [K]0, (2.801)

i.e. assuming Cartesian coordinates, the metric is dimensionless. What about
the connections? Christoffel symbols have the form

Γ ∼ g∂g. (2.802)

So

[Γ] = [∂] = [K]. (2.803)

Riemann curvature tensors look like

Rabcd ∼ Γ2 + ∂Γ + . . . (2.804)

so

[Rabcd] = [K]2. (2.805)

So we find that

[Lgrav] = [Rµµ] 6= [K]4. (2.806)

It turns out that

[L] ∼ 1

16πG
[R] = [K]4. (2.807)

This means

[G] = [K]−2. (2.808)

This says the Newton’s gravitational constant G has mass−2 units. With this
we can define

G ≡ 1

m2
Pl

, (2.809)

where mPl is the Planck mass. In GeV units, mPl ∼ 1019 GeV, which is very
large, making G very small.

Lastly, we notice that gravity has a dimensional constant in its kinetic term,
while other fields do not. This makes quantizing/renormalizing gravity difficult.
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2.7.3 Fierz-Pauli Massive Gravity

This section focuses on various aspects of Fierz-Pauli massive gravity. The
content is based on this paper by Kurt Hinterbichler. This is my exposition of
part II. of the paper, which gives an overview of the original Fierz-Pauli massive
gravity. I will follow the paper’s layout through and fill in the details wherever
I feel necessary.

The Action & Fierz-Pauli Tuning

Recall from earlier we have worked both ways to show the action in linearized
gravity (without Tµν) up to some overall constant factor is:

SZee =

ˆ
dDx

1

2
∂λh

µν∂λhµν −
1

2
∂λh∂

λh− ∂λhλν∂µhµν + ∂µh∂νhµν . (2.810)

This is the action obtained from Zee’s construction. But to stay close this paper,
I will use Sean Carroll’s action instead:

SSC =

ˆ
dDx − 1

2
∂λhµν∂

λhµν + ∂µhνλ∂
νhµλ − ∂µhµν∂νh+

1

2
∂λh∂

λh.

(2.811)

This action is exactly the same as what Carroll has, up to index permutations.

We are familiar with this action, as it describes the (well-known by now)
weak field limit. The Fierz-Pauli action is just this with an additional mass
term: ˆ

dDx − 1

2
m2
(
hµνh

µν − h2
)

(2.812)

hence the name “massive gravity.” The full action, then, is

SFP =

ˆ
dDx − 1

2
∂λhµν∂

λhµν + ∂µhνλ∂
νhµλ

− ∂µhµν∂νh+
1

2
∂λh∂

λh− 1

2
m2
(
hµνh

µν − h2
)

(2.813)

We wish to show that this action describes a massive spin 2 field (5 d.o.f = 2s+1).
In the m = 0 case, we recover the linearized Einstein-Hilbert action with the
gauge symmetry:

δhµν = ∂µεν + ∂νεµ (2.814)

where once again

δhµν = h′µν − hµν . (2.815)

https://arxiv.org/abs/1105.3735
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We have actually seen how the action can be constructed from this gauge sym-
metry.

With m 6= 0, however, the gauge symmetry is violated. It is clear that

δ

[
1

2
m2
(
hµνhµν + h2

)]
=

1

2
m2
[
(∂µεν + ∂νεµ)hµν + hµν(∂µεν + ∂νεµ)− δh2

]
=

1

2
m2
[
2(∂µεν + ∂νεµ)hµν − δ(hµµhνν)

]
=

1

2
m2
[
4(∂µεν)hµν − ηµaηνbδ(hµahνb)

]
=

1

2
m2
[
4(∂µεν)hµν − ηµaηνb {2(∂µεa)hνb + 2(∂νεb)h

µa}
]

=
1

2
m2 [4(∂µεν)hµν − 4(∂µεµ)h]

= 2m2[(∂µεν)hµν − (∂µεµ)h], (2.816)

which is linearly independent with other terms in the variational Lagrangian
δL. This says that

δL = 0 ⇐⇒ m2 = 0. (2.817)

But obviously since we explicitly set m 6= 0, we must have that δL 6= 0 under
δhµν = ∂µεν + ∂νεµ. So we say the mass term violates this gauge symmetry.

The relative coefficient −1 between h2 and hµνh
µν contractions is called

the Fierz-Pauli tuning. This number is not enforced by any known symmetry.
However, any deviation from it, i.e., for any combination

hµνh
µν − (1− a)h2, a 6= 0 (2.818)

results in the action describing a scalar ghost with mass

m2
g = −3− 4a

2a
m2 (2.819)

and negative kinetic energy in addition to the massive spin 2. We shall show
why this is the case with a 2-step argument partially inspired by A. Nicolis from
ICTP. In Step 1, we show that the Fierz-Pauli tuning has to be −1 to avoid
ghosts. In Step 2, we argue how the ghost of m2

g is obtained when a 6= 0 by a
Hamiltonian analysis, inspired by Kurt Hinterbichler and Greg Seyfarth.

Step 1: To this end, we consider the action (without matter, i.e., Tµν = 0)
of the form

S =

ˆ
dDx

[
Lm=0,linear −

1

2
m2(hµνh

µν − (1− a)h2)

]
(2.820)

http://indico.ictp.it/event/a11178/session/6/contribution/3/material/0/0.pdf
https://arxiv.org/pdf/1105.3735.pdf
https://digitalcommons.colby.edu/cgi/viewcontent.cgi?article=1721&context=honorstheses
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The linearized equations of motion follow from varying the action with re-
spect to hµν . The linearized Lagrangian gives the Einstein tensor (without
matter) Gµν , while the massive terms gives

δ

δhµν

{
1

2
m2
(
hµνh

µν − (1− a)h2
)}

=
1

2
m2 (hµν − (1− a)hηµνhµν)

=
1

2
m2 (hµν − (1− a)ηµνh) . (2.821)

Covariantly, (to match the lower indices of Gµν), this is

−1

2
m2 (hµν − (1− a)ηµνh) . (2.822)

So the equation of motion reads

Gµν,linear +
1

2
m2 (hµν − (1− a)ηµνh) = 0 (2.823)

(Notice that we have made no assumptions about δhµν , i.e., we are not assuming
the gauge symmetry δhµν = ∂µεν + ∂νεnu is satisfied. In fact, we just showed
that this theory violates this gauge symmetry.)

It is instructive then to compare this equation of motion to what we would
have for a massive spin-1 field Aµ:

∂µF
µν +m2Aν = Jν . (2.824)

where

Fµν ≡ ∂µAν − ∂νAµ (2.825)

and Jµ is the current. A massive spin-1 particle has 2s + 1 = 2 + 1 = 3
degrees of freedom, which should show up in the Jµ = 0 equation of motion
as three wave solutions with independent polarizations. But we note that Aµ

has 4 components - one too many. However, because ∂ν∂µF
µν = 0 due to the

anti-symmetry of Fµν (we can verify this just by inspection), if Jµ = 0 =⇒
∂µJ

µ = 0 then we must have

m2∂µA
µ = 0 ⇐⇒ ∂µA

µ = 0 if m2 6= 0. (2.826)

The divergence of Aµ being zero is a gauge fix which adds an extra constraint
on Aµ, hence eliminating the fourth degree of freedom.

Back to the massive gravity case. A massive spin-2 particle has 2s + 1 =
2×2 + 1 = 5 degrees of freedom. Now, because hµν is a 4×4 symmetric tensor,
there are 10 independent components. However, when there is no matter, i.e.,
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Tµν = 0, we actually have a gauge fix which obeys:

Gµν +
1

2
m2 (hµν − (1− a)ηµνh) = 0

=⇒ ∂µ
{
Gµν +

1

2
m2 (hµν − (1− a)ηµνh)

}
= 0. (2.827)

But because the Einstein tensor Gµν is divergenceless in the absence of a source,
i.e.,

∂µGµν = 0, (2.828)

which follows from Bianchi identities involving the Ricci tensor and scalar. Of
course for the worrisome reader a quick check doesn’t hurt:

Lag := (1/
2)*((CD[-m][h[LI[1], m, n]])*(CD[-n][h[LI[1], -c, c]]) - (CD[-m][
h[LI[1], c, d]])*(CD[-c][h[LI[1], m, -d]]) + (1/2)*\[ Eta][m,
n]*(CD[-m][h[LI[1], c, d]])*( CD[-n][h[LI[1], -c, -d]]) - (1/
2)*\[ Eta][m,
n]*(CD[-m][h[LI[1], c, -c]])*(CD[-n][h[LI[1], d, -d]]))

CD[c][( VarD[h[LI[1], c, d], CD][Lag*Sqrt[-Det\[Eta ][]]]/
Sqrt[-Det\[Eta ][]])] /. delta[-LI[1], LI[1]] -> 1 //
ExpandPerturbation // ContractMetric //
ToCanonical // Simplification

So yes ∂µGµν is in fact identically zero. Thus, we must have that

∂µ
{

1

2
m2 (hµν − (1− a)ηµνh)

}
= 0 ⇐⇒ ∂µhµν − (1− a)ηµν∂

µh = 0

(2.829)

Next, just like how we can write

Aµ ∼ ξµeik·x (2.830)

for the wave solution to the spin-1 field where ξµ is the polarization vector, let
us write

hµν ∼ ξµνeik·x (2.831)
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where ξµν is the graviton’s polarization tensor. With this we have

ξµνk
µ − (1− a)ξµµkν = 0 (2.832)

This is four equations for ν = 0, 1, 2, 3 which brings the number of degrees of
freedom down from 10 to 10− 4 = 6 degrees of freedom. There is now one too
many. How do we get rid of this? The answer lies in the factor (1− a) and the
contraction of Gµν .

Recall from (2.721) that

Gµν =
1

2

(
−�hµν + ∂σ∂νh

σ
µ + ∂σ∂µh

σ
ν − ηµν∂λ∂σhλσ + ηµν�h− ∂µ∂νh

)
,

(2.833)

which we have found by varying Llinear in xACT with respect to hµν . We wish
to contract Gµν , with xACT as well:

Lag := (1/
2)*((CD[-m][h[LI[1], m, n]])*(CD[-n][h[LI[1], -c, c]]) - (CD[-m][
h[LI[1], c, d]])*(CD[-c][h[LI[1], m, -d]]) + (1/2)*\[ Eta][m,
n]*(CD[-m][h[LI[1], c, d]])*( CD[-n][h[LI[1], -c, -d]]) - (1/
2)*\[ Eta][m,
n]*(CD[-m][h[LI[1], c, -c]])*(CD[-n][h[LI[1], d, -d]]))

(VarD[h[LI[1], c, d], CD][Lag*Sqrt[-Det\[Eta ][]]]/
Sqrt[-Det\[Eta ][]]) /. delta[-LI[1], LI[1]] -> 1 //
ExpandPerturbation // ContractMetric // ToCanonical

\[Eta][c,
d] (VarD[h[LI[1], c, d], CD][Lag*Sqrt[-Det\[Eta ][]]]/
Sqrt[-Det\[Eta ][]]) /. delta[-LI[1], LI[1]] -> 1 //
ExpandPerturbation // ContractMetric // ToCanonical

This reads nicely as

G = ηµνGµν = ∂µ∂νh
µν −�h (2.834)
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From the gauge fix in (2.827), we must have that

G = ηµνGµν = −1

2
m2ηµν [hµν − (1− a)ηµνh]

= −1

2
m2[h− 4(1− a)h]

=
1

2
m2(3− 4a)h (2.835)

If we choose a = 0, then it follows from this equality that

G =
1

2
m2h (2.836)

and from (2.829) that

∂µhµν − ∂νh = 0 =⇒ ∂µ∂νh
µν −�h = 0. (2.837)

But these combined give us h = 0 ⇐⇒ hµµ ⇐⇒ ξµµ = 0. Aha! With the
trace of ξµν being zero, the number of polarizations is now 6−1 = 5, as desired.
This choice of the Fierz-Pauli tuning is now justified.

Step 2. Here we will show that when a 6= 0, the theory describes a massive
spin 2 and and a ghost scalar field with

m2
g = −3− 4a

2a
m2. (2.838)

Let us first show the motivation for defining the ghost scalar mass in this fashion.
We have that (2.829) reads

∂µhµν − (1− a)ηµν∂
µh = 0. (2.839)

We wish to establish a relationship between �h and ∂µ∂νhµν for reasons we
will see later. This means we should take ∂ν of the equation above. This gives

∂ν∂µhµν − (1− a)ηµν∂
ν∂µh = 0. (2.840)

But this equation simply screams

∂µ∂νh
µν − (1− a)�h = 0. (2.841)

Nice! Now, from (2.834) and (2.835) we also know that

∂µ∂νh
µν −�h = −1

2
m2(3− 4a)h. (2.842)

Therefore, we have from (2.842) and (2.841)

−1

2
m2(3− 4a)h+ �h = (1− a)�h. (2.843)
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This simplifies to

−1

2
m2(3− 4a)h = −a�h. (2.844)

This equation is now begging to be put into Klein-Gordon form:(
− 1

2a
m2(3− 4a) + �

)
h = 0 (2.845)

It only makes sense that we cast the mass term as m2
g. And whatever this theory

is, it is describing a massive scalar field with

m2
g = −3− 4a

2a
m2 (2.846)

Our next task is to show this is actually a ghost field. To this end, we invoke
Hamiltonian analysis of Fierz-Pauli massive gravity with the (1− a) coefficient.
We first cast the Lagrangian

L =− 1

2
∂λhµν∂

λhµν + ∂µhνλ∂
νhµλ

− ∂µhµν∂νh+
1

2
∂λh∂

λh− 1

2
m2
(
hµνh

µν − h2
)

(2.847)

into Hamiltonian form. We start by Legendre transforming this Lagrangian
only with respect to the spatial components of the perturbation metric, hij .
The canonical momenta are defined as

πij =
∂L
∂ḣij

≡ ∂L
∂(∂0hij)

(2.848)

where ∂ is just the regular partial derivative. To evaluate this, we can expand
out L in terms of µ = 0 objects and µ = i = 1, 2, 3 objects. If Greg Seyfarth is
correct, then (deep breath now):

L =
1

2
(hjk,0)2 + (h0k,j)

2 − 1

2
(hjk,l)

2 − (h0k,j)(h0j,k)− 2(h0j,k)(hjk,0)

+ (hkj,l)(hlj,k) + (h0k,k)(hjj,0)− 1

2
(hjj,0)(hkk,0)− (h00,l)(hjj,l)

+
1

2
(hjj,l)(hkk,l) + (h0j,j)(hkk,0) + (hjk,j)(h00,k)− (hjk,j)(hll,k)

− 1

2
m2
[
ah2

00 − 2h2
0j + h2

jk + 2(1− a)h00hll − (1− a)h2
ll

]
.

To get these square terms in the Lagrangian it is necessary to integrate by parts
and cancel like terms. I will not try to reproduce this since it is purely index
manipulation.

https://digitalcommons.colby.edu/cgi/viewcontent.cgi?article=1721&context=honorstheses
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Varying this Lagrangian gives equations of motions. Varying with respect
to h00 gives

hjj,kk − hjk,jk − am2h00 −m2(1− a)hll − 0. (2.849)

Varying with respect to h0j gives

−h0j,kk + h0k,jk + hjk,0k − hkk,0j +m2h0j = 0. (2.850)

Varying with respect to hjk gives

0 = hjk,00 − hjk,ll − (h0j,0k + h0k,0j) + (hlk,lj + hlj,lk)

+ δjk(2h0l,0l − hll,00 − h00,ll + hmm,ll − hlm,lm)

+ h00,jk − hll,jk +m2hjk +m2(1− a)δjkh00 −m2(1− a)δjkhll. (2.851)

With this, the Hamiltonian is

H = πµνhµν,0 − L

=
1

2
(πjk)2 − 1

4
(πll)

2 + 2h0k,jπjk +
1

2
(hjk,l)

2

− hjk,lhlj,k + h00,lhkk,l −
1

2
hjj,lhkk,l − hjk,jh00,k + hjk,jhll,k

+
1

2
m2[ah2

00 − 2h2
0j + h2

jk + 2(1− a)h00hllh− (1− a)h2
ll].

After a number of substitutions that I won’t worry about too much here, the
final form of the Hamiltonian is given by

H =
1

2
(πjk)2 − 1

4
(πll)

2 +
1

2
(εijkhkl,j)

2 − 1

2
h2
jk,k +

1

2
h2
jj,l

+
1

2
m2[−ah2 + h2

ll + 2h2
0j + h2

jk]

where εijk is the Levi-Civita symbol.

The terms in the square brackets correspond to the Fierz-Pauli mass term in
the original Lagrangian, while the rest of the terms come from the Lagrangian
that gives the original Einstein tensor. We are interested in the square bracket
terms when looking for ghosts in the theory.

When a = 0, the square bracket becomes

1

2
m2[−ah2 + h2

ll + 2h2
0j + h2

jk]→ 1

2
m2[h2

ll + 2h2
0j + h2

jk]. (2.852)

This term is positive-definite, which is good. But what about the other terms
in the Hamiltonian? Well, we know that the rest of the Hamiltonian comes
directly from the Lagrangian without the massive term. We also know that this
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piece of the theory is very well-behaved since we have a number of equations of
motions and constraints to keep the degree of freedom correct. Thus, to see if
the current theory contains ghost it suffices to look only at the massive term’s
contribution to the Hamiltonian.

Since we have already seen how a = 0 gives a well-behaved theory. Let’s
now consider a 6= 0. When a 6= 0, the modified Klein-Gordon equation looks
like (

−3− 4a

2a
m2 + �

)
h = (� +m2

g)h = 0. (2.853)

Clearly the energy relation is

E2 − p2 = −m2
g, (2.854)

which has the wrong sign, i.e., the (ghostly) mass is imaginary. We might try
to remedy this problem by requiring that

3− 4a

2a
> 0 ⇐⇒ 0 < a <

3

4
. (2.855)

But this ensures that the coefficient of h2 in the term

1

2
m2[−ah2 + h2

ll + 2h2
0j + h2

jk] (2.856)

is always negative, rendering the Hamiltonian non-positive-definite. We also
can’t constrain h in order to bring the degree of freedom down from 6 to 5.
This means that when a 6= 0 we have (1) an imaginary mass, (2) non-positive
definite Hamiltonian, and (3) and extra degree of freedom in the theory. This
creates a ghost mode in the theory.

With that we have showed how the tuning a = 0 is justified, and how a
massive scalar ghost mode appears (with negative kinetic energy) in the theory
when a 6= 0. As a little aside, when a 6= 0 and a is small, the mass m2

g goes like
∼ 1/a. This goes to infinity as the Fierz-Pauli tuning is approached, rendering
it non-dynamical.

Free solutions and Graviton mode functions

In this section we find the space of equations of motion, i.e. solutions to δS = 0.
We will then show that it transforms as a massive spin 2 representation of the
Lorentz group, i.e. showing that the action propagates precisely one massive
graviton (we will understand what this means later). To this end, we consider
the Fierz-Pauli action with the correct Fierz-Pauli tuning:

SFP =

ˆ
dDx − 1

2
∂λhµν∂

λhµν + ∂µhνλ∂
νhµλ

− ∂µhµν∂νh+
1

2
∂λh∂

λh− 1

2
m2
(
hµνh

µν − h2
)
. (2.857)
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Setting δS = 0 ⇐⇒ δL/δhµν = 0, i.e., the variational derivative of the
integrand with respect to the inverse metric perturbation hµν is zero. We can
readily to this in xACT:

LagFP := -((CD[-m][h[LI[1], m, n]])*( CD[-n][
h[LI[1], -c, c]]) - (CD[-m][h[LI[1], c, d]])*( CD[-c][
h[LI[1], m, -d]]) + (1/2)*\[ Eta][m,
n]*(CD[-m][h[LI[1], c, d]])*( CD[-n][h[LI[1], -c, -d]]) - (1/
2)*\[ Eta][m,
n]*(CD[-m][h[LI[1], c, -c]])*(CD[-n][h[LI[1], d, -d]])) - (1/
2)*M^2*(h[LI[1], m, n]*
h[LI[1], -m, -n] - (1 - 0) h[LI[1], c, -c]*h[LI[1], d, -d])

(VarD[h[LI[1], c, d], CD][LagFP*Sqrt[-Det\[Eta ][]]]/
Sqrt[-Det\[Eta ][]]) == 0 /. delta[-LI[1], LI[1]] -> 1 //
ExpandPerturbation // ContractMetric // ToCanonical

to get

which says

δL
δhµν

= �hµν − ∂λ∂µhλν − ∂λ∂νhλµ + ηµν∂λ∂σh
λσ + ∂µ∂νh− ηµν�h

−m2(hµν − ηµνh)

= 0. (2.858)

Okay, to get what constraints this equation gives us we first let ∂µ act on
this equation:

CD[c][( VarD[h[LI[1], c, d], CD][ LagFP*Sqrt[-Det\[Eta ][]]]/
Sqrt[-Det\[Eta ][]])] /. delta[-LI[1], LI[1]] -> 1 //
ExpandPerturbation // ContractMetric //
ToCanonical // Simplification

Looking at this expression (which equals 0) for a while we can see that all terms
without the m2 factor cancel, which makes sense because ∂µGµν = 0 where Gµν
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is the Einstein tensor in the massless case. This expression then just simplify to

∂µhµν − ∂νh = 0 ⇐⇒ ∂µh
µν − ∂νh = 0 (2.859)

Plugging this back into the equation of motion, we find

0 = �hµν − ∂λ∂µhλν − ∂λ∂νhλµ + ηµν∂λ∂σh
λσ + ∂µ∂νh− ηµν�h−m2(hµν − ηµνh)

= �hµν − ∂µ∂λhλν − ∂ν∂λhλµ + ηµν∂λ∂
λh+ ∂µ∂νh− ηµν�h−m2(hµν − ηµνh)

= �hµν − ∂µ∂νh− ∂ν∂µh+���
�ηµν�h + ∂µ∂νh−����ηµν�h −m2(hµν − ηµνh)

= �hµν − ∂µ∂νh−m2(hµν − ηµνh). (2.860)

So we have

�hµν − ∂µ∂νh−m2(hµν − ηµνh) = 0 (2.861)

Contracting we find that h = 0

0 = ηµν
(
�hµν − ∂µ∂νh−m2(hµν − ηµνh)

)
= �h−�h−m2(h− 4h) ⇐⇒ h = 0. (2.862)

But this just says

∂µhµν = ∂νh = 0 =⇒ (�−m2)hµν = 0. (2.863)

And so just to summarize, we have

(�−m2)hµν = 0; ∂µhµν = 0; h = 0 (2.864)

It turns out that these three equations and the original equation of motion
δL = 0 are equivalent statements. However, when put into this form (involving
three simple equations), degree-of-freedom-counting is much easier. For D = 4,
the first equation describe the evolution for a ten-component symmetric tensor
h. The second equation reduces 4 more d.o.f. The last equation sets the trace,
hence killing the last d.o.f, making hµν have only 5 d.o.f. In total, we are left with
the 5 real space d.o.f of a 4-dimensional spin 2 particle (5 = 2s+ 1 = 2× 2 + 1).

Next, we wish to solve for hµν firstly from the Klein-Gordon equation. This
turns out to be a reasonably easy differential equation whose general solution
has the form

hµν(x) =

ˆ
ddp√

(2π)d2ωp

[
hµν(p)eip·x + hµν∗(p)e−ip·x

]
(2.865)

Here p are the spatial momenta:

ωp =
√

p2 +m2, (2.866)
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and the D momenta pµ are on shell so that pµ = (ωp,p). We then express the
Fourier coefficients hµν(p) in terms of basis symmetric tensors indexed by λ:

hµν(p) = ap,λε̄
µν(p, λ) (2.867)

where

ε̄µν(p, λ) = Lµα(p)Lνβ(p)ε̄αβ(k, λ). (2.868)

Here Lµα(p) are boosts of the form

Lij(p) = δij +
1

|p|2
(γ − 1)pipj

Li0(p) = L0
i (p) =

pi

|p|
√
γ2 − 1

L0
0(p) = γ =

p0

m
=

√
|p|2 +

m2

m
(2.869)

such that the momentum k is taken from kµ = (m, 0, 0, 0) to p where pµ =
Lµα(p)kα. This stand boost choose for us the basis at p, relative to that at k.

With ∂µh
µν = (∂/∂xµ)hµν = 0 we have

0 = ∂µ

{ˆ
ddp√

(2π)d2ωp

[
hµν(p)eip·x + hµν∗(p)e−ip·x

]}

=

ˆ
ddp√

(2π)d2ωp

[
ipµh

µν(p)eipµx
µ

+ h.c.
]

=⇒ pµh
µν(p) = 0

=⇒ Lσµ(p)kσ (ap,λε̄
µν(p, λ)) = 0

=⇒ kσL
σ
µ(p)Lµα(p)Lνβ(p)ε̄αβ(k, λ) = 0

=⇒ kσδ
σ
α(p)Lνβ(p)ε̄αβ(k, λ) = 0

=⇒ kαL
ν
β(p)ε̄αβ(k, λ) = 0

=⇒ kαε̄
αβ(k, λ) = 0

=⇒ kµε̄
µν(k, λ) = 0 (2.870)

We also have the condition h = 0, which implies

0 = ηµν

ˆ
ddp√

(2π)d2ωp

[
hµν(p)eip·x + hµν∗(p)e−ip·x

]
=⇒ ηµνap,λε̄

µν(p, λ) = 0

=⇒ ηµνap,λL
µ
α(p)Lνβ(p)ε̄αβ(k, λ) = 0

=⇒ . . . (requires writing out when α = µ, β = ν, etc.)

=⇒ ηµν ε̄
µν(k, λ) = 0 (2.871)
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These two conditions imply that ε̄µν(k, λ) is purely spatial, i.e.

ε̄0µ(k, λ) = ε̄0µ(k, λ) = 0 (2.872)

i.e.,

[ε̄µν ] =


0 0 0 0
0 ε̄11 ε̄12 ε̄13

0 ε̄12 ε̄22 ε̄23

0 ε̄13 ε̄23 ε̄33

 (2.873)

and that ε̄µν(k, λ) is traceless, i.e.,

ε̄ii(k, λ) = 0 (2.874)

Hence, this basis is a collection of d(d+1)/2 symmetric, traceless spatial tensors
with index λ = 1, . . . , d(d+ 1)/2.

We demand further that this is an orthonormal basis:

ε̄µν(k, λ)ε̄∗µν(k, λ′) = δλλ′ (2.875)

(some things about group theory here... in order to make conditions work
for p and not k..., i.e.,

pµε
µν(p, λ) = 0; ηµνε

µν(p, λ) = 0 (2.876)

I will get back to this later)

In any case, the general solution hµν(x) can now be written in term of the
new p-dependent basis:

hµν(x) =

ˆ
ddp√

(2π)d2ωp

∑
λ

ap,λε
µν(p, λ)eip·x + a∗p,λε

∗µν(p, λ)e−ip·x (2.877)

The Propagator

There is a treatment of the F-P propagator in A. Zee’s book which I have re-
produced in one of sections in Gravity as Field Theory. But in any case, I will
reproduce the derivation here (plus some details) following Hinterbichler’s paper.

The recall the full Fierz-Pauli action:

SFP =

ˆ
dDx − 1

2
∂λhµν∂

λhµν + ∂µhνλ∂
νhµλ

− ∂µhµν∂νh+
1

2
∂λh∂

λh− 1

2
m2
(
hµνh

µν − h2
)

(2.878)



2.7. MASSIVE GRAVITY 267

We wish to write this action in the form

S =

ˆ
dDx

1

2
hµνOµν,αβhαβ (2.879)

so as to resemble quantum field theory where the action appearing in the gen-
erating function

Z = ζ

ˆ
D[φ]ei

´
d4xL[φ] ∼ e

−i
2 JA

−1J ≡ e
−i
2

˜
d4xd4yJ(x)D(x−y)J(y) (2.880)

where J(·) is the source and D(x − y) ≡ A−1 is the propagator and A is the
original differential operator in the Lagrangian. By analogy, the graviton propa-
gator Dαβ,µν is defined to be the inverse of the second-order differential operator
Oµν,αβ . The goal of this section is to obtain an expression for Dαβ,µν .

We wish to turn SFP into the form involving Oµν,αβ where Oµν,αβ is some
operator. The comma here doesn’t mean (covariant) derivatives of any kind. It
is there just to remind us that µν and αβ can be treated as two (pair of) indices.
To write the action this way we are required to integrate the integrand of SFP
by parts so that every term in the resulting integrand looks like hµν♦µν,αβhαβ
where ♦µν,αβ is some operator. There are five terms so let’s hope things don’t
get out of hand (they don’t). The first term can be re-written as

ˆ
dDx

1

2

(
−∂λhµν∂λhµν

)
=

ˆ
dDx

1

2

(
hµν�η

µαηνβhαβ
)

=

ˆ
dDx

1

2

(
hµν�η

(µ
αη

ν)
βh

αβ
)

(2.881)

where the little brackets denote the symmetry in µ ↔ ν, meaning that we can
swap µ and ν as we please.

The second term is the trickiest:
ˆ
dDx

(
∂µhνλ∂

νhµλ
)

=

ˆ
dDx

(
−hνλ∂µ∂νhµλ

)
=

ˆ
dDx

(
−hµν∂α∂µηνβhαβ

)
=

ˆ
dDx

[
hµν

(
−∂µ∂αηνβ − ∂ν∂βηµα + ∂α∂βηµν

)
hαβ

]
=

ˆ
dDx

[
hµν

(
−2∂(µ∂(αην)β) + ∂α∂βηµν

)
hαβ

]
=

ˆ
dDx

[
hµν

(
−2∂(µ∂(αη

ν)
β) + ∂α∂βη

µν
)
hαβ

]
,

(2.882)

where we’re treating µ and ν are one pair and α and β as another pair. The
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last three terms are quite easy:
ˆ
dDx (−∂µhµν∂νh) =

ˆ
dDx (hµν∂µ∂νh)

=

ˆ
dDx

(
hµν∂

µ∂νηαβhαβ
)

=

ˆ
dDx

(
hµν∂

µ∂νηαβh
αβ
)
. (2.883)

ˆ
dDx

1

2

(
∂λh∂

λh
)

=

ˆ
dDx

1

2

(
∂λh∂

λh
)

=

ˆ
dDx

1

2
(−h�h)

=

ˆ
dDx

1

2

(
−hµν�ηµνηαβhαβ

)
=

ˆ
dDx

1

2

(
−hµν�ηµνηαβhαβ

)
. (2.884)

ˆ
dDx − m2

2

(
hµνh

µν − h2
)

=

ˆ
dDx

−m2

2

(
hµνh

µν − h2
)

=

ˆ
dDx

−m2

2

[
hµν

(
ηµαηνβ − ηµνηαβ

)
hαβ

]
=

ˆ
dDx

−m2

2

[
hµν

(
ηµαηνβ − ηµνηαβ

)
hαβ

]
=

ˆ
dDx

−m2

2

[
hµν

(
η(µ

αη
ν)
β − η

µνηαβ

)
hαβ

]
.

(2.885)

Putting everything together we have

Oµναβ =
(
η(µ

αη
ν)
β − η

µνηαβ

)
(�−m2)− 2∂(µ∂(αη

ν)
β) + ∂α∂βη

µν + ∂µ∂νηαβ

(2.886)

This operator O is a second order differential operator. By the symmetry in
the index-pairs: µν and αβ, we have the following property:

Oµν,αβ = Oνµ,αβ = Oµν,βα = Oνµ,βα. (2.887)

There’s nothing surprising about this. It is just a fact that might be useful later.

With this operator, the equation of motion can now be written succinctly as

δL
δhµν

= Oµν,αβhαβ = 0 (2.888)
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Recall in QFT where the propagator D is defined as the inverse of the differ-
ential operator A, we do the same thing here and define the propagator Dαβ,σλ
as the inverse of Oµν,αβ :

Oµν,αβDαβ,σλ =
i

2
(δµσδ

ν
λ + δνσδ

µ
λ) (2.889)

which obeys the same index symmetries as O.

To derive an expression for D, we first write O in momentum space:

Oµναβ(∂ → ip) =−
(
η(µ

αη
ν)
β − η

µνηαβ

)
(p2 +m2)

+ 2p(µp(αη
ν)
β) − pαpβη

µν − pµpνηαβ (2.890)

where ∂ → ip denotes replacing ∂ by ip when we go to momentum space.

Upon inspection, we can solve for D and find

Dαβ,σλ =
−i

p2 +m2

[
1

2
(PασPβλ + PαλPβσ)− 1

D − 1
PαβPσλ

]
(2.891)

where

Pαβ = ηαβ +
pαpβ
m2

. (2.892)

I won’t into the details about how we can obtain this. I will just say that we
can readily verify that D is indeed the inverse of the O, in momentum space.

When the momentum is large, the propagator behaves as ∼ p2/m4 (rather
than 1/p2 in the meson theory, say), and so we can’t verify if the theory is
renormalizable or not using the conventional power counting method. We will
see later how to overcome this difficulty by rewriting the theory in a way in
which all propagators go similar to ∼ 1/p2 at high energy.

We might learn something from comparing this propagator to the propagator
in the m = 0 case. In the m = 0 case, the action can be written as

Sm=0 =

ˆ
dDx

1

2
hµνEµν,αβhαβ (2.893)

where now the differential operator E is just the operator O evaluated at m = 0:

Eµναβ = Oµναβ(m = 0)

=
(
η(µ

αη
ν)
β − η

µνηαβ

)
�− 2∂(µ∂(αη

ν)
β) + ∂α∂βη

µν + ∂µ∂νηαβ

(2.894)
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This propagator also inherits the usual index symmetry: µ ↔ ν and α ↔ β.
Letting E act on some symmetric tensor Zαβ we find

Eµν,αβZαβ = EµναβZ
αβ

=
{(
η(µ

αη
ν)
β − η

µνηαβ

)
�− 2∂(µ∂(αη

ν)
β) + ∂α∂βη

µν + ∂µ∂νηαβ

}
Zαβ

= �Zµν − ηµν�Z − 2∂(µ∂(αη
ν)
β)Z

αβ + ∂µ∂νZ + ηµν∂α∂βZ
αβ

= �Zµν − ηµν�Z − 2∂(µ∂αZ
ν)α + ∂µ∂νZ + ηµν∂α∂βZ

αβ . (2.895)

Now, recall that the m = 0 action has the gauge symmetry

δhµν = ∂µεν + ∂νεµ (2.896)

which is broken when m 6= 0, which implies that the operator E is not invertible
(has non-trivial kernel, i.e. there are distinct solutions to the same problem).
In order to find the propagator (of equivalently the inverse of the differential
operator), we must impose a gauge. We in fact have seen this gauge before
in Zee’s and Sean Carroll’s treatment of massive gravity. The necessary gauge
condition is called the harmonic gauge or de Donder gauge or Lorenz gauge:

∂µhµν −
1

2
∂νh = 0. (2.897)

We also know that in this gauge the equation of motion reads

�hµν −
1

2
ηµν�h = 0. (2.898)

The Lagrangian associated with this gauge condition has an additive gauge-
fixing term

LGF = −
(
∂νhµν −

1

2
∂µh

)2

, (2.899)

which we also have seen in Zee’s treatment. This term actually follows from the
Faddeev-Popov gauge fixing process, but I won’t go into too much detail here
(for reference, please refer to Gravity as a Field Theory in one of the earlier
sections).

When we write the gauge-fixed action as

S =

ˆ
dDx (L+ LGF ) =

ˆ
dDx

1

2
hµνÕµν,αβhαβ (2.900)

where, from our results in Gravity and Beyond

L+ LGF = −1

2
∂λh

µν∂λhµν +
1

4
∂λh

µ
µ∂

λhνν

=
1

2
hµν�h

µν − 1

4
h�h (2.901)
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where some slight discrepancies in the signs of the Lagrangian here and in the
earlier sections arise due to whether we vary L with respect to hµν or hµν (proof:
a quick check in xACT). The second inequality is obtained from integrating the
first line by parts (hence the minus signs).

With this, the new differential operator is (compare this to what we found
earlier and see that they match!)

Õµν,αβ = �

[
ηµαηνβ + ηµβηνα − ηµνηαβ

2

]
(2.902)

Going to momentum space and requiring

Õµν,αβDαβ,σλ =
i

2
(δµσδ

ν
λ + δνσδµλ) , (2.903)

i.e., that D is the inverse of the Õ, we find (once again we can check with Gravity
and Beyond to see these results match up to a factor of i or a minus sign due
to the identity convention):

Dαβ,σλ =
−i
p2

[
1

2
(ηασηβλ + ηαληβσ)− 1

D − 2
ηαβησλ

]
(2.904)

Notice that this propagator grows as ∼ 1/p2 for high energy, which is good,
except this is the massless case. Comparing this result to the massive propaga-
tor, and ignoring terms that blow up when m → 0, we observe a difference in
the coefficient of the last term, even as m → 0. When D = 4, it is 1/2 for the
massless case and 1/3 for the massive case:

1

D − 1
→ 1

4− 1
=

1

3
massive

1

D − 2
→ 1

4− 2
=

1

2
massless (2.905)

This is the first hint of the vDVZ discontinuity (and various other problems
that arise later).
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2.7.4 Fierz-Pauli Massive Gravity with Source

General solution to the sourced equations

In this section we introduce a source into the action and repeat what we did in
the source-free case: writing down the action, finding the equation of motion
and the constraints described by it.

First, we add a fixed external symmetric source Tµν to the action:

SFP =

ˆ
dDx − 1

2
∂λhµν∂

λhµν + ∂µhνλ∂
νhµλ

− ∂µhµν∂νh+
1

2
∂λh∂

λh− 1

2
m2
(
hµνh

µν − h2
)

+ κhµνT
µν

where

κ = M
−(D−2)/2
P (2.906)

is the coupling strength to the source, chosen in accord with the general rela-
tivity definition Tµν = (2/

√
−g)δL/δgµν as well as the normalization δgµν =

2κhµν .

The equation of motion now becomes (upon varying L with respect to hµν
and setting the variational derivative to zero):

−κTµν =�hµν − ∂λ∂µhλν − ∂λ∂νhλµ + ηµν∂λ∂σh
λσ

+ ∂µ∂νh− ηµν�h−m2 (hµν − ηµνh) (2.907)

When m = 0, in which case we must have the conservation condition

∂µTµν = 0 (2.908)

since ∂µ acting on the right-hand side when m = 0 gives zero. When m 6= 0,
however, ∂µTµν 6= 0. In fact, letting ∂µ act on the entire equation we find the
condition

∂µhµν − ∂νh =
κ

m2
∂µTµν (2.909)

whose left-hand side follows from earlier works. This is the equation of motion,
whose solution can be written as a sum of a particular solution and a homoge-
neous solution.

Plugging this back into the equation of motion we find

�hµν − ∂µ∂νh−m2 (hµν − ηµνh)

=− κTµν +
κ

m2

[
∂λ∂µTνλ + ∂λ∂νTµλ − ηµν∂µ∂νTµν

]
(2.910)
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Contracting this gives

�h−�h−m2 (h−Dh) = −κT +
κ

m2
[T + T −D∂µ∂νTµν ] (2.911)

i.e.,

h = − κ

m2(D − 1)
T − κ

m4

D − 2

D − 1
∂µ∂νT

µν (2.912)

here D is the dimension of the space we are working with. I suppose we can
assume we’re working in 4-dimensional spacetime, so D can be set to 4, but not
necessarily. The term ∂µ∂νT

µν can be abbreviated as ∂∂T , denoting a double
divergence.

Plugging this h into (2.909) we find

∂µhµν = − κ

m2(D − 1)
∂νT +

κ

m2
∂µTµν −

κ

m4

D − 2

D − 1
∂ν∂∂T (2.913)

Finally, we want to know what (� − m2)hµν looks like. It turns out that (I
won’t go into the details here because it is relatively easy to find this):

(�−m2)hµν =− κ
[
Tµν −

1

D − 1

(
ηµν −

∂µ∂ν
m2

T

)]
+

κ

m2

[
∂λ∂µTνλ + ∂λ∂νTµλ

− 1

D − 1

(
ηµν + (D − 2)

∂µ∂ν
m2

)
∂∂T

]
(2.914)

These three boxed equations are the three constraints analogous to what we
have found before, except here a source is present. We can also see that, just
as before, these three equations combined is equivalent to the original equation
of motion.

We can go a bit further and contract the last condition to find

(�−m2)

(
h+

κ

m2(D − 1)
T +

κ

m4

D − 2

D − 1
∂∂T

)
︸ ︷︷ ︸

f

= 0. (2.915)

But of course the function f here is zero because of the first condition, so there’s
nothing new here. However, we can look at things differently and assume that

(�−m2)f = 0 =⇒ f = 0. (2.916)

Under this assumption the first condition is implied, and so is the second condi-
tion. With this, we may obtain solutions by Fourier transforming only the third
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boxed equation. Solutions can also be obtained by applying the propagator to
the Fourier transform of the source (since the propagator is in momentum space).

We are often interested in sources that are conserved, i.e., ∂µT
µν = 0. When

the source is conserved, and under the assumption (�−m2)f = 0 =⇒ f = 0,
we are left with a single equation:

(�−m2)hµν = −κ
[
Tµν −

1

D − 1

(
ηµν −

∂µ∂ν
m2

)
T

]
(2.917)

The general solution for a conserved source is then

hµν(x) = κ

ˆ
dDp

(2π)D
eipx

1

p2 +m2

[
Tµν(p)− 1

D − 1

(
ηµν +

pµpν
m2

)
T (p)

]
(2.918)

where

Tµν(p) =

ˆ
dDxe−ipxTµν(x) (2.919)

is the inverse Fourier transform of the source.

Solution for a point source (m 6= 0)

We will now focus to D = 4 so that

κ = M
−(D−2)/2
P =

1

MP
. (2.920)

We consider as a source the stress tensor of a mass M point particle at rest at
the origin:

Tµν(x) = Mδµ0 δ
ν
0 δ

3(x) (2.921)

In momentum space this is

Tµν(p) = 2πMδµ0 δ
ν
0 δ(p

0) =⇒ T (p) = ηµνT
µν(p) = 2πMη00δ(p

0) (2.922)

upon taking the Fourier transform of the Tµν(x).

This source is conserved, by inspection. Using (2.918), we find (using the
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metric convention ηµν = (− + + +))

h00(x) =
1

MP

ˆ
d4p

(2π)4
eipx

1

p2 +m2

[
T00(p′)− 1

3

(
η00 +

p2
0

m2

)
T (p′)

]
=

1

MP

ˆ
d4p

(2π)4
eipx

1

p2 +m2

[
T00(p′)− 1

3

(
η00 +

p2
0

m2

)(
2πMη00δ(p

0′)
)]

=
M

MP

ˆ
d4p

(2π)3
eipx

1

p2 +m2

δ(p0′)− 1

3

−1 +
p2

0

m2︸︷︷︸
1

 δ(p0′)


=

2M

3MP

ˆ
d4p

(2π)3
eipx

1

p2 +m2
δ(p0)

=
2M

3MP

ˆ
d3p

(2π)3
eip·x

1

p2 +m2
. (2.923)

Thus we have

h00(x) =
2M

3MP

ˆ
d3p

(2π)3
eip·x

1

p2 +m2
(2.924)

We also have

h0i(x) =
1

MP

ˆ
d4p

(2π)4
eipx

1

p2 +m2

[
T00(p)− 1

3

(
η0i +

p0pi
m2

)
T (p′)

]
=

1

MP

ˆ
d4p

(2π)4
eipx

1

p2 +m2

[
T0i(p)−

1

3

(p0pi
m2

)(
2πMη00δ(p

0′)
)]

=
1

MP

ˆ
d4p

(2π)4
eipx

1

p2 +m2
[0 + 0]

= 0 (2.925)

and so

h0i(x) = 0 (2.926)

And finally,

hij(x) =
1

MP

ˆ
d4p

(2π)4
eipx

1

p2 +m2

[
Tij(p)−

1

3

(
ηij +

pipj
m2

)
T (p′)

]
=

1

MP

ˆ
d4p

(2π)4
eipx

1

p2 +m2

[
0− 1

3

(
δij +

pipj
m2

)(
2πMη00δ(p

0′)
)]

=
M

3MP

ˆ
d4p

(2π)3
eipx

1

p2 +m2

[(
δij +

pipj
m2

)
δ(p0′)

]
=

M

3MP

ˆ
d3p

(2π)3
eip·x

1

p2 +m2

(
δij +

pipj
m2

)
. (2.927)
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So,

hij(x) =
M

3MP

ˆ
d3p

(2π)3
eip·x

1

p2 +m2

(
δij +

pipj
m2

)
(2.928)

Recalling (2.223) in From field to particle, we have actually done the h00(x)
integral. So we will just write (by analogy)

h00(x) =
2M

3MP

ˆ
d3p

(2π)3
eip·x

1

p2 +m2
=

2M

3MP

1

4π

e−mr

r
(2.929)

which suggests going to spherical coordinates with r being the norm of the vec-
tor xi, i.e., r =

√
xixi, integrated from 0 to ∞.

To evaluate the hij(x) integral, we can differentiate under the integral sign
the integrand of h00(x) without respect to xi and xj to bring down pi and pj :

∂i∂j

(
eipαx

α 1

pβpβ +m2

)
= ∂i

[
ipje

ipαx
α 1

pβpβ +m2

]
= −pipjeip·x

1

p2 +m2
.

(2.930)

This, with r =
√
xαxα, givesˆ

d3p

(2π)3

eip·xpipj
p2 +m2

= −∂i∂j
ˆ

d3p

(2π)3
eip·x

1

p2 +m2

= −∂i∂j
1

4π

e−mr

r

= −∂i∂j
1

4π

e−m
√
xαxα

√
xαxα

= −∂i∂j
1

4π

e−m
√
ηαβxαxβ√

ηαβxαxβ

= −∂i

 1

4π

(
−e
−mr(mr + 1)

r2

)
∂j

√
ηαβxαxβ︸ ︷︷ ︸
xj/r


= −∂i

[
1

4π

(
−e
−mr(mr + 1)

r2

)
xj

r

]
= −∂i

[
1

4π

(
−e
−mr(mr + 1)

r3

)
xj
]

=
1

4π

[
−e−mr

(
m2r2 + 3mr + 3

)
r4

xi

r
xj +

e−mr(mr + 1)

r3
δij

]

=
1

4π

e−mr

r

 1

r2
(1 +mr)δij −

1

r4
(3 + 3mr +m2r2)xixj︸ ︷︷ ︸

♠ij


≡ 1

4π

e−mr

r

[
1

r2
(1 +mr)δij −♠ij

]
. (2.931)
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Thus we have

hij(x) =
M

3MP

{
δij

1

4π

e−mr

r

(
1 +

1

m2r2
(1 +mr)

)
− ♠ij
m2

}
=

M

3MP

{
δij

1

4π

e−mr

r

1 +mr +m2r2

m2r2
− ♠ij
m2

}
(2.932)

Putting these results into the expressions for h00, h0i, and hij we find

h00(r) =
2M

3MP

1

4π

e−mr

r

h0i(r) = 0

hij(r) =
M

3MP

1

4π

e−mr

r

[
1 +mr +m2r2

m2r2
δij −

1

m2r4
(3 + 3mr +m2r2)xixj

]
We note the Yukawa suppression factors e−mr characteristic of a massive field.

Now that we have all the components of hµν , for future reference, we will
record these expressions in spherical coordinates for the spatial variables. Using
the identity:

[F (r)δij +G(r)xixj ] dx
idxj =

[
F (r) + r2G(r)

]
dr2 + F (r)r2 dΩ2 (2.933)

which can be readily verified using r =
√
ηαβxαxβ , we can rewrite the line

element in spherical coordinates as

hµν dx
µdxν = h00 dx

0dx0 + 0 + 0 + hij dx
idxj

=
2M

3MP

1

4π

e−mr

r︸ ︷︷ ︸
−B(r)

dt2

+
M

3MP

1

4π

e−mr

r

[
1 +mr +m2r2

m2r2
δij −

3 + 3mr +m2r2

m2r4
xixj

]
dxidxj

= −B(r) dt2 +
M

3MP

1

4π

e−mr

r

1 +mr +m2r2

m2r2︸ ︷︷ ︸
A(r)

δij dx
idxj

− M

3MP

1

4π

e−mr

r

1

m2r4
(3 + 3mr +m2r2)︸ ︷︷ ︸

G(r)

xixj dx
idxj

= −B(r) dt2 +
[
A(r) + r2G(r)

]
dr2 +A(r)r2 dΩ2

= −B(r) dt2− M

3MP

1

4π

e−mr

r

2(mr + 1)

m2r2︸ ︷︷ ︸
C(r)

dr2 +A(r)r2 dΩ2

= −B(r) dt2 + C(r) dr2 +A(r)r2 dΩ2. (2.934)
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To summarize: we have successfully written hµν(x) line element in spherical
coordinates hµν(x)→ hµν(r)

hµν dx
µdxν −B(r) dt2 + C(r) dr2 +A(r)r2 dΩ2 (2.935)

where

B(r) = − 2M

3MP

1

4π

e−mr

r

C(r) = − 2M

3MP

1

4π

e−mr

r

1 +mr

m2r2

A(r) =
M

3MP

1

4π

e−mr

r

1 +mr +m2r2

m2r2

When r � 1/m these expressions reduce to

B(r) = − 2M

3MP

1

4πr

C(r) = − 2M

3MP

1

4πm2r3

A(r) =
M

3MP

1

4πm2r3

Solution for a point source m = 0

For comparison, we compute the point source solution for the massless case as
well. We choose the Lorenz gauge (or harmonic gauge) as before

∂µhµν −
1

2
∂νh = 0, (2.936)

in which the equation of motion simplifies to

�hµν −
1

2
ηµν�h = −κTµν (2.937)

which can be easily obtained by taking into account for an addition source term
in equation (2.898). Contracting this equation gives

�h− D

2
�h = −κT =⇒ �h =

2

D − 2
κT (2.938)

which upon back-substitution gives

�hµν = −κ
[
Tµν −

1

D − 2
ηµνT

]
. (2.939)

With these, we can solve (2.937) by Fourier transforming (just as we did before
with the sourced solution with m = 0):

hµν(x) = κ

ˆ
dDp

(2π)D
eip·x

1

p2

[
Tµν(p)− 1

D − 2
ηµνT (p)

]
(2.940)
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where

Tµν(p) =

ˆ
dDx e−ip·xTµν(x) (2.941)

is the Fourier transform of the source. We can readily see this is a solution by
evaluating �hµν .

When D = 4 and Tµν(x) is a point source - a point particle of mass M at
the origin of the same form as before:

Tµν(x) = Mδµ0 δ
ν
0 δ

3(x) ⇐⇒ Tµν(p) = 2πMδµ0 δ
ν
0 δ(p

0), (2.942)

then the general solution we found (2.940) tells us that

h00(r) =
M

2MP

ˆ
d3p

(2π)3
eip·x

1

p2
=

M

2MP

1

4πr

h0i(r) = 0

hij(r) =
M

2MP

ˆ
d3p

(2π)3
eip·x

1

p2
δij =

M

2MP

1

4πr
δij .

For later reference, we record his result in spherical spatial coordinates as well.
Using the same identity

[F (r)δij +G(r)xixj ] dx
idxj =

[
F (r) + r2G(r)

]
dr2 + F (r)r2 dΩ2 (2.943)

to get spherical coordinates we find a metric of the form

hµν dx
µdxν = −B(r) dt2 + C(r) dr2 +A(r)r2 dΩ2 (2.944)

with

B(r) = − M

2MP

1

4πr

C(r) = +
M

2MP

1

4πr

A(r) = +
M

2MP

1

4πr

The procedure for obtaining this is exactly the same as we just did for the
m 6= 0 sourced equation, except things are much simpler because we don’t have
the xixj term to worry about. One can verify this just by inspection.

The vDVZ discontinuity emerges

In this section we introduce the vDVZ discontinuity which results from the
studying a solution to the point-source + mass gravity problem. A more de-
tailed treatment of the vDVZ discontinuity (including its origin) will be provided
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in later sections where we discuss the Stükelberg’s trick/formalism.

We wish to show how the vDVZ continuity comes about in the simple prob-
lem of massive gravity + a point source. To this end, we extract some physical
prediction from the point source solution. Let us assume we have a test particle
moving in this field, and that this test particle responds to hµν the same way
that a test particle in GR responds to the metric deviation δgµν = (2/MP )hµν .

Given hµν of the form

hµν = MP


−2φ(r)

−2ψ(r)
−2ψ(r)

−2ψ(r)

 (2.945)

i.e.,

h00/MP = −2φ(r)

hij/MP = −2ψ(r)δij

h0i/MP = 0 (2.946)

then the Newtonian potential experienced by the particle is given by φ(r). Why
is this true? We can refer back to the chapter on the weak field limit of GR
(in the GR notes) and find that following the definition of acceleration a ≡∇Φ
where Φ is the Newtonian potential,

a ∼ d2Xi

dτ2
=

(
dt

dτ

)2
d2Xi

dt2
∼ 1

2
ηiσ(∂σh00)

(
dt

dτ

)2

(2.947)

where we have naturally set c = 1 and using the fact that the geodesic equation
for light in this limit reads

0 =
d2Xµ

dτ2
+ Γµνσ

dXν

dτ

dXσ

dτ
∼ d2Xµ

dτ2
+ Γµ00

dX0

dτ

dX0

dτ
=
d2Xµ

dτ2
+ Γµ00

(
dt

dτ

)2

(2.948)

with

Γµ00 =
1

2
ηµσ (∂0hσ0 + ∂0hσ0 − ∂σh00) ∼ −1

2
ηµσ∂σh00. (2.949)

With this, we see that because

a ∼ 1

2
ηiσ(∂σh00) =

−1

2
δij(∂jh00) =

−1

2
∇h00 (2.950)

And so it makes sense that h00, or the function φ(r) in our example, is respon-
sible for the Newtonian potential.

https://huanqbui.com/LaTeX projects/HuanBui_GR/HuanBui_GR.pdf
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Furthermore, if

ψ(r) = γφ(r) (2.951)

where γ is called the parameterized post-Newtonian (PPN) parameter, then if

φ(r) =
−k
r
, (2.952)

resembling the inverse-square potential, then the angle for the bending of light
at impact parameter b around a heavy source is given by

α̂ =
2(1 + γ)GM

b
(2.953)

We shall verify, derive, and apply this result. We will first consider the massless
gravity case to derive the expression, then apply it to the massive case.

Verification & derivation of (2.953) for massless gravity: This derivation will rely
on Sean Carroll’s Chapter 7, Spacetime & Geometry. We have obtained the
general expression for hµν for massless gravity in the previous section. For
convenience, I will reproduce them here:

h00(x) =
M

2MP

ˆ
d3p

(2π)3
eip·x

1

p2
=

M

2MP

1

4πr

h0i(x) = 0

hij(x) =
M

2MP

ˆ
d3p

(2π)3
eip·x

1

p2
δij =

M

2MP

1

4πr
δij .

We can just read off φ(r) and ψ(r) from the expressions of hµν , using 1/M2
P =

16πG:

h00(r) =
M

2MP

1

4πr
=⇒ φ(r) =

−GM
r

hij(r) =
M

2MP

1

4πr
δij =⇒ ψ(r) =

−GM
r

(2.954)

So, γ = 1 and thus we expect the bending angle to be

α =
4GM

b
(2.955)

We wish to verify this. To this end, we revisit hµν , “formally”:

hµν =


−2φ(r)

−2φ(r)
−2φ(r)

−2φ(r)

 (2.956)
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Now consider the path of a photon (or any massless particle) through this ge-
ometry. We want to solve the perturbed geodesic equation for a null trajectory
xµ(λ). The geometry we consider is shown as follows:

Figure 2.21: A deflected geodesic xµ(λ), decomposed into a background geodesic
x(0)µ and a perturbation x(1)u. The deflection angle α̂ represents (minus) the
amount by which the wave vector rotates along the path. A single mass M with
impact parameter b is depicted, although the setup is more general.

It’s important to remember that we consider the metric perturbation as a
field defined on a flat background spacetime. With this, we can decompose the
geodesic into a background path plus a perturbation:

xµ(λ) = x(0)µ(λ) + x(1)µ(λ) (2.957)

where of course x(0)µ(λ) is just the null (straight) path which solves the flat
background geodesic equation. We want to solve for x(1)µ(λ). To do this, we
assume that the potential φ is approximately constant along the background
and true geodesics, i.e., x(1)i∂iφ � φ. This is reasonable assumption, since
x(1)µ(λ) is necessarily small.

For convenience we denote the derivative of the vector of the background
path as kµ, and the derivative of the deviation vector as lµ:

kµ ≡ dx(0)µ

dλ
; lµ ≡ dx(1)µ

dλ
. (2.958)

The null path obeys the condition:

0 = gµν
dxµ

dλ

dxν

dλ

= (ηµν + hµν)
d
(
x(0)µ + x(1)µ

)
dλ

d
(
x(0)ν + x(1)ν

)
dλ

= (ηµν + hµν) (kµ + lµ)(kν + lν) (2.959)
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At zeroth order we only have

ηµνk
µkν = 0 =⇒

(
k0
)2

= ~k2 ≡ k2. (2.960)

This defines the constant k. At first order, we have

2ηµνk
µlν + hµνk

µkν = 0 =⇒ −kl0 +~l · ~k = 2k2φ(r) (2.961)

since
(
k0
)2

= ~k2 = k2. Now, we turn to the perturbed geodesic equation:

d2xµ

dλ2
+ Γµρσ

dxρ

dλ

dxσ

dλ
= 0. (2.962)

With ηµν = diag(− + + +), the relevant Christoffel symbols are

Γ0
0i = Γi00 = ∂iφ

Γijk = δjk∂iφ− δik∂jφ− δij∂kφ. (2.963)

The zeroth-order equation simple tells us that x(0)µ is a straight trajectory,
while at first-order we have

dlµ

dλ
= −Γµρσk

ρkσ (2.964)

When µ = 0, we have

dl0

dλ
= −2k(~k ·∇φ) (2.965)

while the spatial components read

d~l

dλ
= −2k2

(
∇− ~∇‖

)
φ

≡ −2k2~∇⊥φ = −2k2
(
∇φ− k−2(~k ·∇φ)~k

)
(2.966)

where ~∇⊥ denotes the gradient of φ along the deviation and ~∇‖ denotes the
gradient of φ along the path.
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Next, we notice that

l0 =

ˆ
dl0

dλ
dλ

= −2k

ˆ
(~k ·∇φ) dλ

= −2k

ˆ (
d~x(0)

dλ
·∇φ

)
dλ

= −2k

ˆ
∇φ · d~x(0)

= −2k

ˆ
∂xφ (x̂ · x̂) dx(0)

= −2kφ. (2.967)

We can fix the constant of integration by demanding that l0 ⇐⇒ φ = 0. It
follows from (2.961) that

~l · ~k = 2k2φ+ kl0

= 2k2φ− 2k2φ

= 0. (2.968)

Thus ~k ⊥ ~l, to first order. This makes intuitive sense if we think about it a little
bit.

Now, the deflection angle α̂ is the amount by which the original spatial
wave vector is deflected as it travels from a source to the observer. It is a
two-dimensional vector in the plane perpendicular to ~k (by figure) and hence is

(anti)-parallel to ~l. And by the figure, we can write

α̂ = −∆~l

k
, (2.969)

where the minus sign accounts for the fact that the deflection angle is measured
by an observer looking backward along the photon path. The rotation of the
wave vector ∆~l can be calculated using (2.966):

∆~l =

ˆ
d~l

dλ
dλ

= −2k2

ˆ
−2k2~∇⊥φdλ. (2.970)

And with s = kλ denoting the physical spatial distance traversed we have

α̂ = 2

ˆ
~∇⊥φds (2.971)
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We also have

φ(r) =
−GM
r

=⇒ φ(x) =
−GM√
x2 + b2

, (2.972)

and

~∇⊥φ =
d

db
φ(x)b̂ =

GM

(b2 + x2)3/2
~b. (2.973)

Putting everything together, followed by a change of variables, we get

α̂ = 2GMb

ˆ ∞
−∞

dx

(b2 + x2)3/2
=

4GM

b
=

2(1 + 1)GM

b
(2.974)

and so γ = 1 as desired. The integral from −∞ to ∞ assumes that both source
and observer are very far from the deflecting mass.

What if the form of hµν is

hµν =


−2φ(r)

−2γφ(r)
−2γφ(r)

−2γφ(r)

? (2.975)

It is not difficult in this case to recalculate the Christoffel symbols, again using
η = diag(− + + +) for consistency:

Γµ00 = ∂iφ

Γijk = γ (δjk∂iφ− δik∂jφ− δij∂kφ) . (2.976)

Repeating the procedure in the previous paragraphs we find from the null path
condition (2.959) at zeroth order

ηµνk
µkν = 0 =⇒ k2 = ~k2 =

(
k0
)2

(2.977)

and at first order, because
(
k0
)2

= ~k2 = k2,

2ηµνk
µlν + hµνk

µkν = 0 =⇒ −kl0 +~l · ~k = 2(1 + γ)k2φ(r). (2.978)

This factor of (1 + γ) will reappear when we find the spatial component d~l/dλ
since it is embedded in the new Christoffel symbol Γiµν (I know this must be
true, but I won’t verify...)

d~l

dλ
= −2(1 + γ)k2~∇⊥φ (2.979)
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From here and the rest of the procedure, this factor (1+γ) is carried throughout

(even to the part where we show ~l ⊥ ~k) and eventually end up in the final
integral:

α̂ = 2(1 + γ)GMb

ˆ ∞
−∞

dx

(b2 + x2)3/2
=

2(1 + γ)GM

b
(2.980)

So we’re done with the massless case.

Application of (2.953), massive gravity:
In the massive case, the metric hµν has the form

h00(r) =
2M

3MP

1

4π

e−mr

r

h0i(r) = 0

hij(r) =
M

3MP

1

4π

e−mr

r

[
1 +mr +m2r2

m2r2
δij −

1

m2r4
(3 + 3mr +m2r2)xixj

]
which is not quite the right form to read off the Newtonian potential and light
bending. To simplify things, we notice that while the massive gravity action
is not gauge invariant, we assumed tat the coupling to the test particle is that
of GR, i.e., this coupling is gauge invariant. We can argue that we are free to
make a gauge transformation on the solution hµν , and there will be no effect on
the test particle. To simplify the metric above, i.e. hopefully making it more
“uniformly diagonal” we can go back to the general expression for hij

hij(x) =
M

3MP

ˆ
d3p

(2π)3
eip·x

1

p2 +m2

(
δij +

pipj
m2

)
(2.981)

and notice that the term pipj/m
2 is pure gauge. This means under some gauge

transformation, we can ignore this term (why?). With this, our metric is equiv-
alent to the metric:

h00(r) =
2M

3MP

1

4π

e−mr

r

h0i(r) = 0

hij(r) =
M

3MP

1

4π

e−mr

r
(2.982)

In the small mass limit, this metric becomes

h00(r) =
2M

3MP

1

4πr

h0i(r) = 0

hij(r) =
M

3MP

1

4πr
δij



2.7. MASSIVE GRAVITY 287

which means when we read off the fields φ and ψ we find

h00(r) =
2M

3MP

1

4πr
=⇒ φ(r) = −4

3

GM

r

hij(r) =
M

3MP

1

4πr
δij =⇒ ψ(r) = −2

3

GM

r
(2.983)

for massive gravitons.

The Newtonian potential φ is larger then for the massless case. The PPN
parameter is

γ =
ψ(r)

φ(r)
=

1

2
(2.984)

and thus the magnitude of the light bending angle for light incident at impact
parameter b is reduced by 25%:

α̂ =
2(1 + 1/2)GM

b
=

3GM

b
6= 4GM

b
(2.985)

when we scale φ so that it matches with the Newtonian potential, even in the
massless limit (note that this formula is obtained from the massless theory, so
we can only use it here in the massless limit).

What this all means is that linearized massive gravity, even in the massless
limit, gives predictions which are order 1 different from linearized GR. This is
the vDVZ discontinuity. It is present in other physical predictions as well, such
as emission of gravitational radiation. Sean Carroll’s Chapter 7,Spacetime &
Geometry goes over how to derive gravitation radiation (gravitational wave),
but we won’t worry about that.
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2.7.5 The Stückelberg Trick

There are a number of ways the Stückelberg trick has appeared in literature.
Some refer to it as an approach or trick. Some don’t even refer to it at all. In
this section, we look at some approaches to introducing and using the Stükelberg
trick in the context of massive gravity.

We have seen that there is a discontinuity in the physical prediction of linear
massless gravity and the massless limit of linear massive gravity, known as the
vDVZ discontinuity. We will see explicitly that the correct massless limit of
massive gravity is not massless gravity, but rather massless gravity plus extra
degrees of freedom. The extra degrees of freedom are a massless vector and
a massless scalar, which couples to the trace of the energy momentum tensor.
This extra scalar coupling is responsible for the vVDZ discontinuity.

Recall the Lagrangian:

SFP =

ˆ
dDx − 1

2
∂λhµν∂

λhµν + ∂µhνλ∂
νhµλ

− ∂µhµν∂νh+
1

2
∂λh∂

λh− 1

2
m2
(
hµνh

µν − h2
)

+ κhµνT
µν

Taking the m → 0 straight away here does not yield a smooth limit, since
degrees of freedom are lost. To find the correct limit, the trick is to introduce
new fields and gauge symmetries into the massive theory in a way that does not
alter the theory. This is called the Stückelberg trick. Once this is done, a limit
can be found in which no degrees of freedom are gained or lost.

Motivation

The goal of the Stükelberg trick is to make a massive theory gauge invariant.
As we have seen, the massive term in the Fierz-Pauli action breaks diffeomor-
phism. The Stükelberg mechanism is the introduction of new field(s) to a reveal
a symmetry of a gauge-fixed theory.

In general, dynamical tensors Kµν transform under diffeomorphisms as

Kµν → Kµν + L3Kµν

= Kµν + (∂µε
α)Kαν + (∂νε

α)Kµα + εα∂αKµν . (2.986)

However, nondynamical background K̄µν obeys

K̄µν → K̄µν . (2.987)

In the context of massive gravity, in the nonlinear regime, we want to couple
a mass to gµν . But we also want to avoid gµνgµν = 4, so we must introduce a
nondynamical background K̄µν such that the mass terms become ∼ (K̄µνgµν)2,
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which break diffeomorphism.

Stükelberg’s trick puts back diffeomorphism invariance while introducing 4
scalars φa, a = 0, 1, 2, 3 such that we gain/lose no degree of freedom. To do this,
we can replace

K̄µν(x)→ ∂µφ
a∂νφ

bK̄ab(φ(x)). (2.988)

Here φa is a dynamical scalar with which we can restore diffeomorphism in-
variance in the theory. (We will see later why we would like to make this
replacement/definition.)

How is diffeomorphism restored? Well first we can fix

φa = δaαx
α, (2.989)

where xα is literally just the coordinate, such that

∂µφ
a = δaαδ

α
µ = δaµ. (2.990)

So we have

∂µφ
a∂νφ

bK̄ab(φ) = δaµδ
b
νK̄ab

= K̄µν(x). (2.991)

So we see this choice of gauge fixing gives the desired transformation. Next,
suppose we look at excitations of the form

φa = δaα(xα + πα) (2.992)

where πα are fields that are like th Nambu-Goldstone modes, then

∂µφ
a = δaµ + ∂µπ

αδaα

= δaµ + ∂µπ
a. (2.993)

With this,

∂µφ
a∂νφ

bK̄ab = (δaµ + ∂µπ
a)(δbν + ∂νπ

b)K̄ab(x+ π)

≈ (δaµ + ∂µπ
a)(δbν + ∂νπ

b)(K̄ab + πα∂αKab(x) + . . . )

≈ K̄µν + (∂µπ
a)K̄aν + (∂νπ

b)K̄µb + πα∂αK̄µν + . . . (2.994)

up to first order in π. The first approximation is just an affine approximation of
K̄ab. This puts the Nambu-Goldstone modes back into the theory with explicit
breaking, when πµ are like Nambu-Goldstone modes. This turns out to have
local symmetry. We can always gauge fix so that ∂µ → 0 and get back the
original theory.

A lot of this seems very arbitrary and sort of “out-of-nowhere.” But rest
assured, as we will see what we are actually doing by introducing φa and how
this trick works in the next section.



290 PART 2. QUANTUM & CLASSICAL FIELD THEORIES

The Stückelberg’s Trick - a Vector Example (Hinterbichler)

To see how the trick works, we consider a simple case of the theory of a massive
photon Aµ coupled to a (not necessarily conserved) source Jµ:

S =

ˆ
dDx − 1

4
FµνF

µν − 1

2
m2AµA

µ +AµJ
µ. (2.995)

where of course

Fµν = ∂µAν − ∂νAµ (2.996)

is the anti-symmetric EM stress-tensor. The mass term break the would-be
gauge invariance:

Aµ → Aµ + ∂µΛ ⇐⇒ δAµ = ∂µΛ, (2.997)

and for D = 4 this theory describes the 3 degrees of freedom of a massive spin
1 particle. The propagator for this theory is given by

−i
p2 +m2

(
ηµν +

pµpν
m2

)
(2.998)

which is not quite as nice as the usual massless photon propagator (Maxwell
theory) due to m 6= 0, and is similar to ∼ 1/m2 for large momenta. This prop-
erty invalidates the usual power-counting arguments.

The limit m → 0 of the Lagrangian above is not a smooth limit because
we lose a degree of freedom: for m = 0 we have Maxwell’s EM theory which
propagates only with 2 degrees of freedom. Also, the limit fails to exist unless
Jµ is conserved.

Here’s how the Stückelberg trick works. The trick consists of introducing
a new scalar field φ such tat the new action has gauge symmetry but is still
dynamically equivalent to the original action. It will give a different m → 0
smooth limit such that no degrees of freedom are gained or lost.

Let us begin by introducing a field φ by making the replacement:

Aµ → Aµ + ∂µφ (2.999)

following the pattern of the gauge symmetry we want to introduce. This is not
a change of field variables, a decomposition of Aµ, nor a gauge transformation
(remember, this new theory breaks gauge invariance). Rather, we are creating
a new Lagrangian from th old one, by the addition of a new field φ. Fµν is
invariant under this replacement because the replacement is similar to a gauge
transformation under which Fµν is invariant. The only thing that changes is
the mass term and the coupling to the source. Following some simple algebra,
the action becomes

S =

ˆ
dDx − 1

4
FµνF

µν − 1

2
m2 (Aµ + ∂µφ)

2
+AµJ

µ − φ∂µJµ (2.1000)
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where we have integrated by parts in the coupling to the source. The new action
now has the gauge symmetry:

δAµ = ∂µΛ; δφ = −Λ. (2.1001)

By fixing the gauge φ = 0, called the unitary gauge, we recover the original
Lagrangian:

S =

ˆ
dDx − 1

4
FµνF

µν − 1

2
m2AµA

µ +AµJ
µ. (2.1002)

This tells us that the action with φ = 0 and φ 6= 0 are equivalent theories. They
both describe the 3 d.o.f of a massive spin 1 in 4-dimensional spacetime. The
new Lagrangian just has more fields and symmetries. Pro tip: when introducing
new fields, make sure to introduce new symmetries so as to conserve degrees of
freedom.

The Stückelberg trick uses redundancy (introduces new fields as well as new
symmetries) to fix theories. The Stückelberg trick adds and removes extra gauge
symmetry in a way that does not mess with the manifest Lorentz invariance and
locality.

Now, consider the new theory again:

S =

ˆ
dDx − 1

4
FµνF

µν − 1

2
m2 (Aµ + ∂µφ)

2
+AµJ

µ − φ∂µJµ. (2.1003)

By normalizing φ→ m−1φ, we get

S =

ˆ
dDx

−1

4
FµνF

µν − m2

2
AµA

µ −mAµ∂µφ−
1

2
∂µφ∂

µφ+AµJ
µ − 1

m
φ∂µJ

µ.

(2.1004)

The gauge symmetries after this normalization is:

δAµ = ∂µΛ; δφ = −mΛ. (2.1005)

Now, consider the m→ 0 limit. If ∂µJ
µ 6= 0, i.e., the current is not conserved,

then when m � 1, the scalar field φ couples strongly with the divergence of
source, and the limit does not exist. This requires us to assume the current to
be conserved: ∂µJ

µ = 0. This implies the new theory in the m→ 0 limit is

L = −1

4
FµνF

µν − 1

2
∂µφ∂

µφ+AµJ
µ, (2.1006)

endowed with the gauge symmetries (m = 0):

δAµ = ∂µΛ; δφ = 0. (2.1007)



292 PART 2. QUANTUM & CLASSICAL FIELD THEORIES

The degrees of freedom turn out to be conserved in the limit. For D = 4 two of
the 3 degrees of freedom go into the massless vector,and one goes into the scalar.

We can fix a Lorentz-like gauge:

∂µA
µ +mφ = 0 (2.1008)

which along with the gauge symmetries: δAµ = ∂µΛ; δφ = −mΛ satisfies
(�−m2)Λ = 0. From Fadeev-Popov, we add a this gauge fixing term (which is
zero) to the action to get

S + SGF = S +

ˆ
dDx − 1

2
(∂µA

µ +mφ)
2

= . . .

=

ˆ
dDx

1

2
Aµ(�−m2)Aµ +

1

2
φ(�−m2)φ+AµJ

µ − 1

m
φ∂µJ

µ

(2.1009)

From there, we can pick out the propagators for Aµ and φ in momentum space
respectively:

DAµ(p) =
−iηµν
p2 +m2

; Dφ(p) =
−i

p2 +m2
(2.1010)

These go as ∼ 1/p2 at high momenta. So, we are able to restore good high
energy behavior of the theory propagators.

Graviton Stückelberg’s Trick & The origin of the vDVZ discontinuity
(Hinterbichler)

Now, let us consider the massive gravity action, which is made up of the massless
piece, plus the mass term, plus the source coupling term:

S =

ˆ
dDxLm=0 −

1

2
m2
(
hµνh

µν − h2
)

+ κhµνT
µν (2.1011)

We want to preserve (or restore(?)) the diffeomorphism:

δhµν = ∂µεν + ∂νεµ = ∂(µεν) (2.1012)

present in the m = 0 case, so we introduce a Stückelberg field Aµ patterned
after the gauge transformation/symmetry:

hµν → hµν + ∂µAν + ∂νAµ (2.1013)
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What does the action look like following this transformation? Some quick ma-
nipulations give

S =

ˆ
dDxLm=0 −

1

2
m2
(
hµνh

µν − h2
)
− 1

2
m2FµνF

µν

− 2m2 (hµν∂
µAν − h∂µAµ) + κhµνT

µν − 2κAµ∂νT
µν

where we notice that Lm=0 term is invariant under this transformation (since
it is the originally gauge-invariant Lagrangian). Other terms are not invari-
ant under the transformation above in hµν . We also note that we are setting
Fµν = ∂µAν − ∂µAν , and that we integrated the last term by parts to bring the
∂ inside to act on Tµν instead of on Aµ.

Just as before, we observe two gauge symmetries:

δhµν = ∂µεν + ∂νεµ; δAµ = −εµ. (2.1014)

Fixing the gauge Aµ = 0 gives back the massive gravity action (without extra
fields, etc.). At this point, if we try to repeat what we did before: rescaling
Aµ → m−1Aµ, we will fail because when the m → 0 limit is taken, we end
up with a massless graviton and a massless photon for a total of 4 degrees of
freedom - one less than the desired value of 5.

Instead, we go further and introduce a Stückelberg field φ and consider the
transformation:

Aµ → Aµ + ∂µφ, (2.1015)

under which the action above becomes:

S =

ˆ
dDxLm=0 −

1

2
m2
(
hµνh

µν − h2
)
− 1

2
m2FµνF

µν

− 2m2 (hµν∂
µAν − h∂µAµ)− 2m2 (hµν∂

µ∂νφ− h�φ)

+ κhµνT
µν − 2κAµ∂νT

µν + 2κφ∂∂T

where

∂∂T ≡ ∂µ∂νTµν . (2.1016)

With the introduction of the scalar field φ, we must also include two more gauge
symmetries to the theory, giving 4 total gauge symmetries, which follow from
the redefinition (2.1013) 

δhµν = ∂µεν + ∂νεµ

δAµ = −εµ
δAµ = ∂µΛ

δφ = −Λ.
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Once again, by fixing the gauge φ = 0 we get back the previous Lagrangian.

Now, we scale:

Aµ →
1

m
Aµ

φ→ 1

m2
φ. (2.1017)

The action changes accordingly as

S =

ˆ
dDxLm=0 −

1

2
m2
(
hµνh

µν − h2
)
− 1

2
FµνF

µν

− 2m (hµν∂
µAν − h∂µAµ)− 2 (hµν∂

µ∂νφ− h�φ)

+ κhµνT
µν − 2

m
κAµ∂νT

µν +
2

m2
κφ∂∂T,

and the gauge transformations become:
δhµν = ∂µεν + ∂νεµ

δAµ = −mεµ
δAµ = ∂µΛ

δφ = −mΛ.

which is quite obvious since we just rescaled things. Now, in the m → 0 limit,
we can see that Aµ and φ are strongly coupled to the divergence of the source ∂T
and ∂∂T . So suppose that the source T is conserved, in which case ∂µT

µν = 0,
then in this limit the theory takes the form

S =

ˆ
dDxLm=0 −

1

2
FµνF

µν − 2 (hµν∂
µ∂νφ− h�φ) + κhµνT

µν (2.1018)

This theory has 5 degrees of freedom: a scalar-tensor vector theory where the
vector is completely decoupled (Aµ is completely contained and isolated in the
Fµν term) but the scalar is kinetically mixed with the tensor (the mixed term
is the one with hµν and φ).

To unmix the coupling between the tensor field hµν and the scalar field φ
we introduce a field definition:

hµν = h′µν + πηµν (2.1019)

where π is some scalar field. Under this field substitution, the massless La-
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grangian becomes:

Lm=0(h) = −1

2
∂λhµν∂

λhµν + ∂µhνλ∂
νhµλ − ∂µhµν∂νh+

1

2
∂λh∂

λh

= . . .

= Lm=0(h′) + (D − 2)

[
∂µπ∂

µh′ − ∂µπ∂νh′µν +
1

2
(D − 1)∂µπ∂

µπ

]
.

(2.1020)

Now, by setting

π =
2

D − 2
φ, (2.1021)

we can unmix the h − φ coupling in the original Lagrangian. After some sim-
plifications, we obtain the new action following the field substitution:

S =

ˆ
dDxLm=0(h′)− 1

2
FµνF

µν − 2
D − 2

D − 1
∂µφ∂

µφ+ κh′µνT
µν +

2

D − 2
κφT

(2.1022)

The gauge symmetries in this theory are
δh′µν = ∂µεν + ∂νεµ

δAµ = 0

δAµ = ∂µΛ

δφ = 0.

which follow from the field redefinition (2.1019). With D = 4, there are 5
degrees of freedom: two in a canonical massless graviton, two in a canonical
massless vector, and one in a canonical massless scalar.

However, notice that there is still a coupling between the scalar φ and the
trace of the source T (even) in the m = 0 limit. This is the origin of the vDVZ
discontinuity. When we consider the trajectory of light, we set T = 0, so this
does not affect the bending of light. However, this extra scalar degree of freedom
affects the Newtonian potential. We actually have seen this earlier. To reconcile
the disagreement in the predicted bending angle of light α̂ ∼ 4GM/b 6= 3GM/b,
we will have to rescale the gravitational constant G which affects the Newtonian
potential.

In the m 6= 0 regime with not necessarily conserved source, under the field
redefinition:

hµν = h′µν +
2

D − 2
φηµν (2.1023)
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which follows from setting π = 2φ/(D − 2), the full action is given by (ready?)

S =

ˆ
dDxLm=0(h′)− 1

2
m2
(
h′µνh

′µν − h′2
)
− 1

2
FµνF

µν

+ 2
D − 1

D − 2
φ

(
� +

D

D − 2
m2

)
φ− 2m

(
h′µν∂

µAν − h′∂µAµ
)

+ κh′µνT
µν

+ 2
D − 1

D − 2

(
m2h′φ+ 2mφ∂µA

µ
)

+
2

D − 2
κφT − 2

m
κAµ∂νT

µν +
2

m2
κφ∂∂T.

(whose verification is left as an “index-swimming” exercise to the reader). This
theory has the following gauge symmetries:

δh′µν = ∂µεν + ∂νεµ + 2
D−2mΛηµν

δAµ = −mεµ
δAµ = ∂µΛ

δφ = −mΛ.

It looks like the gauge symmetries has drastically changed, but if we look care-
fully there is not much going on here. From the field redefinition we can see
how the first gauge symmetry is obtained:

hµν = h′µν +
2

D − 2
φηµν =⇒ δh′µν = δhµν −

2

D − 2
(δφ)ηµν

= ∂µεν + ∂νεµ −
2

D − 2
(δφ)ηµν

= ∂µεν + ∂νεµ +
2

D − 2
mΛηµν (2.1024)

which follows from the fact that

δφ = −mΛ (2.1025)

after defining Aµ → Aµ+∂µφ, and rescaling Aµ → (1/m)Aµ and φ→ (1/m2)φ.
In any case, these are minor details we don’t have to worry about too much.

Now, remember that in order to find the propagators for these fields (scalar
φ, vector Aµ, and tensor hµν), we must be able to invert the differential op-
erators that correspond to each field in the Lagrangian. Since there are gauge
symmetries, these differential operators don’t have trivial kernel (i.e. not invert-
ible). This requires some gauge-fixing to allow for operator inversion. There are
2 gauge conditions we would like to fix: one in Λ and one in εµ. These are
the residual “degrees of freedom” that we need to eliminate for things to be
invertible.

We can try to fix the εµ symmetry first. From the gauge symmetries, we
observe that if we say

∂νh′µν −
1

2
∂µh

′ +mAµ = 0 (2.1026)
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then we can fix the εµ symmetry up to a residual transformation satisfying

(�−m2)εµ = 0, (2.1027)

which is good, except it is invariant under Λ transformations. This requires
fixing the Λ symmetry. We observe that by fixing

∂µA
µ +m

(
1

2
h′ + 2

D − 1

D − 2
φ

)
= 0 (2.1028)

we fix the Λ symmetry up to a residual transformation satisfying

(�−m2)Λ = 0. (2.1029)

Thus, we impose the following gauge conditions:

∂νh′µν −
1

2
∂µh

′ +mAµ = 0

∂µA
µ +m

(
1

2
h′ + 2

D − 1

D − 2
φ

)
= 0

Once we have these two gauges, we can add the following gauge-fixing terms
(which are just zeros by gauge-fixing)

SGF1 =

ˆ
dDx −

(
∂νh′µν −

1

2
∂µh

′ +mAµ

)2

(2.1030)

and

SGF2 =

ˆ
dDx −

[
∂µA

µ +m

(
1

2
h′ + 2

D − 1

D − 2
φ

)]2

(2.1031)

to the full action (just as we have done before with the original harmonic gauge)
to obtain

S + SGF1 + SGF2 =

ˆ
dDx

[
1

2
h′µν

(
�−m2

)
h′µν − 1

4
h′
(
�−m2

)
h′
]

+
[
Aµ
(
�−m2

)
Aµ
]

+

[
2
D − 1

D − 2
φ
(
�−m2

)
φ

]
κh′µνT

µν +
2

D − 2
κφT − 2

m
κAµ∂νT

µν +
2

m2
κφ∂∂T

Recall that the sole purpose of doing this is so that we can write the integrand
(the Lagrangian) in terms of the fields and propagators (refer to the part about
gauge harmonic for details). In other words, by adding these gauge-fixing terms,
we in effect “diagonalize” the action.
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With the action in propagator form, we can read off the propagators of h′µν ,
Aµ, and φ respectively:

D[h](p) =
−i

p2 +m2

[
1

2
(ηασηβλ + ηαληβσ)− 1

D − 2
ηαβησλ

]
, (2.1032)

D[A](p) =
1

2

−iηµν
p2 +m2

, (2.1033)

D[φ](p) =
D − 2

4(D − 1)

−i
p2 +m2

(2.1034)

which all behave as ∼ 1/p2 at high momenta, so we can apply the usual power-
counting methods. These propagators might look a bit unusual, but when we
set D = 4,

D[h](p) =
−i

p2 +m2

1

2
[ηασηβλ + ηαληβσ − ηαβησλ] , (2.1035)

D[A](p) =
1

2

−iηµν
p2 +m2

, (2.1036)

and

D[φ](p) =
1

6

−i
p2 +m2

(2.1037)

we see that these are the propagators we have seen before, and the differential
operator-containing terms in the action can be written as

ˆ
dDx

1

2
f...O...f... (2.1038)

for each corresponding field f (scalars, vectors, tensors, etc.) where O... is the
inverse of the spatial propagator D[f ](x). I won’t worry too much about the
details here, because we’re not getting any new insights.
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2.7.6 Nonlinear Massive Gravity

Up to this point, we have studied only the linear theory of massive gravity,
which is determined by the requirement that it propagates only one massive
spin 2 degree of freedom. We now turn to the study of the possible interactions
and non-linearities for massive gravity.

Massive General Relativity

Recall the original Einstein-Hilbert action for gravity:

S =
1

16πG

ˆ
dDx
√
−gR ≡

ˆ
dDx
√
−gM2

PR (2.1039)

where R is the Ricci scalar, and MP ≡ 1/4πG is the Planck mass. By Hin-
terbichler’s convention, however, M2

P ≡ 1/8πG, so we will be following this
convention and write

S =
1

2κ2

ˆ
dDx
√
−gR (2.1040)

where κ ≡ 1/MP in Hinterbichler’s convention.

What we want in a full theory of massive gravity is some nonlinear theory
whose linear expansion around some background is the massive Fierz-Pauli the-
ory. This theory is no longer GR (or Einstein gravity) in general, because we
no longer have an obvious gauge invariance constraint.

Our first modification to the original GR is adding the Fierz-Pauli term to
the full nonlinear GR action. Doing this implies that all nonlinear interactions
are due to GR. The addition of the Fierz-Pauli term is given by

S =
1

2κ2

ˆ
dDx

[√
−gR−

√
−g(0)

1

4
m2g(0)µαg(0)νβ (hµνhαβ − hµαhνβ)

]
(2.1041)

where

hµν = gµν − g(0)
µν (2.1042)

The Lagrangian now explicitly depends on a fixed metric g
(0)
µν , called the absolute

metric, on which the massive graviton hµν propagates. This means contraction,
raising, and lowering of indices of hµν are done via g(0)µν, and not gµν , which is
the full metric. This is similar to what we had before, where ηµν was responsible
general “index-manipulation.” The presence of this absolute metric in the mass
term breaks the diffeomorphism invariance of the Einstein-Hilbert term.
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Varying this action with respect to gµν (the full metric, NOT the perturba-
tion hµν), we find the following equation of motion

0 =
√
−g
(
Rµν − 1

2
Rgµν

)
+
√
−g(0)

m2

2

(
g(0)µαg(0)νβhαβ − g(0)αβhαβg

(0)µν
)

(2.1043)

(Fun Exercise: How was this found?) We see that because we’re varying
with respect to the full metric gµν , which contracts (and raises and lowers, etc.)
the indices of Rµν , we just get back the Einstein tensor Gµν ≡ Rµν− (1/2)Rgµν

for the first term in the action. The second term is bit more tricky. I will get
back to how we take the variational derivative of the second term with respect
to gµν later when I have time. We actually don’t have to worry too much about
this result, since we are interested in a much more general Fierz-Pauli potential.
In addition to this, we will later see that we can in fact raise/lower indices of h
using gµν , except we must also find the correct relationship between the coeffi-

cients in the g
(0)
µν and the gµν variational derivatives.

In any case, we observe that if the absolute metric g
(0)
µν satisfies the Einstein

equations, then g
(0)
µν = gµν ⇐⇒ hµν = 0 is a solution. In this case, we just

get back the original GR. When dealing with massive gravity and more compli-
cated nonlinear solutions thereof, we can have two background structures. On
one hand, we can have the absolute metric, which breaks diffeomorphism. On
the other, there is the background metric, which is a solution to the full non-
linear equations, about which we may expand the action. Often the solution
metric we are expanding around will be the same as the absolute metric, but if
we were expanding around a different solution, say a black hole, there would be
two distinct structures: the black hole solution and the absolute metric.

We are interested in more general interactions beyond the action provided
above. We will be adding interaction terms with no derivatives, since these are
most important at low energies. The most general such potential which reduces
to Fierz-Pauli at quadratic order involves adding terms cubic and higher in hµν
in all possible ways. With this, we write in general:

S =
1

2κ2

ˆ
dDx

[√
−gR−

√
−g(0)

1

4
m2U(g(0), h)

]
(2.1044)

The interaction potential U is the most general one that reduces to Fierz-Pauli
at linear order. The power series representation of this potential U is given by

U(g(0), h) =

N∑
n=2

Un(g(0), h)

= U2(g(0), h) + U3(g(0), h) + U4(g(0), h) + U5(g(0), h) + . . . (2.1045)
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where just as before

U2(g(0), h) = g(0)µαg(0)νβ (hµνhαβ − hµαhνβ)

= g(0)µαg(0)νβhµνhαβ︸ ︷︷ ︸
≡[h2]

− g(0)µαhµαg
(0)νβhνβ︸ ︷︷ ︸

≡[h]2

= [h2]− [h]2 (2.1046)

and further

U3(g(0), h) = C1[h3] + C2[h2][h] + C3[h]3

U4(g(0), h) = D1[h4] +D2[h3][h] +D3[h2]2 +D4[h2][h]2 +D5[h]4

U5(g(0), h) = F1[h5] + F2[h4][h] + F3[h3][h]2 + F4[h3][h2]

+ F5[h2]2[h] + F6[h2][h]3 + F7[h]5

... (2.1047)

The square bracket indicates a trace, with indices raised with g(0)µν :

[h] = g(0)µνhµν ,

[h2] = g(0)µνhµαg
(0)αβhνβ

... (2.1048)

The coefficients Ck are generic. Note that the dimension of ~Ck in Un(g(0), h)
whenever n > D is actually redundant by 1, not n, because of Cayley-Hamiltonian
theorem, which guarantees that existence of combination of the contractions
(the combination that is the characteristic polynomial LTDh (h)) that annihilates

Un(g
(0)
h ). This means one of the coefficients in Un(g(0), h) whenever n > D can

be set to zero.

For convenience, we will want to reorganize the terms in the potential by
raising and lowering with the full metric gµν rather than the absolute metric
g(0)µν , so that we get a common factor of

√
−g in the action. Under this

“transformation” we can write the action in terms of the new potential V (g, h) =
U(g(0), h):

S =
1

2κ2

ˆ
dDx

[√
−g
(
R− 1

4
m2V (g, h)

)]
(2.1049)

where just as before:

V (g, h) =

N∑
n=2

Vn(g, h) = V2(g, h) + V3(g, h) + V4(g, h) + V5(g, h) + . . .

(2.1050)
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with

V2(g(0), h) = gµαgνβ (hµνhαβ − hµαhνβ)

= gµαgνβhµνhαβ︸ ︷︷ ︸
≡〈h2〉

− gµαhµαgνβhνβ︸ ︷︷ ︸
≡〈h〉2

= 〈h2〉 − 〈h〉2

V3(g, h) = C1〈h3〉+ C2〈h2〉〈h〉+ C3〈h〉3

V4(g, h) = D1〈h4〉+D2〈h3〉〈h〉+D3〈h2〉2 +D4〈h2〉〈h〉2 +D5〈h〉4

V5(g, h) = F1〈h5〉+ F2〈h4〉〈h〉+ F3〈h3〉〈h〉2 + F4〈h3〉〈h2〉
+ F5〈h2〉2〈h〉+ F6〈h2〉〈h〉3 + F7〈h〉5

... (2.1051)

where the angled brackets are traces with he indices raised with respect to gµν

(not g(0)µν anymore). It does not matter if we use the full or absolute metric, as
long as we correctly relate the coefficients of the two by expanding the inverse
full metric and the full determinant in powers of hµν raise with the absolute
metric. The full metric in terms of a power series in h is:

gµν = g(0)µν − hµν + hµλh ν
λ − hµλh σ

λ h ν
σ + . . . (2.1052)

We can actually verify this in xACT with the following commands:

Per = Perturbed[g0[a, b], 3] // ExpandPerturbation

FirstOrderOnly1 = h[LI[n_], __] :> 0 /; n > 1;

Per /. FirstOrderOnly1

The first command gives the 3rd order perturbation of gµν . Now, we want to

express the inverse of gµν = g
(0)
µν + hµν as a power series in hµν . The problem is

the first command in xACT gives us the full expansion including higher pertur-
bative hµν terms, which we don’t want. This is where the first command comes
in and sets every hµν of order higher than 1 (in the perturbation sense, not
powers of h) to zero. The third command applies this condition to the output
of the first command and gives:



2.7. MASSIVE GRAVITY 303

By setting ε = 1 we get the desired expansion above. Presumably we should
be able to get expansions to very orders of h this way. Let’s try order 5:

in more readable symbols:

gµν = g(0)µν − hab + hach b
c − hach d

c h
b
d + hach d

c h
e
d h

b
e − hach d

c h
e
d h

f
e h

b
f + . . .

(2.1053)

We also need to expand the determinant. Hinterbichler says:

√
−g =

√
−g(0)

[
1 +

1

2
h− 1

4

(
hµνhµν −

1

2
h2

)
+ . . .

]
(2.1054)

but I will need to reproduce this somehow, by hand or by xACT. (Exercise)

We also have the following useful identity:

〈hn〉 =

∞∑
l=0

(−1)l
(
l + n− 1

l

)
[hl+n] (2.1055)

for writing the determinant of gµν as an expansion in hµν .
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Spherical solutions and the Vainshtein radius

Next, we look at static spherical solutions. Let D = 4, and for definiteness we
pick the action

S =
1

2κ2

ˆ
dDx

[√
−gR−

√
−g(0)

1

4
m2g(0)µαg(0)νβ (hµνhαβ − hµαhνβ)

]
(2.1056)

where the mass term is minimal. We will attempt to find spherically symmetric
solutions to the equation of motion

0 =
√
−g
(
Rµν − 1

2
Rgµν

)
+
√
−g(0)

m2

2

(
g(0)µαg(0)νβhαβ − g(0)αβhαβg

(0)µν
)

(2.1057)

which we took for granted (good to check/reproduce). We will also assume that
the absolute metric is Minkowskian:

g(0)
µν dx

µdxν = −dt2 + dr2 + r2dΩ2 (2.1058)

where we’re using the (−,+,+,+) convention. We thus consider a spherically
symmetric solution (hopefully a good ansatz) whose line element is

gµνdx
µdxν = −B(r)dt2 + C(r)dr2 +A(r)r2dΩ2. (2.1059)

Here we’re of course assuming (and hoping) that our ansatz works and is diag-
onal, or else we will get mixed r, t,Ω terms in the line element.

Next, we recall the identity:

[F (r)δij +G(r)xixj ]dx
idxj = [F (r) + r2G(r)]dr2 + F (r)r2dΩ2. (2.1060)

Based on the ansatz, we have the following:

A(r) ≡ F (r)

C(r) ≡ F (r) + r2G(r) (2.1061)

Now, we recall from last time where we found a spherical solution to the eas-
ier problem involving hµν . We started with the matrix elements h00, h0i, and
hij and expressed these in terms of the appropriate F (r), G(r),−B(r). Here
we’re doing kind of the reverse process where we’re starting with the spherical
ansatz. Now, we wish to use the equations of motion to write down the rela-
tionship among these spherical solutions F (r), G(r),−B(r). How do we do this?

Since we’ve assumed the solution is diagonal, we can rely on the tt, rr, and
θθ ≡ φφ equations of motion. In order to get the desired results in the end, we
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can set

g00(r) = −B(r)

g0i(r) = 0

gij(r) = A(r)δij +G(r)xixj (2.1062)

and define

C(r) ≡ A(r) + r2G(r). (2.1063)

As matrices:

[gµν ]Cartesian =


−B(r)

A(r) + x2G(r) xyG(r) xzG(r)
yxG(r) A(r) + y2G(r) yzG(r)
zxG(r) zyG(r) A(r) + z2G(r)


(2.1064)

and

[g(0)
µν ]Spherical =


−1

1
r2

r2 sin2 θ

 (2.1065)

We start by evaluating
√
−g. This can be done in Mathematica:

In[2]:= Det[{{-B, 0, 0, 0},
{0, A + x^2*G, x*y*G, x*z*G},
{0, y*x*G, A + y^2*G, y*z*G},
{0, z*x*G, z*y*G, A + z^2*G}}]

Out [2]= -B (A^3 + A^2 G x^2 + A^2 G y^2 + A^2 G z^2)

The output says the determinant of the [gµν ] matrix is

−B(r)A2(r)

A+ (x2 + y2 + z2)︸ ︷︷ ︸
r2

G(r)

 = −A2B (A+ r2G)︸ ︷︷ ︸
C(r)

= −A2BC.

(2.1066)

So,
√
−g =

√
A2BC. Next, we want to evaluate

√
−g(0). However, note that

[g
(0)
µν ] is in spherical coordinates, while [gµν ] is in Cartesian coordinates. We

wish to be consistent, so we will just evaluate
√
−g(0) “by analogy” by reading

off the numbers from the line element. Because

g(0)
µν dx

µdxν = −dt2 + dr2 + r2dΩ2

= −(1)dt2 +
(
1 + 0r2

)
dr2 + (1)r2dΩ2

and gµνdx
µdxν = −B(r)dt2 + C(r)dr2 +A(r)r2dΩ2

= −B(r)dt2 +
(
A(r) +G(r)r2

)
dr2 +A(r)r2dΩ2 (2.1067)
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and because
√
−g =

√
A2BC, we just have

√
−g(0) =

√
−1 = 1, in Cartesian

coordinates, as expected. We’re also writing the line element wrt g(0) like above
so that it resembles the form of [gµν ]:

[g(0)
µν ]Cartesian =


−1

1 + 0x2 0xy 0xz
0yx 1 + 0y2 0yz
0zx 0zy 1 + 0z2

 =


−1

1
1

1


(2.1068)

which is also expected. Throughout the derivations, we will be using the boxed
matrices as our metrics, both of which are in Cartesian coordinates.

With this, we first consider the tt equation:

0 =
√
−g
(
R00 − 1

2
Rg00

)
+
√
−g(0)

m2

2

(
g(0)0αg(0)0βhαβ − g(0)αβhαβg

(0)00
)

(2.1069)

We will unpack the second term first. Recall that

hµν = gµν − g(0)
µν . (2.1070)

So

g(0)0αg(0)0βhαβ = g(0)0αg(0)0β
(
gαβ − g(0)

αβ

)
= g(0)00g(0)00︸ ︷︷ ︸

1

(
g00 − g(0)

00

)
= −B(r) + 1, (2.1071)

and

g(0)αβhαβg
(0)00 = g(0)αβg(0)00

(
gαβ − g(0)

αβ

)
=

4∑
α=0

[
g(0)ααg(0)00

(
gαα − g(0)

αα

)]
= (−B + 1)−

(
A+ x2G− 1

)
−
(
A+ y2G− 1

)
−
(
A+ z2G− 1

)
= (−B + 1)− (3A+ r2G− 3). (2.1072)
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And so we have successfully dealt with the second term:√
−g(0)

m2

2

(
g(0)0αg(0)0βhαβ − g(0)αβhαβg

(0)00
)

=
m2

2

[
(−B + 1)− (−B + 1)− (3A+ r2G− 3)

]
=
m2

2
(−3A− r2G+ 3)

=
m2

2

(
−3A+ 3− r2C −A

r2

)
=

m2

2
(2A+ C − 3) (2.1073)

Now comes the difficult part of unpacking the Ricci tensor and scalar. We wish
to evaluate the term

R00 − 1

2
Rg00 (2.1074)

for µ = ν = 0. First, g00 = −1/B trivially. But what about R00 and R? We
will rely on Mathematica. Part of the calculations is done based on the Mathe-
matica code provided by Catalogue of Spacetimes.

Here is the link to the notebook, which contains just the calculations for the
tt equation. There will be another notebook with the spherical calculations for
the other rr, θθ ≡ φφ equations as well. I’m writing this from the future... the
solution below is found using Cartesian coordinates instead of spherical. While
it is correct (and I have checked many times to make sure it was correct) it is
very, very, cumbersome. The new notebook contains the spherical calculations
for this tt equation as well. If the reader is curious and wants to download a
notebook to view the calculations, I recommend downloading the other notebook,
link in the section where we derive the rr-equation. The notebook requires no
additional packages. It should run on any basic Mathematica installation.

We first clear some symbols, define the dimensions, metric, etc:

Clear[coord , metric , inversemetric , affine , t, x, y, z]

r := Sqrt[x^2 + y^2 + z^2]

n := 4

coord := {t, x, y, z}

metric := {{-B[r], 0, 0, 0},
{0, A[r]+x^2*(-A[r]+C[r])/r^2, x*y*(-A[r]+C[r])/r^2, x*z*(-A[r] + C[r])/r^2},
{0, y*x*(-A[r]+C[r])/r^2, A[r]+y^2*(-A[r]+C[r])/r^2, y*z*(-A[r] + C[r])/r^2},
{0, z*x*(-A[r]+C[r])/r^2, z*y*(-A[r]+C[r])/r^2, A[r] + z^2*(-A[r]+C[r])/r^2}}

Note that the metric gµν we should be using here must be in terms ofB(r), A(r), C(r),
since we ultimately want solutions in terms of these functions. In matrix form,

https://arxiv.org/pdf/0904.4184.pdf
https://huanqbui.com/LaTeX projects/HuanBui_QM/Cartesian_Vainshtein.nb
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[gµν ] is

[gµν ] =


−B

A+ x2
(
C−A
r2

)
xy
(
C−A
r2

)
xz
(
C−A
r2

)
yx
(
C−A
r2

)
A+ y2

(
C−A
r2

)
yz
(
C−A
r2

)
zx
(
C−A
r2

)
zy
(
C−A
r2

)
A+ z2

(
C−A
r2

)
 (2.1075)

It is easy to check that
√
−g =

√
A2BC by brute forcing in Mathematica. I

won’t reproduce the results here.

Next, we find the inverse metric, in order to set up for calculations of
Christoffel symbols, Riemann, Ricci tensors, and the Ricci scalar.

inversemetric := Simplify[Inverse[metric ]]

Every now and then, we define “rules” to force-simplify things.

Next, we calculate Christoffel symbols of the 2nd kind:

Calculating the Christoffel symbols of the second kind:

rule1 = {A[Sqrt[
x^2 + y^2 + z^2]] + (x^2 + y^2 + z^2) G[Sqrt[
x^2 + y^2 + z^2]] -> C[r]};

affine := affine =
Simplify[Table [(1/2) Sum[
inversemetric [[Mu, Rho]] (D[metric [[Rho , Nu]], coord [[ Lambda ]]] +
D[metric [[Rho , Lambda]], coord[[Nu]]] -
D[metric [[Nu , Lambda]], coord [[Rho]]]), {Rho , 1, n}], {Nu, 1,
n}, {Lambda , 1, n}, {Mu, 1, n}]]

listaffine :=
Table[If[UnsameQ[affine [[Nu, Lambda , Mu]],
0], {Style[
Subsuperscript [\[ CapitalGamma], Row[{ coord[[Nu]], coord[[ Lambda ]]}],
coord[[Mu]]], 18], "=", Style[affine [[Nu, Lambda , Mu]], 14]}], {Lambda ,
1, n}, {Nu , 1, Lambda}, {Mu, 1, n}]

Simplify[TableForm[Partition[DeleteCases[Flatten[listaffine], Null], 3],
TableSpacing -> {1, 2}] /. rule1]

This outputs an entire table of nontrivial Christoffel symbols which we won’t
worry about. Here’s a snippet of the output:

Next, we define and compute the lower-index Riemann tensors:

Defining the Riemann tensor.

riemann :=
riemann = Table[
D[affine [[Nu , Sigma , Mu]], coord [[Rho ]]] -
D[affine [[Nu , Rho , Mu]], coord[[Sigma ]]] +
Sum[affine [[Rho , Lambda , Mu]] affine [[Nu, Sigma , Lambda ]] -
affine [[Sigma , Lambda , Mu]] affine [[Nu, Rho , Lambda]], {Lambda , 1,
n}], {Mu, 1, n}, {Nu , 1, n}, {Rho , 1, n}, {Sigma , 1, n}]
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Defining the Riemann tensor with lower indices.

riemannDn :=
riemannDn =
Table[Simplify[
Sum[metric [[Mu, Kappa]] riemann [[Kappa , Nu , Rho , Sigma]], {Kappa , 1,
n}]], {Mu, 1, n}, {Nu , 1, n}, {Rho , 1, n}, {Sigma , 1, n}]

listRiemann :=
Table[If[UnsameQ[riemannDn [[Mu, Nu, Rho , Sigma]],
0], {Style[
Subscript[R,
Row[{coord[[Mu]], coord[[Nu]], coord [[Rho]], coord[[Sigma ]]}]], 16],
"=", riemannDn [[Mu, Nu, Rho , Sigma ]]}], {Nu, 1, n}, {Mu, 1, Nu}, {Sigma ,
1, n}, {Rho , 1, Sigma}]

Simplify[Simplify[
TableForm[Partition[DeleteCases[Flatten[listRiemann], Null], 3],
TableSpacing -> {2, 2}] /. rule1] /. rule1]

There are (obviously) a lot of them. Here are some:

Almost there... Next, we define the Ricci tensors:

Defining Ricci tensor:

ricci := ricci =
Table[Simplify[Sum[riemann [[Rho , Mu , Rho , Nu]], {Rho , 1, n}]], {Mu, 1,
n}, {Nu , 1, n}]

listRicci :=
Table[If[UnsameQ[ricci[[Mu, Nu]],
0], {Style[Subscript[R, Row[{ coord[[Mu]], coord[[Nu]]}]], 16], "=",
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Style[ricci [[Mu, Nu]], 16]}] , {Nu , 1, 4}, {Mu, 1, Nu}]

TableForm[Partition[DeleteCases[Flatten[listRicci], Null], 3],
TableSpacing -> {1, 2}]

There aren’t too many of these, but no expression is short enough to fit the width
of the page, so I will just include Rtt and truncated versions of Rxx, Ryy, . . .

Okay. Moving on to the last item: the Ricci scalar.

Defining Ricci scalar:

ricciscalar :=
ricciscalar =
Simplify[Sum[
Sum[inversemetric [[Mu, Nu]] ricci[[Nu, Mu]], {Mu, 1, n}], {Nu, 1, n}]]

Simplify[Simplify[ricciscalar ]]

The output isn’t very useful to work with: so we will define more rules to

simplify it to a useful form:

rule2 = {Sqrt[x^2 + y^2 + z^2] -> R};

rule3 = {(x^2 + y^2 + z^2)^( -1/2) -> R^( -1)};

rule4 = {(x^2 + y^2 + z^2)^(3/2) -> R^3};

rule5 = {(x^2 + y^2 + z^2) -> R^2};

rule6 = {Sqrt[R^2]^( -1) -> R^( -1)};

RR = Simplify[
Simplify[Simplify[
Simplify[
Simplify[
Simplify[Simplify[ricciscalar] /. rule1] /. rule2] /.
rule3] /. rule4] /. rule5] /. rule6]

(1/(2 R^2 A[R]^2 B[R]^2 C[
R]^2))(R^2 B[R]^2 C[R] Derivative [1][A][R]^2 +
2 A[R] B[R] (-R^2 C[R] Derivative [1][A][R] Derivative [1][B][R] +
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B[R] (2 C[R]^2 + R^2 Derivative [1][A][R] Derivative [1][C][R] -
2 R C[R] (3 Derivative [1][A][R] +
R (A^\[ Prime ]\[ Prime ])[R]))) +
A[R]^2 (R^2 C[R] Derivative [1][B][R]^2 -
4 B[R]^2 (C[R] - R Derivative [1][C][R]) +
R B[R] (R Derivative [1][B][R] Derivative [1][C][R] -
2 C[R] (2 Derivative [1][B][R] + R (B^\[ Prime ]\[ Prime ])[R]))))

In symbols:

Now, we want the quantity, which is LeftTerm minus RightTerm

R00 − 1

2
Rg00 ≡ LeftTerm− RightTerm. (2.1076)

The LeftTerm is obtained from raising the indices of Rµν . This turned out
not to be very difficult, because g0ν entries are all zero except at ν = 0 where
g00 = −1/B. We need two of these to raise the indices of Rµν , so as a result we
have R00 = (1/B2)R00. The Rtt term in the code below is just R00.

LeftTerm :=
Simplify[Simplify[
Simplify[
Simplify[
Simplify[Simplify[Rtt /. rule1] /. rule2] /. rule3] /.
rule4] /. rule5] /. rule6];

RightTerm :=
Simplify[Simplify[
Simplify[
Simplify[
Simplify[Simplify [(1/2)* RR*(-1/B[R]) /. rule1] /. rule2] /.
rule3] /. rule4] /. rule5] /. rule6 ];

LeftTerm - RightTerm

The RightTerm is just (1/2)Rg00. The output is

Next, we define more rules to help with simplifying things:

rule7 = {(2 C[R]^2 + R^2 Derivative [1][A][R] Derivative [1][C][R] -
2 R C[R] (3 Derivative [1][A][R] + R (A^\[ Prime ]\[ Prime ])[R])) ->
STUFF1 };

Simplify[LeftTerm - RightTerm /. rule7]

rule8 = {R^2 C[R] Derivative [1][A][R]^2 -> STUFF2 };

Simplify[Simplify[LeftTerm - RightTerm /. rule7] /. rule8]
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rule9 = {-4 A[R]^2 (C[R] - R Derivative [1][C][R]) -> STUFF3 };

Simplify[Simplify[
Simplify[LeftTerm - RightTerm /. rule7] /. rule8] /. rule9]

rule10 = {2 STUFF1 A[R] -> STUFF4 };

Simplify[Simplify[
Simplify[Simplify[LeftTerm - RightTerm /. rule7] /. rule8] /.
rule9] /. rule10]

rule11 = {STUFF2 + STUFF3 + STUFF4 -> STUFF5 };

Simplify[Simplify[
Simplify[
Simplify[Simplify[LeftTerm - RightTerm /. rule7] /. rule8] /.
rule9] /. rule10] /. rule11]

We expand the final output and look for things to cancel:

Simplify[Simplify[
Simplify[
Simplify[Simplify[LeftTerm - RightTerm /. rule7] /. rule8] /.
rule9] /. rule10] /. rule11] // ExpandAll

Do you see where things cancel?

So we’re left with just

R00 − 1

2
Rg00 =

r2C(A′)2 − 4A2(C − rC ′) + 2A
(
2C2 + r2A′C ′ − 2r(3A′ + rA′′)C

)
4r2A2BC2

.

(2.1077)

Next, we bring in the square root of minus the determinant of g:

√
−g
(
R00 − 1

2
Rg00

)
=
√
A2BC

r2C(A′)2 − 4A2(C − rC ′) + 2A
(
2C2 + r2A′C ′ − 2r(3A′ + rA′′)C

)
4r2A2BC2

.

(2.1078)
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And... we have the tt equation:

0 =
√
−g
(
R00 − 1

2
Rg00

)
+
√
−g(0)

m2

2

(
g(0)00αg(0)0βhαβ − g(0)αβhαβg

(0)00
)

0 =
√
A2BC

{
r2C(A′)2 − 4A2(C − rC ′) + 2A

(
2C2 + r2A′C ′ − 2r(3A′ + rA′′)C

)}
+
m2

2
(2A+ C − 3) (4r2A2BC2) (2.1079)

The simplified form, the tt equation is:

0 = 4BC2m2r2A3 + [2B(C − 3)C2m2r2 − 4
√
A2BC(C − rC ′)]A2

2
√
A2BC[2C2 − 2r(3A′ + rA′′)C + r2A′C ′]A+ C

√
A2BCr2(A′)2

(2.1080)
Next, we find the rr equation. It is at this point that we realized we’ve been

doing things the HARD WAY by working in Cartesian coordinates. There’s
a reason, however. In Cartesian coordinates, the determinant of gµν does not
have dependence on r and sin θ. In spherical coordinates, there is dependence
on θ, but I think that because the sin θ term appears in both the determinant
of the g metric and the Minkowskian metric, we can just ignore it because the
LHS must be zero.

In any case, we learned something by taking the Cartesian route. We will
soon see how well-behaved things become once we go to spherical coordinates.
I have uploaded a new Mathematica notebook with the actual, full, spherical
solution. This notebook contains the derivation of the tt equation as well.

From here on, we will be using metrics in spherical coordinates. From the
specified line elements, the metrics are:

[gµν ] =


−B

C
Ar2

Ar2 sin2 θ

 (2.1081)

and

[g(0)
µν ] =


−1

1
r2

r2 sin2 θ

 (2.1082)

Let us redefine everything in terms of spherical coordinates in the notebook
and go over the calculations again. Trust me this will be quick.

https://huanqbui.com/LaTeX projects/HuanBui_QM/SphericalSolution_Vainshtein.nb
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Clear[coord , metric , inversemetric , affine , t, r, \[Theta], \[Phi]]

n := 4

coord := {t, r, \[Theta], \[Phi]}

metric := {{-B[r], 0, 0, 0},
{0, C[r], 0, 0},
{0, 0, r^2*A[r], 0},
{0, 0, 0, r^2*Sin [\[ Theta ]]^2*A[r]}}

inversemetric := Simplify[Inverse[metric ]]

Calculating the Christoffel symbols of the second kind:

affine := affine =
Simplify[Table [(1/2) Sum[
inversemetric [[Mu, Rho]] (D[metric [[Rho , Nu]], coord [[ Lambda ]]] +
D[metric [[Rho , Lambda]], coord[[Nu]]] -
D[metric [[Nu , Lambda]], coord [[Rho]]]), {Rho , 1, n}], {Nu, 1,
n}, {Lambda , 1, n}, {Mu, 1, n}]]

listaffine :=
Table[If[UnsameQ[affine [[Nu, Lambda , Mu]],
0], {Style[
Subsuperscript [\[ CapitalGamma], Row[{ coord[[Nu]], coord[[ Lambda ]]}],
coord[[Mu]]], 18], "=", Style[affine [[Nu, Lambda , Mu]], 14]}], {Lambda ,
1, n}, {Nu , 1, Lambda}, {Mu, 1, n}]

Simplify[TableForm[Partition[DeleteCases[Flatten[listaffine], Null], 3],
TableSpacing -> {1, 2}] /. rule1]

Here are the Christoffel symbols in spherical coordinates:

Let the calculations continue...

Defining the Riemann tensor.

riemann :=
riemann = Table[
D[affine [[Nu , Sigma , Mu]], coord [[Rho ]]] -
D[affine [[Nu , Rho , Mu]], coord[[Sigma ]]] +
Sum[affine [[Rho , Lambda , Mu]] affine [[Nu, Sigma , Lambda ]] -
affine [[Sigma , Lambda , Mu]] affine [[Nu, Rho , Lambda]], {Lambda , 1,
n}], {Mu, 1, n}, {Nu , 1, n}, {Rho , 1, n}, {Sigma , 1, n}]

Defining the Riemann tensor with lower indices.
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riemannDn :=
riemannDn =
Table[Simplify[
Sum[metric [[Mu, Kappa]] riemann [[Kappa , Nu , Rho , Sigma]], {Kappa , 1,
n}]], {Mu, 1, n}, {Nu , 1, n}, {Rho , 1, n}, {Sigma , 1, n}]

listRiemann :=
Table[If[UnsameQ[riemannDn [[Mu, Nu, Rho , Sigma]],
0], {Style[
Subscript[R,
Row[{coord[[Mu]], coord[[Nu]], coord [[Rho]], coord[[Sigma ]]}]], 16],
"=", riemannDn [[Mu, Nu, Rho , Sigma ]]}], {Nu, 1, n}, {Mu, 1, Nu}, {Sigma ,
1, n}, {Rho , 1, Sigma}]

Simplify[Simplify[
TableForm[Partition[DeleteCases[Flatten[listRiemann], Null], 3],
TableSpacing -> {2, 2}] /. rule1] /. rule1]

Then comes the Ricci quantities:

Defining Ricci tensor:

ricci := ricci =
Table[Simplify[Sum[riemann [[Rho , Mu , Rho , Nu]], {Rho , 1, n}]], {Mu, 1,
n}, {Nu , 1, n}]

listRicci :=
Table[If[UnsameQ[ricci[[Mu, Nu]],
0], {Style[Subscript[R, Row[{ coord[[Mu]], coord[[Nu]]}]], 16], "=",
Style[ricci [[Mu , Nu]], 16]}] , {Nu , 1, 4}, {Mu, 1, Nu}]

TableForm[Partition[DeleteCases[Flatten[listRicci], Null], 3],
TableSpacing -> {1, 2}]

Defining Ricci scalar:

ricciscalar :=
ricciscalar =
Simplify[Sum[
Sum[inversemetric [[Mu, Nu]] ricci[[Nu, Mu]], {Mu, 1, n}], {Nu, 1, n}]]

Simplify[Simplify[ricciscalar ]]

RR = Simplify[ricciscalar]

Here’s the output:
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Next we consider Rrr. We want Rrr, so we simply multiplying Rrr by 1/C2,
because gµν is diagonal in spherical coordinates. We first consider the term

Rrr − 1

2
Rgrr. (2.1083)

To this end we repeat the process with the LeftTerm and RightTerm earlier to
get

LeftTerm :=
Simplify[Simplify[
Simplify[Simplify[Simplify[Simplify[Rrr/C[r]^2]]]]]];

RightTerm :=
Simplify[Simplify[
Simplify[Simplify[Simplify[Simplify [(1/2)* RR*(1/C[r])]]]]]];

Simplify[LeftTerm - RightTerm] // ExpandAll // ExpandAll

Of course things cancel again! Simplifying gives
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Next, we consider the term

√
−g(0)

m2

2

(
g(0)1αg(0)1βhαβ − g(0)αβhαβg

(0)11
)
. (2.1084)

Of course the first term is just going to be h11 = C − 1. The second term has
some contractions with factors of sines and r2 floating around. But we can do
this quickly by ignoring everything that is not the functions A,B,C. We can
do this because when we multiplying the inverses g(0)µν with hµν , the r2 and
sine factors automatically cancel out. The result is

√
−g(0)

m2

2

(
g(0)1αg(0)1βhαβ − g(0)αβhαβg

(0)11
)

=
−m2

2
(2(A− 1)− (−B + 1))

=
−m2(2A+B − 3)

2

(2.1085)

Putting everything together, we will find the rr equation:

0 =
√
−g
(
Rrr − 1

2
Rgrr

)
+
√
−g(0)

m2

2

(
g(0)1αg(0)1βhαβ − g(0)αβhαβg

(0)11
)

0 =
r2B(A′)2 + 4A2(B + rB′) +A[−4B(C − rA′) + 2r2A′B′]

A2BC2r2

− 2m2(2A+B − 3)√
A2BC

(2.1086)
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Simplifying this gives the rr equation:

0 =
4(B + rB′)A2 + [2r2A′B′ − 4B(C − rA′)]A+Br2(A′)2

A2BC2r2

− 2(2A+B − 3)m2

√
A2BC

(2.1087)

Finally, to get the θθ ≡ φφ equation, we go through the process above once
more. To make things a little easier, I’ll just derive the θθ equation with Rθθ
instead of Rθθ. This way, I don’t have to worry about factors of contractions,
etc.

This simplifies to

On to the
√
g(0) terms, we compute

√
−g(0)

m2

2

(
g(0)2αg(0)2βhαβ − g(0)αβhαβg

(0)22
)
. (2.1088)
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I won’t show the rest of the calculations here. The θθ ≡ φφ equation is

0 = −2B2C2m2rA4 − 2B2C2(B + C − 3)m2rA3

−
√
A2BC{2C ′B2 + [rB′C ′ − 2C(B′ + rB′′)]B + Cr(B′)2}A

+B
√
A2BC[CrA′B′ +B(4CA′ − rC ′A′ + 2CrA′′)]A−B2C

√
A2BCr(A′)2.

(2.1089)
I’ll just put the other two equations here, for convenience. The rr equation is

0 =
4(B + rB′)A2 + [2r2A′B′ − 4B(C − rA′)]A+Br2(A′)2

A2BC2r2

− 2(2A+B − 3)m2

√
A2BC

(2.1090)

The tt equation is

0 = 4BC2m2r2A3 + [2B(C − 3)C2m2r2 − 4
√
A2BC(C − rC ′)]A2

2
√
A2BC[2C2 − 2r(3A′ + rA′′)C + r2A′C ′]A+ C

√
A2BCr2(A′)2

(2.1091)
The next step is to solve for A(r), B(r), C(r). To do this we first expand

them in the flat space regime, where

B0(r) = 1 (2.1092)

A0(r) = 1 (2.1093)

C0(r) = 1. (2.1094)

To obtain higher order terms, we introduce the expansion

B(r) = B0(r) + εB1(r) + ε2B2(r) + . . . (2.1095)

C(r) = C0(r) + εC1(r) + ε2C2(r) + . . . (2.1096)

A(r) = A0(r) + εA1(r) + ε2A2(r) + . . . (2.1097)

Plugging this into the equations we just found and collecting terms ofO(ε),O(ε2), . . . .
This allows us to solve for B1, A1, C1, then B2, A2, C2, and so on. At O(ε), we
define the expansions in Mathematica only up to O(ε). (Note: there are proba-
bly other ways to do this, but I like it this way. In addition, I will stop including
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the code because the notebook can be downloaded via the link above. I will
just include important outputs from now on. ) Next, we define the tt, rr, θθ
equations, using these new function(al)s. (Again, there’s probably a more clever
and more efficient way to do this, but my method works so far so I’ll stick with
it.) Once that is done, we must define some rules for simplification. Some of

these rules are for helping Mathematica simplify, but some are also important
when we extract out O(ε) terms.

rule12 = {Sqrt [(1 + e A1[r])^2 (1 + e B1[r]) (1 + e C1[r])] -> 1};

rule13 = {Derivative [1][AA][r] -> e*Derivative [1][A1][r]};

rule14 = {(AA^\[ Prime ]\[ Prime ])[r] -> e*Derivative [2][A1][r]};

rule15 = {(CC^\[ Prime ]\[ Prime ])[r] -> e*Derivative [2][C1][r]};

rule16 = {Derivative [1][CC][r] -> e*Derivative [1][C1][r]};

rule17 = {Sqrt [(1 + e A1[r])^2 (1 + e B1[r]) (1 + e C1[r])]^( -1) -> 1};

rule18 = {(1 + e A1[r])^2 (1 + e B1[r]) (1 + e C1[r]) -> 1};

rule19 = {((1 + e A1[r])^2 (1 + e B1[r]) (1 + e C1[r])^2)^( -1) -> 1};

rule20 = {Derivative [1][BB][r] -> e*Derivative [1][B1][r]};

rule21 = {(BB^\[ Prime ]\[ Prime ])[r] -> e*Derivative [2][B1][r]};

With these rules, we proceed to collect the O(ε) terms in each equation:
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ttSim := Coefficient[
tt /. rule12 /. rule13 /. rule14 /. rule15 /. rule16 , e] // Simplify

rrSim := rr /. rule12 /. rule13 /. rule14 /. rule15 /. rule16 /.
rule17 /. rule18 /. rule19 /. rule20 /. rule21

rrSimSim =
Coefficient[rrSim /. rule12 /. rule13 /. rule14 /. rule15 /. rule16 ,
e] // Simplify

ththSim :=
thth /. rule12 /. rule13 /. rule14 /. rule15 /. rule16 /. rule17 /.
rule18 /. rule19 /. rule20 /. rule21

thSimSim =
Coefficient[
ththSim /. rule12 /. rule13 /. rule14 /. rule15 /. rule16 /.
rule17 /. rule18 /. rule19 /. rule20 /. rule21 , e] // Simplify

Some equations are stubborn and require multiple simplifying, but the result
is quite satisfying. Here are the coefficients of ε in the tt, rr, θθ equations,
respectively: Now, these coefficients must all be zero when A,B,C solve the

tt, rr, θθ equations, so we have (in more readable symbols):

2(m2r2 − 1)A1 + (m2r2 + 2)C1 + 2r(−3A′1 + C ′1 − rA′′1) = 0 (2.1098)

−1

2
B1m

2 +

(
1

r2
−m2

)
A1 +

r(A′1 +B′1)− C1

r2
= 0 (2.1099)

rA1m
2 + rB1m

2 + rC1m
2 − 2A′1 −B′1 + C ′1 − rA′′1 − rB′′1 = 0 (2.1100)

Okay. To solve for A1, B1, C1, we start with simultaneously solving three equa-
tions algebraically for A1, A

′
1, A

′′
1 in terms of B,C are their derivatives. To do

this, we use Mathematica’s NSolve:

NSolve [{ttSim == 0, rrSimSim == 0, thSimSim == 0}, {A1[r],
Derivative [1][A1][r], Derivative [2][A1][r]}] //
Simplify // FullSimplify

Here I’m storing the solutions in new variables for ease of access: Once this is
done, we write down two equations: (1) A′1 = ∂rA1, and (2) A′′1 = ∂rA1, then
proceed to algebraically solve this system for C1 and C ′1 in terms of B1 and its
derivatives. I will only the include the input. Finally, settings C ′1 − ∂rC1 = 0,



322 PART 2. QUANTUM & CLASSICAL FIELD THEORIES

we get a second-order differential equation for B1(r): Of course this simplifies
to

−3rB1m
2 + 6B′1 + 3rB′′1 = 0 (2.1101)

This can be DSolve’d easily in Mathematica:

DSolve[-3 m^2 r B1[r] + 6 Derivative [1][B1][r] +
3 r (B1^\[ Prime ]\[ Prime ])[r] == 0, B1[r], r]

which says

B1(r) = C1
e−mr

r
+ C2

emr

2mr
(2.1102)

where C1 and C2 are integration constants. Now, when m → 0, B1(r) must
remain finite, so we rule out the other linearly independent solution. This gives

B1(r) = −8GM

3

e−mr

r
(2.1103)

where the integration constant has been chosen so that we agree with the solu-
tion (2.944) obtained from the Green’s function.

From here, it is very easy to get C1, A1 from B1, because we already solved
for these in terms of B and B,C respectively:
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B1(r) = −8GM

3

e−mr

r

C1(r) = −8GM

3

e−mr

r

1 +mr

m2r2

A1(r) =
4GM

3

e−mr

r

1 +mr +m2r2

m2r2

(2.1104)

(2.1105)

(2.1106)

So, the O(ε) problem is done, so we move on to the O(ε2) problem. The
procedure will be exactly the same, so I will just put the code-outputs here
without saying much. Some new rules will be defined along the way to help
Mathematica with simplification. Also, so as not to completely ruin the previous
code for the O(ε) problem, I will be using slightly different names for some
functions. Thanks to Hinterbichler himself, I will be using a different function,
SeriesCoefficient[ ], for expanding and collecting the O(ε2) terms. This
is a better way to do things than using just the naive Coefficient[..., ε2]
function. First, we redefine the expansions:

Then we start with our original tt, rr, and θθ equations:
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To make Mathematica appropriately expand the series expansion of B,C,A
in these equations, we define

With this, the tt equation, under the solved B1, C1, A1 is given by

Notice that we’re now using SeriesCoefficient[] instead of Coefficient
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like last time. We write

0 = 4(−1 +m2r2)A2[r] +
1

9m4r6
2e−2mr

[
9e2mrm4r6(2 +m2r2)C2[r]+

2
(
180G2M2 + 360G2mM2r + 276G2m2M2r2 + 72G2m3M2r3

−24G2m4M2r4 − 16G2m5M2r5 − 12G2m6M2r6

−27e2mrm4r7A′2[r] + 9e2mrm4r7C ′2[r]− 9e2mrm4r8A′′2 [r]
)

]
(2.1107)

We do a similar thing for the rr equation: We write

0 =
1

9m4r8
2e−2mr

[
−18e2mrm4r6(−1 +m2r2)A2[r]− 9e2mrm6r8B2[r]

+2
(
36G2M2 + 72G2mM2r + 116G2m2M2r2 + 136G2m3M2r3

+120G2m4M2r4 + 48G2m5M2r5 − 12G2m6M2r6

−9e2mrm4r6C2[r] + 9e2mrm4r7A′2[r] + 9e2mrm4r7B′2[r]
)

]
(2.1108)

Same thing for the θθ equation: We write
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0 =
2

9

[
−216e−2mrG2M2

m4r7
− 432e−2mrG2M2

m3r6
− 536e−2mrG2M2

m2r5
− 496e−2mrG2M2

mr4

−400e−2mrG2M2

r3
− 256e−2mrG2mM2

r2
− 120e−2mrG2m2M2

r
− 9m2rB2[r]

−9m2rA2[r]− 9m2rC2[r] + 18A′2[r] + 9B′2[r]− 9C ′2[r] + 9rA′′2 [r] + 9rB′′2 [r]
]

(2.1109)

Solving tt = 0, rr = 0, θθ = 0 for A2, A
′
2, A

′′
2 we get
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Then we solve for C2, C
′
2 from the A2 equations:

Setting C ′2 = (∂r)C2 we get the equation for B2:

We are only interested in the leading order term for B2, we so find it. Plug-
ging B2 back into the C2 and A2 equations and taking their leading terms we get
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With these, we set ε→ 1 plug them back into the original expansion. After
some factorizations we get

B(r) = 1− 8

3

GM

r

(
1− 1

6

GM

m4r5
+ . . .

)
C(r) = 1− 8

3

GM

m2r3

(
1− 14

GM

m4r5
+ . . .

)
A(r) = 1 +

4

3

GM

m2r3

(
1− 4

GM

m4r5
+ . . .

)
(2.1110)

where the dots represent higher powers in the nonlinearity parameter ε. The
nonlinearity expansion is an expansion in the parameter rV /r, with

rV ≡
(
GM

m4

)1/5

(2.1111)

is known as the Vainshtein radius. Notice that with this procedure, we can go
on to extract solutions at O(εn). However, we won’t do that for now.

When m → 0, rV → ∞, and hence the radius beyond which the solution
can be trusted gets pushed out to infinity. Vainshtein argued (in 1972) that this
perturbation expansion breaks down and says nothing about the true nonlinear
behavior of masive gravity in the massless limit. Thus there was reason to
hope that the vDVZ discontinuity was merely an artifact of linear perturbation
theory, and that the true nonlinear solutions showed a smooth limit.
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Nonlinear Hamiltonian & The Boulware-Deser mode

We won’t worry too much about this section, except for a few key points. This
section deals with the general action with flat absolute metric:

S =
1

2κ2

ˆ
dDx

[√
−gR− 1

4
m2ηµαηνβ (hµνhαβ − hµαhνβ)

]
. (2.1112)

The free/linearized theory carries 5 degrees of freedom when D = 4, but this is
no longer true when nonlinearities are involved.

Under Hamiltonian analysis (which is too complicated to explain here) one
can find that when D = 4 this theory carries 6 df, and so the nonlinear theory
carries more df than the linearized theory. Boulware and Deser (1972) argued
that the Hamiltonian is not bounded and hence has instabilities. It turns out
that this instability is a ghost, a scalar with a negative kinetic term, whose
mass around a given background can be determined. Boulware and Deser also
argued that adding higher terms in h doesn’t make the ghost go away. It turns
out that it is possible to add appropriate interactions that eliminate the ghost.
In D dimensions, there is a D− 2 parameter family of such interactions. These
interactions also turns out to have the effect of raising the maximum energy
cutoff at which massive gravity is valid as an effective field theory. This class of
theories solves the problem of the Boulware-Deser ghost.

We will come back to ghosts in the next subsection.
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2.7.7 The Nonlinear Stückelberg Formalism

In this section we extend the Stückelberg trick to full nonlinear order. This
allows us to trace the breakdown in the linear expansion to strong coupling of
the longitudinal mode. It also tells us about quantum corrections, the scale of
the effective field theory and where it breaks down.

Stükelberg for gravity and the restoration of diffeomorphism invari-
ance

In this subsubsection we construct the full nonlinear gravitational Stückelberg.
The paper by Arkani-Hamed et. al. introduces this extensively.

The full finite gauge transformation for gravity is

gµν(x)→ ∂fα

∂xµ
∂fβ

∂xν
gαβ(f(x)) (2.1113)

where f(x) is any arbitrary gauge function, which must be a diffeomorphism. In
massive gravity, gauge invariance is broken only by the mass term. To restore
invariance, we introduce a Stückelberg field Y µ(x) and apply it to the metric
gµν :

gµν(x)→ Gµν =
∂Y α

∂xµ
∂Y β

∂xν
gαβ(Y (x)) (2.1114)

The Einstein-Hilbert term
√
−gR does not change under this substitution,

because it is gauge invariant. The substitution looks similar to a gauge trans-
formation with gauge parameter Y µ, so no Y fields are introduced into the
Einstein-Hilbert part of the action.

The graviton mass term, however, picks up dependence on Y ′s in such a way
that it will not be invariant under the following gauge transformation:

gµν(x)→ ∂fα

∂xµ
∂fβ

∂xν
gαβ(f(x)) (2.1115)

Y µ(x)→ f−1(Y (x))µ (2.1116)

with f(x) being the gauge function. This is because the combination Gµν is
gauge invariance. To see this we transform gµν :

Gµν = ∂µY
α∂νY

βgαβ(Y (x))→ ∂µY
α∂νY

β [???] (2.1117)

How does gαβ(Y (x)) transform under f? To correctly do this transformation,
we can start with transforming something easy first, say the scalar field, φ. We
know that φ(x) transforms under f as φ → φ(f(x)). We wish to know how
φ(Y (x)) transforms under f . Well,

φ(Y (x)) ≡
ˆ

dy φ(y)δ(y − Y (x)). (2.1118)
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Now that φ has coordinate dependence, y, we now how coordinate transforms
under f : y → f(y). So, under f ,

φ(Y (x)) ≡
ˆ

dy φ(y)δ(y − Y (x))→
ˆ

dy φ(f(y))δ(y − Y (x)) = φ(f(Y (x))).

(2.1119)

You can repeat this procedure for the metric. We know that under f ,

gµν → ∂µf
α∂νf

βgαβ(f(x)) (2.1120)

so gαβ(Y (x)) transforms as

gαβ(Y (x))→
(
∂αf

λ|Y
)

(∂βf
σ|Y ) gλσ(f(Y (x))). (2.1121)

where |Y denotes “evaluated at Y .” With this, we can complete Eq. (2.1117):

Gµν = ∂µY
α∂νY

βgαβ(Y (x))→ ∂µY
α∂νY

β
[
∂αf

λ|Y ∂βfσ|Y gλσ(f(Y (x)))
]

(2.1122)

But that’s not all, we want to pull back, using f−1, to get gλσ(Y (x)). To this
end, we simple replace instances of Y by f−1(Y ), so that the transformation
continues as

Gµν → ∂µY
α∂νY

β
[
∂αf

λ|Y ∂βfσ|Y gλσ(f(Y (x)))
]

→ ∂µ[f−1(Y )]α∂ν [f−1(Y )]β
[
∂αf

λ|f−1(Y )∂βf
σ|f−1(Y )gλσ(f([f−1(Y )]))

]
= ∂µ[f−1(Y )]α∂ν [f−1(Y )]β

[
∂αf

λ|f−1(Y )∂βf
σ|f−1(Y )gλσ(Y (x)))

]
= (∂ρ[f

−1]α|Y )(∂µY
ρ)(∂τ [f−1]β |Y )(∂νY

τ )(∂αf
λ|f−1(Y ))(∂βf

σ|f−1(Y ))gλσ(Y (x)))

(just the chain rule)

= δλρ δ
σ
τ ∂µY

ρ∂νY
τgλσ(Y (x)) (2.1123)

where we have used the fact that

(∂ρ[f
−1]α|Y )(∂αf

λ|f−1(Y )) = δλρ (2.1124)

which relies on the calculus fact:

∂xf
−1(X) =

1

f ′(f(x))
. (2.1125)

Putting everything together, we see that

Gµν → · · · → . . . = δλρ δ
σ
τ ∂µY

ρ∂νY
τgλσ(Y (x))

= ∂µY
λ∂νY

σgλσ(Y (x))

= Gµν , (2.1126)

i.e.,

gµν → Gµν → ∂µY
λ∂νY

σgλσ(Y (x)) ≡ Gµν (2.1127)
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which says that the combination Gµν is gauge invariant.

Now, we expand Y about the identity function

Y α(x) = xα +Aα(x). (2.1128)

Then the gauge-invariant combination Gµν expands as

Gµν =
∂Y α(x)

∂xµ(x)

∂Y β

∂xν
gαβ(Y (x))

=
∂(xα +Aα)

∂xµ
∂(xβ +Aβ)

∂xν
gαβ(x+A)

= (δαµ + ∂µA
α)(δβν + ∂νA

β)

(
gαβ +Aµ∂µgαβ +

1

2
AµAν∂µ∂νgαβ + h.o.t.s.

)
= gµν +Aλ∂λgµν + ∂µA

αgαν + ∂νA
αgαµ +

1

2
AαAβ∂α∂βgµν

+ ∂µA
α∂νA

βgαβ + ∂µA
αAβ∂βgαν + ∂νA

αAβ∂βgµα + h.o.t.s. (2.1129)

Next, we look at the infinitesimal transformation properties of g,A,G, Y
under the infinitesimal general coordinate transforms generated by

f(x) = x+ ξ(x) =⇒ f−1(x) ≈ x− ξ(x) (2.1130)

which is a diffeomorphism. The transformations of g,A,G, Y are given by taking
the the Lie derivatives (for more information, refer to the CFT notes) - “C” for
classical. The metric tensor transforms via the Lie derivative rule for tensors:

δgµν = ξλ∂λgµν + ∂µξ
λgλν + ∂νξ

λgµλ (2.1131)

To find how Y transforms under f , we just plug Y into the transformation f :

Y µ(x)→ f−1(Y (x))µ ≈ Y µ(x)− ξµ(Y (x)) (2.1132)

which gives

δY µ = −ξµ(Y ) (2.1133)

and

δAµ = −ξ(x+A) = −ξµ −Aα∂αξµ −
1

2
AαAβ∂α∂βξ

µ − h.o.t.s. (2.1134)

The Aµ are the Goldstone bosons that nonlinearly carry the broken diffeomor-
phism invariance in massive gravity. The gauge-invariant combination Gµν is of
course gauge-invariant:

δGµν = 0 (2.1135)

https://huanqbui.com/LaTeX projects/Classical_Fields_Theory/HuanBui_ClassicalFieldTheory.pdf
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With these, we can now Stückelberg the general massive gravity action of
the form of Eq. (2.1044):

S =
1

2κ2

ˆ
dDx

[√
−gR−

√
−g(0)

1

4
m2U(g(0), h)

]
(2.1136)

where interaction potential U is the most general one that reduces to Fierz-
Pauli at linear order. The Einstein-Hilbert term is intact, while in the mass
term we write all hµν ’s with lower indices to get rid of the dependence on the

absolute metric g
(0)
µν (which is also the background metric). We then replace all

occurrences of hµν withHµν given by

Hµν(x) = Gµν(x)− g(0)
µν (x) (2.1137)

We then expand Gµν in terms of Aλ and gµν as in Eq. (2.1129) and Y µ as

xµ +Aµ(x). To linear order in hµν ≡ gµν − g(0)
µν and Aµ we have

Hµν = hµν +∇(0)
µ Aν +∇(0)

ν Aµ (2.1138)

where indices on A are lowered with g
(0)
µν and ∇(0)

λ denotes covariant derivatives

under the absolute metric g
(0)
µν . (The derivation is left as an index-manipulation

exercise.)

When the background metric is flat, i.e. g
(0)
µν ≡ ηµν , the expansion is

Hµν = hµν + ∂µAν + ∂νAµ + ∂µA
α∂νAα + h.o.t.s. (2.1139)

(Once again, the derivation is left as an exercise in index manipulation.) The
higher order terms are terms with at least one power of h.

As in the linear case, we also want to introduce a U(1) gauge symmetry, so
let

Aµ → Aµ + ∂µφ. (2.1140)

With this, the expansion for the flat background metric takes the form

Hµν = hµν + ∂µAν + ∂νAµ + 2∂µ∂νφ+ ∂µA
α∂νAα

∂µA
α∂ν∂αφ+ ∂µ∂

αφ∂νAα + ∂µ∂
αφ∂ν∂αφ+ h.o.t.s. (2.1141)

Similarly, higher order terms are terms with at least one power of h. The gauge
transformation rules in this case are

δhµν = ∂µξν + ∂νξµ + Lξhµν (2.1142)

δφ = −Λ (2.1143)

δAµ = ∂µΛ− ξµ −Aα∂αξµ −
1

2
AαAβ∂α∂βξµ − h.o.t.s. (2.1144)

where Lξ denotes the Lie derivative.
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Another way to Stückelberg

In the last section we introduced gauge invariance and the Stückelberg fields by
replacing the metric gµν by the invariant combination Gµν . This method is good
when we have a potential arranged in the form Eq. (2.1044). One draw back
of this method is that the Stückelberg expansion involves an infinite number of
terms of higher order in hµν . This is not good when we want to keep track of
the hµν ’s.

In this section, we introduce the Stückelberg fields through the background

metric g
(0)
µν , then allow gµν to transform covariantly. This method is suite to a

potential arranged in the form Eq. (2.1049):

S =
1

2κ2

ˆ
dDx

[√
−g
(
R− 1

4
m2V (g, h)

)]
(2.1145)

where the difference between this and the previous arrangement is the lack of
dependence on

√
−g(0). This method contains to higher powers of hµν .

The replacement to make is

g(0)
µν → g

(0)
αβ∂µY

α∂νY
β (2.1146)

The Y α(x) being introduced are the four Stückelberg fields, which despite
the index α are to transform as scalars under diffeomorphisms, i.e.

Y α(x)→ Y α(f(x)) ⇐⇒ δY α = ξν∂νY
α (2.1147)

where the second equality follows from Lie derivative rules for infinitesimal
transformations (again, see the CFT notes for details).

In other words, Y α does not transform like a vector, despite the index.

With this transformation rule, it is easy to see that the replaced g
(0)
µν , namely,

g
(0)
αβ∂µY

α∂νY
β transforms similar to a metric tensor.

This is nice when we are working with the potential of the form Eq. (2.1049).
First, we lower all indices on the hµν ’s in the potential, so that the background

metric g
(0)
µν appears only through hµν ≡ gµν − g(0)

µν . Once that this done, we
replace all occurrences of hµν with

hµν → Hµν = gµν − g(0)
αβ∂µY

α∂νY
β (2.1148)

Next, we once again expand Y α about the identity function:

Y α = xα −Aα (2.1149)

https://huanqbui.com/LaTeX projects/Classical_Fields_Theory/HuanBui_ClassicalFieldTheory.pdf
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and using gµν = g
(0)
µν + hµν we have

Hµν = hµν + g(0)
να∂µA

α + g(0)
µα∂νA

α − g(0)
αβ∂µA

α∂νA
β (2.1150)

We note the sign difference in the quadratic term in A compared with Eq.
(2.1139).

Under infinitesimal gauge transformation we have

δAα = −ξα + ξν∂νA
α (2.1151)

δhµν = ∇(0)
µ ξν +∇(0)

ν ξµ + Lξhµν (2.1152)

where Lξ denotes the Lie derivative. The covariant derivatives are again with

respect to g
(0)
µν . Indices are also lowered/raised with the absolute metric g

(0)
µν .

To linear order, the transformations are

δAα = ξα (2.1153)

δhµν = ∇(0)
µ ξν +∇(0)

ν ξµ. (2.1154)

When the background is flat, i.e. g
(0)
µν ≡ ηµν , then the replacement becomes

hµν → Hµν = hµν + ∂µAν + ∂νAµ − ∂µAα∂nuAα (2.1155)

which is exact. This is unlike Eq. (2.1139) where there exist higher order terms
in hµν .

We follow this by (once again) introducing a U(1) symmetry: Aµ → Aµ+∂µφ

to extract the helicity 0 mode. The full expansion this in case (still g
(0)
µν = ηµν)

becomes

Hµν =hµν + ∂µAν + ∂νAµ + 2∂µ∂νφ+ ∂µA
α∂νA

α

∂µA
α∂ν∂αφ+ ∂µ∂

αφ∂νAα + ∂µ∂
αφ∂ν∂αφ. (2.1156)

The gauge transformation rules in this case are

δhµν = ∂µξν + ∂νξµ + Lξhµν (2.1157)

δAµ = ∂µΛ− ξµ + ξν∂νAµ (2.1158)

δφ = −Λ. (2.1159)
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Stückelberg formalism by Arkani-Hamed et al. (extra)

In this section, we look at how Arkani-Hamed et al. formulates the Stükelberg’s
trick as “building blocks for gravity in theory space.”

Their construction of the scalar fields φa we just saw is based on “sites” and
“links.” Sites are endowed with different four-dimensional general covariances
(GC). Links are actually link fields with suitable non-linear transformation prop-
erties.

For every site j there is a general coordinate invariance GCj . Each of these
invariances is denoted xµj → fµj (xj) where xj are the coordinates. We assume
(reasonably) that the transformations fj are smooth and invertible.

Link fields allow us to compare objects on different sites, which obey their
local GCj . Recall that a field ψ(x) is a scalar field if it transforms under GC
given by a transformation f as

φ′(x) = φ(f(x)) = φ ◦ f. (2.1160)

Similarly, a vector aµ(x) transforms under GC given by f as

a′µ =
∂fα

∂xµ
(x)aα(f(x)). (2.1161)

We see how this rule generalizes for tensors.

Now, suppose we want to compare two distinct sites i, j with two different
coordinate invariances GCi and GCj . To do this, we need a mapping from
site i to site j. Define this mapping as the link field Yj←i, or Yji for short.
Schematically, this is

These are not just any Yji, of course. They have to obey the transformation

Yji → f−1
j ◦ Yji ◦ fi (2.1162)

where the fk’s are the local GC transformations at i, j.

Suppose we want to compare two fields ψi on site i and ψj on site j. A
logical thing to do is transform ψj into some field Ψ in i using Yji:

Ψ = ψj ◦ Yji. (2.1163)

https://arxiv.org/pdf/hep-th/0210184.pdf
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Note that Ψ is in i because its input is in i. And so this new field Ψ transforms
under GCi as

Ψ→ Ψ ◦ fi = Ψ(fi(x
µ)). (2.1164)

By the same arguments as before, we can generalize this rule to higher-rank
tensors using Yji. For a vector field ajµ in j, we can form a new vector field Aµ
in i of the form

Aµ(xi) =
∂Y α

∂xµi
(xi)ajα(Yji(xi)). (2.1165)

For a tensor, say gjµν(xi) in j, we can form a new tensor Gµν in i of the form

Gµν(xi) =
∂Y α

∂xµi

∂Y β

xνi
gjαβ(Yji(xi)). (2.1166)

These transform under GCi of course, since they live in i.

So far the construction has been quite abstract, but this screams diffeo-
morphism invariance, for we require the fields/tensors on one site formed from
fields/tensors on another site to transform correctly under the respective general
coordinate invariances.

Let us consider a special example where we expand Y and G in terms of
pions and see how the two general coordinate invariances are realized explicitly.
Suppose that Yji is just the identity map, i.e.,

Y µji(xi) = xµi . (2.1167)

Then of course fi = fj since now Yji is just a map from a space to itself. Now,
let us expand Y around x as

Y α(x) = xα + πα (2.1168)

where we have dropped indices to avoid drowning in indices later. This is called
Glodstone boson expansion, and it is exactly what we ust introduced in the
previous section. Here Y plays the role of the scalar fields φ.

With this expansion, any tensor K̄µν in i can be expanded in terms of a
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tensor gjαβ in j as

K̄µν =
∂Y α(x)

∂xµ
∂Y β(x)

∂xν
Kj
αβ(Y (x))

=
∂(xα + πα)

∂xµ
∂(xβ + πβ)

∂xν
Kj
αβ(x+ π)

= (δαµ + ∂µπ
α)(δβν + ∂νπ

β)

(
Kj
αβ + πµ∂µK

j
αβ +

1

2
πµπν∂µ∂νK

j
αβ + . . .

)
= Kj

µν + πλ(∂λg
j
αν) + (∂µπ

α)Kj
αν + (∂νπ

α)Kj
αµ +

1

2
παπβ∂α∂βK

j
µν

+ (∂µπ
α)(∂ν∂

β)Kj
αβ + (∂µπ

α)πβ∂βK
j
αν + (∂νπ

α)πβ∂βK
j
µα + . . .

(2.1169)

(to be continued? This is just an extra section on the formalisms of the
Stückelberg’s trick. I don’t think I’ll worry too much about it.)
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2.7.8 Stückelberg Analysis of Interacting Massive Gravity

In this section, we set D = 4 and apply the Stückelberg analysis to the massive
GR action (2.1041):

S =
1

2κ2

ˆ
dDx

[√
−gR− 1

4
m2ηµαηνβ (hµνhαβ − hµαhνβ)

]
(2.1170)

in the case where g
(0)
µν ≡ ηµν , i.e. is flat. To this end, we make the replacement

given by Eq. (2.1141):

Hµν = hµν + ∂µAν + ∂νAµ + 2∂µ∂νφ+ ∂µA
α∂νAα

∂µA
α∂ν∂αφ+ ∂µ∂

αφ∂νAα + ∂µ∂
αφ∂ν∂αφ+ h.o.t.s.

(2.1171)
The higher order terms with h will not be important in this theory.

At linear level, this replacement is exactly the same as the linear Stückelberg
appeared in Section 2.7.5 on the introduction to the Stückelberg trick, given by
Eq. (2.1013):

hµν → hµν + ∂µAν + ∂νAµ (2.1172)

Creating these proofs allows us to have a better understanding of
the Vainshtein mechanism. So while some of these are purely index-
manipulations, it is useful to see how some of the pieces fit together.

Okay so here’s the proof. Recall that the massive gravity action in the
linear regime is given by

S =

ˆ
dDxLm=0 −

1

2
m2
(
hµνh

µν − h2
)

+ κhµνT
µν (2.1173)

where

−1

2
m2
(
hµνh

µν − h2
)

(2.1174)

is the mass term. We want to show that under the replacement (only up to
linear orders)

Hµν = hµν + ∂µAν + ∂νAµ (2.1175)

the following mass term

S =
1

2κ2

ˆ
dDx

[√
−gR−

√
−g(0)

1

4
m2g(0)µαg(0)νβ (hµνhαβ − hµαhνβ)

]
(2.1176)
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is exactly the Fierz-Pauli mass term above, where the absolute metric g
(0)
µν

is identically Minkowskian, ηµν .

Proof: Under the replacement given above, we have that

hµα → hµα + ∂µAα + ∂αAµ

hνβ → hνβ + ∂νAβ + ∂βAν . (2.1177)

With these,

ηµνηαβ (hµαhνβ − hµνhαβ) = hµνhµν + ∂µAαhµα + ∂αAµhµα + ∂νAβhνβ

+ ∂νAβ∂νAβ + ∂νAβ∂βAν + ∂βAνhνβ + ∂αAµ∂
µAα

+ ∂βAν∂βAν − ∂νAνhαα − ∂νAν∂βAβ − ∂νAν∂αAα
− hµµhαα − hµµ∂βAβ − hµµ∂βAβ

− ∂νAνhαα − ∂νAν∂αAα − ∂νAν∂βAβ

= hµνhµν − h2 − 4(∂A)h− 4(∂A)2 + 4(∂A)h+ 4(∂A)2

= hµνhµν − h2. (2.1178)

Seriously easy. The scaling is a bit off but that’s okay because we’ll canon-
ically normalize these fields later.

Once we include the higher order terms of Hµν , things get a bit messier, but
as we have seen in the proof above, a lot of this is just index manipulation and
power counting to eliminate higher-order terms.

To make the nonlinear trick work, we first have to normalize the fields so
that they match the fields of the linear analysis. Using a hat to signify the
canonically normalized fields with the same coefficients as used in Section 2.7.5,
we have

ĥ =
1

2
MPh (2.1179)

Â =
1

2
mMPA (2.1180)

φ̂ =
1

2
m2MPφ (2.1181)

The replacement gives us a number of higher order terms, many of which
we ignore. We always assume m � MP . We also observe that (and one can
check, too) that φ always occurs with 2 derivatives, A with one, and h with
none. Thus, a generic term with nh powers of hµν , nA powers of A, and nφ
powers of φ reads

m2M2
Ph

nh(∂A)nA(∂2φ)nφ ∼ Λ
4−nh−2nA−3nφ
λ ĥnh(∂Â)nA(∂2φ̂)nφ (2.1182)
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where the scale suppressing the term is

Λλ =
(
MPm

λ−1
)1/λ

(2.1183)

where

λ =
3nφ + 2nA + nh − 4

nφ + nA + nh − 2
(2.1184)

Because m < MP , the larger λ, the smaller the scale. Also, since we’re only
considering interaction terms, nφ + nA + nH ≥ 3. The term suppressed by the
smallest scale is the cubic scalar term nφ = 3, nA = nh = 0, which is suppressed
by the scale Λλ where

λ =
3× 3 + 2× 0 + 0− 4

3 + 0 + 0− 2
= 5. (2.1185)

So, the scale is given by

Λ5 = (Mpm
4)1/5 (2.1186)

and the term being suppressed is of the form

∼ (∂2φ̂)3

Λ5
5

(2.1187)

In terms of the canonically normalized fields in Eq. (2.1179), the gauge
symmetries Eq. (2.1142)

δhµν = ∂µξν + ∂νξµ + Lξhµν
δφ = −Λ

δAµ = ∂µΛ− ξµ −Aα∂αξµ −
1

2
AαAβ∂α∂βξµ − h.o.t.s.

become

δhµν = ∂µξ̂ν + ∂ν ξ̂µ +
2

MP
Lξhµν (2.1188)

δφ = −mΛ̂ (2.1189)

δÂµ = ∂µΛ̂−mξ̂µ +
2

MP
ξ̂ν∂ν

(
Âµ +

1

m
∂µφ̂

)
− h.o.t.s. (2.1190)

where we have rescaled

Λ̂ =
mMP

2
Λ

ξ̂µ =
MP

2
ξµ. (2.1191)
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Decoupling limit and breakdown of linearity

The lowest scale Λ5 is the cutoff of the effective field theory. To focus on the
cutoff scale, we take the decoupling limit in which

m→ 0, MP →∞, T →∞, Λ5,
T

MP
fixed (2.1192)

In this regime, all interaction terms go to zero, except for the scalar cubic term
(∂2φ̂)3/Λ5

5 which we calculate from

Hµν =�
�hµν +�

��∂µAν +�
��∂νAµ + 2∂µ∂νφ+���

��∂µA
α∂νAα

(((
(((∂µA

α∂ν∂αφ +((((
((∂µ∂

αφ∂νAα + ∂µ∂
αφ∂ν∂αφ+ h.o.t.s. (2.1193)

i.e.,

hµν → Hµν = 2∂µ∂νφ+ ∂µ∂
αφ∂ν∂αφ (2.1194)

where the “cancellations” happen because we don’t need the tensor and vector
terms. Now, just like in Section 2.7.5, Graviton... we also have to introduce a
field definition

hµν = h′µν +m2φηµν , (2.1195)

which is a conformal transformation that “unmixes” or diagonalizes all the ki-
netic terms (except for some which vanish anyway in the decoupling limit).

After all this is done, the Lagrangian for the scalar reads, up to a total
derivative,

Sφ =

ˆ
d4x − 3(∂φ̂)2 +

2

Λ5
5

[(�φ̂)3 − (�φ̂)(∂µ∂ν φ̂)2] +
1

MP
φ̂T (2.1196)

in better notation (I think) for clarity:

Sφ =

ˆ
d4x − 3(∂µφ̂)(∂µφ̂) +

2

MPm4
[(�φ̂)3 − (�φ̂)(∂µ∂ν φ̂)(∂µ∂νφ)] +

1

MP
φ̂T

(2.1197)

By doing all this replacement, we see that the free graviton coupled to the source
via (1/MP )ĥ′µνT

µν also survives the limit, as does the free decoupled vector.

Now, we will try to understand the origin of the Vainshtein radius at which
the linear expansion breaks down around heavy point sources. The scalar cou-
ples to the source through the trace:

1

MP
φ̂T. (2.1198)
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To linear order around a central source of mass M , the scalar is of the form

φ̂ ∼ M

MP

1

r
. (2.1199)

The non-linear term is suppressed relative to the linear term by the factor

∼ ∂4φ̂

Λ5
5

∼ M

MP

1

Λ5
5r

5
. (2.1200)

Nonlinearities become important when this factor becomes of order 1, which
happens at the radius :

rV ∼
(
M

MP

)1/5
1

Λ5
∼
(
GM

m4

)1/5

(2.1201)

When r ≤ rV , the linear perturbation theory breaks down and nonlinear effects
become important. This is exactly the Vainshtein radius found in Section 2.7.6
by directly calculating the second order correction to spherical solutions.

Proof-ish: I’d like to show how this Lagrangian for φ is obtained (up
to some overall constant multiple), as it is the origin of the Vainshtein
mechanism which we will cover shortly after this. Being able to know
where this action comes from will give us some sense of how the Vainshtein
radius emerges, how ghosts come about, and how the vDVZ discontinuity
is resolved.

The way this is done will be similar but slightly different from what
some papers on this topic approach the derivation in that it is much more
clear how terms appear/cancel each other. The way this is usually done is
people would expand the action to second order, make some arguments,
then go to third order. This jump feels weird to me. My approach is
straight brute force with a touch of dimensional analysis at the end. The
reader will definitely find this approach much more digestible than how
this is often presented in the literature.

Okay. Recall in Section 2.7.5 that we started with the naive massive
gravity, with 1/MP :

S =

ˆ
dDxLm=0−

1

2
m2
(
hµνh

µν − h2
)

︸ ︷︷ ︸
mass term

+κhµνT
µν (2.1202)

Instead of working with this action, we replace the mass term with:

Smass =
−M2

P

2

m2

4

ˆ
d4x ηµνηαβ (hµαhνβ − hµνhαβ) . (2.1203)
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Note that some papers instead use the following expression for the mass
term:

Smass =
−M2

P

2

m2

4

ˆ
d4xhµνhαβ (ηµαηνβ − ηµνηαβ) . (2.1204)

But upon inspection this expression is equivalent to the one above. For
consistency, I will be using the one above (but actually there’s no difference
after contractions are made).

We plug (1) the replacement (including higher order terms):

Hµν = hµν + ∂µAν + ∂νAµ + 2∂µ∂νφ+ ∂µA
α∂νAα

+ ∂µA
α∂ν∂αφ+ ∂µ∂

αφ∂νAα + ∂µ∂
αφ∂ν∂αφ+ h.o.t.s., (2.1205)

and (2) the conformal transformation

hµν = ĥµν − ηµνφ (2.1206)

into the mass term

Smass =
−M2

P

2

m2

4

ˆ
d4x ηµνηαβ (hµαhνβ − hµνhαβ) (2.1207)

and will only do the canonical normalization after all is done.

First, we want to evaluate

ηµνηαβ (hµαhνβ − hµνhαβ) = HµνHµν −H2 (2.1208)

to which end we must find H (since we know Hµν) already:

H = ĥ− 4φ+ 2∂A+ 2�φ+Aλ,νA
ν

λ, + 2Aλ ν, φ,νλ + φ,νλφ
νλ
,

= ĥ− 4φ+ 2∂A+ 2�φ+Aλ,νA
ν

λ, + 2Aλ ν, φ,νλ + (∂µ∂νφ)2. (2.1209)

Under the conformal transformation Hµν is slightly modified:

Hµν = ĥµν − ηµνφ+ ∂µAν + ∂νAµ + 2∂µ∂νφ+ ∂µA
α∂νAα

+ ∂µA
α∂ν∂αφ+ ∂µ∂

αφ∂νAα + ∂µ∂
αφ∂ν∂αφ+ h.o.t.s., (2.1210)

So far we have not made any approximations (except for the expansion of
Hµν). We’re also using the comma notation for derivatives, to save space:

Aν,µ ≡ ∂µAν . . . (2.1211)

and of course ∂A ≡ ∂µAµ and so on.
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When we evaluate

HµνH
µν −H2, (2.1212)

the lowest order terms will gather to form a familiar combination:(
ĥµν +Aµ,ν +Aν,µ

)(
ĥµν +Aµ ν, +Aν µ,

)
− (h+ 2∂A)

2

=(hµνhµν − h2) + 4 (hµν∂
µAν − h∂A) + 2Aν,µAµ,ν + 2Aν,µA

µ ν
, − 4Aµ ν, Aν,µ.

(2.1213)

where the last term comes from −4(∂A)2 (the verification is very easy so
I’ll leave it to the reader).

The reader should be able to convince himself that

2Aν,µAµ,ν + 2Aν,µA
µ ν
, − 4Aµ ν, Aν,µ ≡ FµνFµν . (2.1214)

And so the lower order terms combine to form a familiar combination that
we have seen in Section 2.7.5:

(hµνh
µν − h2) + 4(hµν∂

µAν − h∂A) + FµνF
µν (2.1215)

Okay, what do the higher order terms do? There are many higher order
terms, so we should be clever as to which terms should be of interest. We
know that ultimate we won’t care about terms involving A and h because
ultimately we are interested in what φ does. In other words, our goal here
is to obtain the action for φ, i.e., Lφ.

Also, we are interested in the cubic behavior of φ, as this is where the
scaling Λ5

5 comes into play. So, we will pay attention to just terms that
give us high orders of φ. So what are these terms? It is actually easy to
just write out what Hµν , H

µν , and H are and see for yourself that the
interesting terms, with multiplicity, are the following.

The first term comes from both the HµνH
µν product and H2:

−4φ,µνη
µνφ+ 16φ�φ ≡ 12φ�φ (2.1216)

where I have used the fact that integrating by parts moves a derivative and
flips a sign (here I integrated by parts twice to create the �φ term in the
first summand).

Another interesting term is

4(�φ)(φ,µνφ
µν
, ) ≡ 4(�φ)(∂µ∂νφ)2 (2.1217)
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which comes from H2.

And the last term is

4φ αν
, φ λ

,ν φ,αλ ≡ −4(�φ)3 (2.1218)

where again I have used integration by parts (three times) to move the
derivatives to create �φ.

Now, since we don’t care about the h,A terms anymore (because we
have done all the transformations except for scaling), we won’t worry about
their combination. Instead, we’ll just look at the action for φ. Up to some
constant multiple, Sφ is

Sφ = −M
2
P

2

m2

4

ˆ
d4xαφ�φ−

[
β(�φ)3 −�φ(∂µ∂νφ)2

]
(2.1219)

where α, β are just leading constants. In particular, β is some scaling
for the cubic terms that will appear once the canonical normalization is
finished.

It turns out (after some careful counting that I won’t worry about -
since the goal is to obtain the scaling for β) that Sφ has the form

Sφ = −M
2
P

2

m2

4

ˆ
d4x

3

2
φ�φ−

[
β(�φ)3 −�φ(∂µ∂νφ)2

]
+ φT (2.1220)

where the φT term just follows from the matter term. We won’t worry too
much about it. It is easy to verify its existence, but there’s not much use
in that.

Now, let us introduce the canonical normalizations:

ĥ =
1

2
MPh (2.1221)

Â =
1

2
mMPA (2.1222)

φ̂ =
1

2
m2MPφ (2.1223)

We are interested in particular to φ̂→ φ transformation. To put all the φ’s
in terms of φ̂ in the cubic terms, we require a factor of(

1

MPm2

)3

. (2.1224)
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In this case, the action becomes

Sφ ∼ −
M2
P

2

m2

4

ˆ
d4x

1

M2
Pm2

3

2
φ̂�φ̂−

[(
1

MPm2

)3

(�φ̂)3 −�φ̂(∂µ∂νφ)2

]

+
1

MPm2
φ̂T

(2.1225)

I’m hand-waving a little bit here. The units for the first term is actu-
ally put there. I will just note here for future reference that to correctly
obtain the units or the first term one will have to perform the conformal
transformation after the expansion of Hµν , because what the conformal
transformation does is actually giving φ an extra m2, which cancels with
the m4 in the denominator, ultimately making the leading factor of φ̂�φ̂
unity. The conformal transformation is done by plugging

h̃µν = ĥµν −m2ηµνφ (2.1226)

into the combination containing FµνF
µν . The reader will see after from

algebraic manipulation that φ indeed picks up an m2 like this:

S =
1

8

ˆ
d4x

{
· · · −m2

(
hµνhµν − h2

)
− FµνFµν − 4m (h∂A− hµν∂µAν)

+6φ(� + 2m2)φ−m2hφ+ 2mφ∂A
}

(2.1227)

from this paper.

These are just algebra details so I won’t stress too much about how
exactly these terms show up. In any case, we see that when the leading
factor φ�φ is unity, the leading factor of the cubic terms is

M2
Pm

2

1

1

(MPm2)3
≡ 1

MPm4
≡ 1

Λ5
5

(2.1228)

And so we proved-ish that the scale is

Λ5 ≡ (MPm
4)1/5 (2.1229)

and that the action for φ is

Sφ =

ˆ
d4x − 3(∂φ̂)2 +

2

Λ5
5

[(�φ̂)3 − (�φ̂)(∂µ∂ν φ̂)2] +
1

MP
φ̂T (2.1230)

But we can go a bit further beyond the “proof.” Provided the action, we can
obtain an equation of motion for φ̃ just by varying the Lagrangian density

https://arxiv.org/pdf/1304.7240.pdf
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wrt φ̃. This can be done by inspection (taking δL/∂φ) show I won’t show
the steps. The EOM is

3�φ̃+
1

Λ5
5

[
3�(�φ̃)2 + �

(
φ̃,µν φ̃

µν
,

)
+ 2∂µ∂ν(�φ̃φ̃,µν)

]
=

1

MP
T.

(2.1231)

at this equation is of fourth order signals that action (40) propagates in fact
two scalar modes, one being ghost like. This ghost can be interpreted as the
Boulware-Deser ghost and the DL provides a powerful tool to investigate
the presence of this ghost in a given theory.

ATTENTION: At this point I can’t but have to point out that there’s
not good agreement on the exact form of the action/Lagrangian above. As the
reader might have noticed, the Lagrangian obtained from my derivation is off by
a leading factors when compared to the Hinterbichler’s or that in the paper by
Daffayet and Babichev (used above). However, in this paper by Daffayet (yes,
the same Daffayet) and Rombouts, the Lagrangian is found to be

Lφ =
1

2
φ�φ+

1

Λ5
5

(�φ)3 − 1

Λ5
5

�φ(∂∂φ)2 − 1

MP
φT (2.1232)

which of course doesn’t have the same leading factors as the Lagrangian above
and seems to agree with my derivation of the Lagrangian.

In any case, I will be using this Lagrangian for derivations of the Vainshtein
mechanism in the section on the resolution of the vDVZ discontinuity. Trust
me that will be good.

https://journals.aps.org/prd/pdf/10.1103/PhysRevD.72.044003
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Ghosts

The Lagrangian from

Sφ =

ˆ
d4x − 3(∂φ̂)2 +

2

Λ5
5

[(�φ̂)3 − (�φ̂)(∂µ∂ν φ̂)2] +
1

MP
φ̂T (2.1233)

is a higher-order Lagrangian, and its equations of motion are fourth order, which
means there are two propagating degrees of freedom rather than one. This is
because we need to specify twice as many initial conditions to uniquely solve
the fourth order equations of motion. Also, by Ostrogradsky’s theorem, one of
these degrees of freedom is a ghost.

From this point, we will be combining Hinterbichler’s and Creminelli’s argu-
ments. Let us consider the stability of the classical solutions to the EOM from
the action above around a massive point source. Suppose we have a classical
background Φ(r), which is the solution to the φ̂ equation of motion. We then
expand the Lagrangian in the action above to quadratic order in the fluctuation

φ ≡ φ̂− Φ . Schematically, the result is

Lϕ ∼ −(∂ϕ)2 +
∂2Φ

Λ5
5

(∂2ϕ)2. (2.1234)

There is a four-derivative contribution to the ϕ kinetic term, which results in
the appearance of a ghost with an r-dependent mass:

m2
ghost(r) ∼

Λ5
5

∂2Φ(r)
(2.1235)

As to why this is the case, we will digress to Section 2. of Creminelli’s.

In this textbox we explore why higher derivative kinetic terms give rise
to ghost-list instabilities. Consider a massless scalar field φ with Lagrangian
density

L = −1

2
(∂φ)2 +

a

2Λ2
(�φ)2 − Vint(φ) (2.1236)

where Λ is some energy scale, a = ±1, and Vint is some interaction term.
We want to show that independent of a, i.e. the sign on the second term,
the system has a ghost. To do this we want to reduce this to a purely
two-derivative kinetic Lagrangian, from which we know how to read the
stability properties of the system. To this end we introduce an auxiliary
scalar field χ and a new Lagrangian

L′ = −1

2
(∂φ)2 − a∂µχ∂µφ−

1

2
aΛ2χ2 − Vint(φ), (2.1237)

https://arxiv.org/pdf/hep-th/0505147.pdf
https://arxiv.org/pdf/hep-th/0505147.pdf
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which reduces to L once χ is integrated out. The procedure for “integrating
out is just varying the Lagrangian with respect to χ and set to 0 (to get
EOM), finding χ in terms of known quantities, then plugging it back in.
Here’s how it’s done:

0 =
δL
δχ

= a�φ− aΛ2χ =⇒ χ =
�φ
Λ2

. (2.1238)

Substituting this back into L′, we find (up to integration by parts)

L′ = −1

2
(∂φ′)2 +

a

2Λ2
(�φ)2 − 1

2
aΛ2 (�φ)2

Λ4
− Vint(φ)

= −1

2
(∂φ)2 +

a

2Λ2
(�φ)2 − Vint(φ). (2.1239)

With this done, we introduce the substitution φ ≡ φ′ − aχ, to get

L′ = −1

2
(∂φ′)2 +

1

2
(∂χ)2 − 1

2
aΛ2χ2 − Vint(φ

′, χ). (2.1240)

This signals the presence of a ghost because χ has a wrong-sign kinetic
term. Legendre transforming the Lagrangian to give the Hamiltonian, one
will see that the Hamiltonian is negative. This means the system becomes
unstable (Ostrogradsky).

For more information about how Lagrangians with high-derivative terms
leads to a negative Hamiltonian, which leads to instabilities, please refer to
this paper on Ostrogradsky’s instability.

So, we have a ghost:

m2
ghost(r) ∼

Λ5
5

∂2Φ(r)
(2.1241)

Far from the source, the ghost mass goes to infinity, and so it is not seen in the
linear theory. Remember that we are dealing with an effective theory with a
tiny UV cutoff Λ5, therefore we should not worry until the mass of the ghost
drops below Λ5. Rghost ∼ 1/mghost, we start worry about the ghost whenever
mghost ∼ Λ5. This happens at a distance Rghost such that ∂2Φc ∼ Λ3

5. This is
a huge distance as compared to the (already huge) Vainshtein radius rV . For a
source of mass M∗ at r � rV , the background field goes as

Φc ∼ M∗
MP

1

r
, (2.1242)

https://arxiv.org/pdf/1506.02210.pdf
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so that

Rghost ∼
1

Λ5

(
M∗
MP

)1/3

� r
(5)
V ∼

1

Λ5

(
M∗
MP

)1/5

. (2.1243)

Therefore the ghost is going to show up in an extremely weak background
field, when the latter is still in its linear regime.

It turns out that the distance rghost is the same distance at which quantum
effects becomes important. Whatever UV completion takes over should cure
the ghost instabilities that become present at this scale, so we will be able to
consistently ignore the ghost.
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Resolution of the vDVZ discontinuity and the Vainshtein mechanism

In this section, we will look at how nonlinearities resolve the vDVZ discontinu-
ity. This is known as the Vainshtein mechanism. A ghost will play a critical
role here.

Consider again the action for φ again:

Sφ =

ˆ
d4x − 3(∂φ̂)2 +

2

Λ5
5

[(�φ̂)3 − (�φ̂)(∂µ∂ν φ̂)2] +
1

MP
φ̂T (2.1244)

Far outside rV , where the linear term dominates, the field has the usual
Coulombic 1/r form (as it must be). Inside the Vainshtein radius, however, the
cubic term dominates because the field gets an r3/2 profile (when the source T
is a delta function):

φ̂ ∼


M
MP

1
r , r � rV(

M
MP

)1/2

Λ
5/2
5 r3/2, r � rV

where the second expression is obtained from applying power-counting to the
Lagrangian density. I will provide a “proof” after this short comment:

When r� rV, the ghost mass m2
ghost ∼ Λ5/∂2Φ(r) becomes very small,

and the ghost starts to mediate a long-range force. However, due to the ghost’s
wrong sign in the kinetic term, the force is repulsive which cancels the at-
tractive force due to the longitudinal mode that is responsible for the vDVZ
discontinuity. With this condition, GR is restored inside the Vainshtein radius.

Let’s see this explicitly. I will deviate from Hinterbichler’s explanations and
follow the work of Daffayet and Rombouts.

Proof-ish: I will follow Daffyet and Rombout’s work, so it only makes
sense for me to use their Lagrangian:

L = φ�φ+
1

Λ5
5

(�φ)3 − 1

Λ5
5

(�φ)(∂∂φ)2 − 1

MP
φT. (2.1245)

Varying this with respect to φ, i.e., taking δL/δφ gives the EOM:

�φ̃+
1

Λ5
5

[
3�(�φ̃)2 + �

(
φ̃,µν φ̃

µν
,

)
+ 2∂µ∂ν(�φ̃φ̃,µν)

]
=

1

MP
T. (2.1246)

We will ignore the complicated high derivative term (justification can be
found in Daffayet and Rombouts’s paper) so that the Lagrangian reduces
to

L =
1

2
φ�φ+

1

Λ5
5

(�φ)3 − 1

MP
φT (2.1247)
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from which the EOM can be obtained:

�φ+
3

Λ5
5

�(�φ)2 − T

MP
= 0 (2.1248)

This PDE describes two, rather than one, scalar DOFs. The extra DOF is
a ghost. To appropriately deal with the ghost, we introduce a new field λ
and modify the Lagrangian:

L =
1

2
φ�φ+

1

Λ5
5

(�φ)3 + F (λ,�φ)− 1

MP
φT. (2.1249)

Varying this with respect to φ and λ respectively gives each field an EOM.
For φ:

�φ+
3

Λ5
5

�(�φ)2 + �F (0,1) − T

MP
= 0 (2.1250)

For λ:

F (0,1) = 0 (2.1251)

where F (i,j) denotes the derivative of F i times with respect to the first
variable and j times with respect to the second variable.

Now, we require that these EOM’s not contain derivatives of order higher
than two and to be equivalent to the original EOM. A suitable ansatz for
F is given by

F (λ,�φ) =
2

3
√

3
Λ

5/2
5 λ3 + λ2�φ− 1

Λ5
5

(�φ)3 (2.1252)

Evidently,

F (0,1) =
2

3
√

3
Λ

5/2
5 λ3 + λ2 − 3

Λ5
5

(�φ)2 (2.1253)

and

F (1,0) =
2√
3

Λ
5/2
5 λ2 + λ�φ− 1

Λ5
5

(�φ)3. (2.1254)

With these,

�F (0,1) ≈ 2√
3

Λ
5/2
5 �λ+ 2λ− 3

Λ5
5

�(�φ)3. (2.1255)
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Plugging these into the EOM’s and cancel terms with higher than 2 deriva-
tives, we get the EOM’s for φ and λ:

�φ+ �λ2 − 1

MP
T = 0 (2.1256)

λ

(
Λ

5/2
5√
3
λ+ �φ

)
= 0 (2.1257)

When λ 6= 0, we just get back the original single EOM. Now, let

φ = ϕ− λ2, (2.1258)

where φ corresponds to the vDVZ scalar at large distance from the source,
and ψ is the ghost. The Lagrangian becomes

Leq =
1

2
ϕ�ϕ− 1

2
λ2�λ2 +

2

3
√

3
λ3Λ

5/2
5 − 1

MP
ϕT +

1

MP
λ2T. (2.1259)

Defining ψ ≡ λ2 give

Leq =
1

2
ϕ�ϕ− 1

2
ψ�ψ − ε 2

3
√

3
ψ3/2Λ

5/2
5 − 1

MP
ϕT +

1

MP
ψT, (2.1260)

where ε = ±1 is the sign of �(ϕ− ψ).

Now, we normalize the fields:

ϕ̃ = φ/MP (2.1261)

ψ̃ = ψ/MP . (2.1262)

From here the EOM’s for ϕ̃ and ψ̃ can be obtained (by inspection) from
the Lagrangian above:

�ϕ̃ = GT

�ψ̃ + ε
m2

√
3
ψ̃1/2 = GT (2.1263)

where G = 1/M2
P . When T = −Mδ3(x), i.e. when the source is pointlike,

the solution to ϕ̃ is easy:

ϕ̃ =
GM

r
(2.1264)

as expected. Now, viewing ψ as a perturbation to ϕ̃, i.e.

ψ̃ = ψ̃(0) + ψ̃(1) + . . . (2.1265)
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then ψ̃ obeys the equation:

�ψ̃(1) + ε
m2

√
3

(ϕ̃)1/2 = 0 (2.1266)

whose solution is

ψ̃(1) = −ε 4

15
√

3
m2
√
GMr3/2 (2.1267)

We see that when r � rV , we have that

ϕ̃ =
GM

r
, (2.1268)

obviously, while

φ̃(0) ≈ GM

r
(2.1269)

With this, we can rewrite the perturbation in ψ as

ψ̃ = ϕ̃+ ψ̃(1) + . . . (2.1270)

We observe that when we consider φ = ϕ− ψ, we get that ψ(0) cancels
ϕ̃ when r � rV . In other words, within a certain distance scale to the
source, the ghost exactly cancels the vDVZ field, up until when the ghost
freezes out due to its self-interaction, leaving one propagating DOF.

Now, notice that

ψ̃(1) ∼ ϕ̃ (2.1271)

at

rV ∼
(
GM

m4

)1/5

, (2.1272)

which is nothing but the Vainshtein radius, at G = 1/M2
P .

With these results, we can come back to the original φ ≡ ϕ− ψ. When
r < rV :

φ(0) = 0 =⇒ φ(1) = ε
4

15
√

3
m2
√
GMr3/2, (2.1273)

as claimed earlier.
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When r > rV , we can no longer trust the perturbation theory for the
ghost. However, we can just use the original Lagrangian for the scalar field
perturbatively, since the cubic self-interaction is small in this region. In
this region, the EOM is given by

�φ+
3

Λ5
5

�(�φ)2 − 1

Λ5
5

�(∂∂φ)2 − 2

Λ5
5

∂µ∂ν((�φ)∂µ∂νφ)− T

MP
= 0

(2.1274)

At first order:

�φ(0) =
T

MP
. (2.1275)

When T is a pointlike source, the solution is of course easy:

φ(0) =
M

rMP
(2.1276)

while φ(1) is given by

φ(1) ∝ M2

M3
Pm

4

1

r6
(2.1277)

and so the ghost profile is negligible compared to φ.

This is known as the Vainshtein screening mechanism. Here’s a
summary:

• When r � rV , nonlinear interactions dominate. The vDVZ disconti-
nuity appears. By Stückelberging the theory, we found a (Boulware-
Deser) ghost, which turns out to generate a force that restores GR.

• When r � rV , the linear theory dominates. The ghost mass goes to
infinity (hence freezes and doesn’t contribute). Everything is nice.

So, the Vainshtein mechanism allows the Λ5 theory to be more well-behaved
than we originally thought. However, we will see that things go bad when
quantum correction is taken into account. Subsequently we will see the
necessity for/utility of the Λ3 theory.
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Quantum corrections and the effective theory

Quantum mechanically, massive gravity is an effective field theory, since there
are nonrenormalizable operators suppressed by the energy scale Λ5. The ππ →
ππ scattering amplitude at energy E, coming from the cubic coupling, is on the
order of

M∼ E10

Λ10
5

. (2.1278)

As we will see, the wavefunction of the longitudinal graviton for a large boost is
proportional to m−2, while the largest term at high momentum in the graviton
propagator is proportional to m−4. So, naive power counting suggests that the
amplitude at energies much larger than m is similar to M ∼ E14/(M2

Pm
12).

However, Aubert has explicitly calculated and showed that there is a cancella-
tion in the diagrams so that the result agrees with the result of the Stückelberg
description. We encounter these kinds of cancellations again in loops, and part
of the usefulness of the Stückelberg description is that they are made mani-
fest. The amplitude becomes of the order of 1 and hence strongly coupled when
E ∼ Λ5. Thus Λ5 is the maximal cutoff of the theory.

In the following exposition of Aubert’s work, I will show how these results
are obtained by explicitly calculating graviton Feynman diagrams.

Introduction & Summary

At the linearized level, the Fierz-Pauli gravity experiences the vDVZ
discontinuity. This discontinuity is cured at the nonlinear level by the
Vainshtein mechanism, which involved the Boulware-Deser ghost. However,
problems with the theory emerges when quantum corrections are considered
in the strong coupling limit of

Λ5 =
(
MPm

4
)5
. (2.1279)

It is of interest to see how this scale is obtained directly from scattering
amplitudes and loop corrections. We will look at the 2 → 2 scattering
amplitude of longitudinal gravitons and the loop correction to the gravi-
ton propagator, both in a flat background. The energy scale Λ5 appears
nontrivially. Naive power counting does not work. As we will see, the
wavefunction of the longitudinal graviton is proportional to 1/m2, while
the largest term in the graviton propagator is proportional to 1/m4. Naive
power counting would suggest that the cutoff is

E14

M2
Pm

12
, (2.1280)

https://arxiv.org/pdf/hep-th/0312246.pdf
https://arxiv.org/pdf/hep-th/0312246.pdf
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rather than the correct scale

E10

M2
Pm

8
(2.1281)

due to cancellations.

Figure 2.22: From Aubert 2004

Massive graviton wavefunctions and propagator

This section is similar to Hinterbichler’s Section II, but I will try to
reproduce/expose Aubert’s results.
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The graviton field hµν(x) is the perturbation about the Minkowski met-
ric ηµν . The graviton is given a mass by adding the Fierz-Pauli term to the
Einstein-Hilbert action:

S =
−M2

P

16π

ˆ
d4x
√
−gR− m2M2

P

64π

ˆ
d4x

(
hµνhµν − hµµhνν

)
. (2.1282)

Following Section 2.7.3: Fierz-Pauli Massive Gravity and its subsection
Free solutions and Graviton mode functions, one finds the constraints for
the graviton field:

(�−m2)hµν = 0, ∂µhµν = 0, h = 0. (2.1283)

I have also talked about how we can count 5 degrees of freedom from these
equations, so I won’t repeat that here.

The solution hµν to the Klein-Gordon equation is quite easy:

hµν(x) =
4
√

2π

MP

ˆ
d3k

(2π)3(2k0)
×

5∑
α=1

(ε(α)
µν a

α(k)e−ik·x + h.c.) (2.1284)

where aα are the amplitude/creation/annihilation operators and ε
(α)
µν is the

polarization vector. The five polarization tensors have the following prop-
erties:

ε(α)
µν = ε(α)

νµ , ε(α)µ
µ = 0, kµe

(α)µν = 0, e(α)
µν e

(β)µν = δαβ (2.1285)

Again, these calculations have been done in the same sections earlier in this
notes. The creation and annihilation operators are normalized in standard
way:

[aσ(k), aβ†(k′)] = (2π)3(2k0)δ3(k− k′)δαβ . (2.1286)

Some of these conditions imply that

[ε̄µν ] =


0 0 0 0
0 ε̄11 ε̄12 ε̄13

0 ε̄12 ε̄22 ε̄23

0 ε̄13 ε̄23 ε̄33

 (2.1287)

The five polarization tensors ε
(α)
µν of the massive graviton can be ex-

pressed in terms of the three polarization vectors e
(i)
µ of the massive vector
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field:

ε(1)
µν =

1√
2

(ε(1)
µ ε(2)

ν + ε(2)
µ ε(1)

ν ) (2.1288)

ε(2)
µν =

1√
2

(ε(1)
µ ε(2)

ν − ε(2)
µ ε(1)

ν ) (2.1289)

ε(3)
µν =

1√
2

(ε(1)
µ ε(3)

ν + ε(3)
µ ε(1)

ν ) (2.1290)

ε(4)
µν =

1√
2

(ε(2)
µ ε(3)

ν + ε(3)
µ ε(2)

ν ) (2.1291)

ε(5)
µν =

1√
2

(ε(1)
µ ε(1)

ν + ε(2)
µ ε(2)

ν − 2ε(3)
µ ε(3)

ν ). (2.1292)

The first two polarization tensors are those of the massless case. In the
frame where kµ = (k0, 0, 0, k3), one has

ε(1)
µ = (0, 1, 0, 0), ε(2)

µ = (0, 0, 1, 0), ε(3)
µ =

1

m
(k3, 0, 0,−k0). (2.1293)

Again, in the Propagator section of 2.7.3 I have included a detailed
derivation of the propagator, so I won’t repeat a lot of the details here.
The propagator/Green’s function ultimately has the form

Gαβµν(k) =
16iπ

M2
P (k2 −m2)

[
η̂αµη̂βν + η̂αν η̂βµ −

2

3
η̂αβ η̂µν

]
(2.1294)

where

η̂µν = ηµν −
kµkν
m2

. (2.1295)

The reader can check, upon expanding the expression above, that the
propagator contains terms of order m0,m−2,m−4.

The reader can also check that this expression agrees with the deriva-
tions in the Propagator section in 2.7.3.. The coefficient −2/3 6= −1
differentiates the massive from the massless case, creating the vDVZ
discontinuity.

Near mass shell, this propagator can be written as

Gαβµν(k) =
32πi

M2
P (k2 −m2)

5∑
γ=1

ε
(γ)
αβ ε

(γ)
µν (2.1296)
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Scattering

Interaction between gravitons comes from non-linear terms in the Ein-
stein action. The corresponding three-point and four-point vertices are
obtained from the expression for the Einstein action

´
d4x
√
−gR at the

third and fourth order in hµν . To this end, one makes use of the following
expansions:

√
−g =1 +

1

2
hαα +

1

8
(hαα)2 − 1

4
hαβh

αβ +
1

48
(hαα)3

− 1

8
hααhβγh

βγ +
1

6
hαβh

βγh α
γ +O(h4

αβ). (2.1297)

and

gµν = ηµν − hµν + h µ
σ hσν − hµσhστhτν +O(h4

µν). (2.1298)

The unconvinced reader can try to reproduce this in xACT. This was ac-
tually given as an xACT exercise in Massive General Relativity subsection,
in Section 2.7.6. on Nonlinear Massive Gravity.

With these, one finds the expressions for the three- and four- point
vertices (I’m just going to believe Aubert’s results here):

V
(µν)(στ)(ρλ)
3 =

−iM2
P

16π
Sym

{
−1

4
P3

[
ηµνηστηρλk1 · k2

]
+

1

4
P3

[
ηµνησρητλ(k2 · k3 − 2k1 · k1)

]
−P3

[
ηλµηνσητρk1 · k2

]
− 1

4
P6

[
ηµνηστkρ1k

λ
1

]
+P3

[
ηµνησρ

(
kτ1k

λ
1 −

1

2
kτ3k

λ
2

)]
+

1

2
P6

[
ηµσηντkρ1k

λ
1

]
+

1

2
P3

[
ηµσηντkρ1k

λ
2

]
+ P3

[
ηµσηνρkτ3k

λ
2

]
+ P6

[
ηµσηνρkτ1k

λ
2

]}
.

(2.1299)

V
∗(µν)(στ)(ρλ)(πξ)
4 =

−iM2
P

16π
Sym

{
1

4
P3

[
ηµσηντηρπηλξ(k1 · k2 + 2m2)

]
−2P3[ηξµηνσητρηλπm2]− 1

2
P12

[
ηξσητρηλπkµ2 k

ν
2

]
−1

2
P12

[
ηµσηντηρπkλ1 k

ξ
1

]
+P12

[
ησρηλπηξµ(kν2k

τ
1 − kν3kτ4 )

]}
(2.1300)
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where k1 + k2 + k3 = 0 for the 3-point vertex and k1 + k2 + k3 + k4 = 0
for the 4-point vertex. The symbol P means that one has to sum over all
distinct permutations of the triplets of indices 1µν, 2στ , 3ρλ and 4πξ.

The subscript of P indicates the number of distinct permutations over
which the summation has to be carried out. The “Sym” symbol means that
the total expression has to be symmetrized in each pair of indices (µν),
(στ), (ρλ) and (πξ). In fact, this symmetrization is not required as long
as one only multiplies the vertices by the propagator or the polarization
tensors which are already symmetric. The ∗ symbol indicates that, for the
four point vertex, the four legs are on mass shell.

We use these for calculating the amplitude of scattering of two massive
gravitons; at the tree level it is given by the sum of the diagrams shown in
Figs. 1 and 2. By naive power counting, one might think that the term of
order m−4 in the massive propagator dominates the scattering amplitude.
However, once the explicit form of the vertex is used, and external legs
are taken on-shell, its contribution in fact picks up a factor m4. Likewise,
the term in the propagator with m−2 in front picks up a factor m2, so
effectively the propagator is of order m0.

These cancellations occur for each diagram in Fig. 2 separately, and for
all polarizations of gravitons in the legs, provided these are on-shell (when
on-shell contour-integrating gives residue proportional to m2). Then, the
inverse powers of the mass m in the scattering amplitude come only from

the polarization tensor ε
(α)
µν .

Using Mandelstam variables, the four- and three-point vertex diagrams
and their sum are given by

M4 = − 2π

9M2
Pm

8
stu(s2 + t2 + u2)

M3 =
7π

54M2
Pm

8
stu(s2 + t2 + u2)

MTOT =
−5π

54M2
Pm

8
stu(s2 + t2 + u2). (2.1301)

Since s, t, u ∼ p2, at high energies the 2 → 2 amplitude for longitudinal
graviton is of the order

M∼ E10

Λ10
5

(2.1302)

which is consistent with our earlier claim.
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One-loop graviton propagator Here we look at the one-loop correction
to the diagrams. We do this by adding external sources of the form Tαβhαβ
and T

′γδhγδ and calculate the interaction between Tαβ and T
′γδ. At the

tree level, the interaction between two symmetric conserved sources Tαβ(x)
and T ′γδ is
ˆ

d4x

(2π)4
T̃αβ(k)G

(0)
αβγδT̃

′γδ(−k)

=

ˆ
d4x

(2π)4

32πi

M2
P (k2 −m2)

(
T̃αβ(k)T̃ ′αβ(−k)− 1

3
T̃αα (k)T̃

′β
β (−k)

)
(2.1303)

We now calculate the interaction at the one loop order; the corresponding
diagrams are shown in Fig. 3. We are interested in the regime k2 � m2.
As the sources are transverse, all terms in the propagator enhanced by m−4

and m−2 vanish upon contracting with Tαβ or T
′αβ except for one term.

This non-vanishing term is of the form ηαβµν , where the two indices of the
Minkowski metric are contracted with the energy-momentum tensor. So,
one might think that for the first diagram of Fig. 3, the two propagators
in the loop each contribute as m−4, and the two external propagators each
contribute as m−2. This would lead to a result of the order m−12, but
as in the previous section there are cancellations. Unlike in the previous
section, however, these cancellations have nothing to do with the mass-shell
condition. By direct calculation one finds that the terms of order m−12

and m−10 vanish, so one is left with contribution of order m−8 from the
first diagram of Fig. 3. The second diagram has only one propagator inside
the loop, so it is at most of order m−8.

To check that the terms of order m−8 do not cancel out, it is sufficient
to consider traceless sources,

Tαα = T
′α
α = 0. (2.1304)

This simplifies algebra considerably (in particular, the second diagram in
Fig. 3 does not contribute to the order m−8), and we obtain for the sum of
the tree level and one-loop interactions,

ˆ
d4k

(2π)4
T̃αβ(k)

[
G

(0)
αβγδ(k) +G

(1)
αβγδ(k)

]
T̃
′γδ(−k)

=

ˆ
d4k

(2π)4
T̃αβ(k)T̃ ′αβ(−k)

32πi

M2
P (k2 −m2)(

1 +
k10

2160πM2
Pm

8
log k2 +

P (k)

M2
Pm

8
+
O(m−6)

M2
P

)
(2.1305)
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where P (k) is a polynomial in k. Thus, the correction of order m−8 does
not cancel out in the graviton propagator, even for traceless sources. This
correction becomes comparable to the tree level term at the energy scale
Λ5, Eq. (1). This again demonstrates that Λ is indeed the strong coupling
scale in massive gravity.

From looking at Aubert’s work, we sort of see how Λ5 is actually the maxi-
mal cutoff for this Λ5 effective field theory. Now, we want to find the radius at
which the quantum correction becomes important.

some arguments (which I can no longer follow) by Hinterbichler.

In any case, under certain motivations, we introduce all operators of the
form

cp,q∂
qhp (2.1306)

(which supposedly act as counter terms) so that the effective action becomes

S =

ˆ
d4x

M2
P

2

[√
−gR− m2

4
(h2
µν − h2)

]
+
∑
p,q

cp,q∂
qhp (2.1307)

with cutoff Λ5. Given that the linear field is similar to φ̂ ∼ (M/MP )(1/r), the
radius rp,q at which

∂q(∂2φ̂)p

Λ3p+q−4
5

∼ (∂φ)2 (2.1308)

is

rp,q ∼
(
M

MP

)(p−2)/(3p+q−4)
1

Λ5
. (2.1309)

This distance increases with p. As p→∞,

rQ ∼
(
M

MP

)1/3
1

Λ5
. (2.1310)

Therefore, we cannot trust the classical solution at distances below rQ, since
quantum operators become important there. This distance rQ is obviously larger
than the Vainshtein radius, where classical nonlinearities become important.
Unlike the case in GR, there is no intermediate regime where the linear approx-
imation breaks down but quantum effects are still small, so there is no sense
in which a nonlinear solution to massive gravity can be trusted for making real
predictions in light of quantum mechanics.

The entire ghost screening mechanism we have seen earlier is in the nonlinear
regime, and so it becomes swamped with quantum corrections. So, there is no
regime for which GR is a good approximation.
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2.8 dGRT theory

In this section we try to understand the generalization and re-formulation of
massive gravity by dRGT and how they raise the cutoff from Λ5 to Λ3 and cure
ghosts.

The first subsection of this section covers the paper Generalization of Fierz-Pauli action
by de Rham and Gabadadze. The second subsection covers the paper by de
Rham, Gabadadze, and Tolley called Resummation of massive gravity

2.8.1 Generalization of Fierz-Pauli action

In this paper, de Rham and Gabadadze considered the Lagrangian of gravity
covariantly amended by mas and polynomial interaction terms with arbitrary
coefficients, and reinvestigate the consistency of such a theory in the decoupling
limit, up to fifth order in the nonlinearities. Self-interactions of the helicity-0
mode and nonlinear mixing between the helicity-0 and -2 modes are calculated.
It turns out that ghost-like pathologies disappear for special choices of the poly-
nomial interactions. de Rham and Gabadadze also argue that this result remains
true to all orders in the decoupling limit.

Introduction & Summary

The following subsections are organized in order: (2) introduce the formalism
used to study the decoupling limit of massive gravity with a general potential,
(3) explicitly compute the decoupling limit Lagrangian to the quartic and quintic
orders, (4) general framework for computing the Lagrangian in the decoupling
limit, and argue that in theories which are consistent with the fixed scale Λ3,
at most the quartic order mixing term can be obtained, all the higher order
mixing terms being zero, (5) upon appropriate change of variables we recover
the standard Galileon interactions, and (6) open directions.

https://arxiv.org/pdf/1007.0443.pdf
https://arxiv.org/pdf/1011.1232.pdf
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Formalism

• Gauge invariant potential for gravity Recall from the first subsection
of Section 2.7.6, Nonlinear Massive Gravity where we are interested in more
general interactions beyond the action provided above. We will be adding inter-
action terms with no derivatives, since these are most important at low energies.
The covariant Lagrangian with potential reads:

S =
1

2κ2

ˆ
dDx

[√
−gR−

√
−g(0)

1

4
m2U(g(0), H)

]
(2.1311)

The interaction potential U is the most general one that reduces to Fierz-Pauli
at linear order. The power series representation of this potential U is given by

U(g(0), h) =

N∑
n=2

Un(g(0), H)

= U2(g(0), H) + U3(g(0), H) + U4(g(0), H) + U5(g(0), H) + . . .
(2.1312)

where just as before

U2(g(0), H) = g(0)µαg(0)νβ (HµνHαβ −HµαHνβ)

= g(0)µαg(0)νβHµνHαβ︸ ︷︷ ︸
≡[H2]

− g(0)µαHµαH
(0)νβHνβ︸ ︷︷ ︸

≡[H]2

= [H2]− [H]2 (2.1313)

and further

U3(g(0), H) = C1[H3] + C2[H2][H] + C3[H]3

U4(g(0), H) = D1[H4] +D2[H3][H] +D3[H2]2 +D4[H2][H]2 +D5[H]4

U5(g(0), H) = F1[H5] + F2[H4][H] + F3[H3][H]2 + F4[H3][H2]

+ F5[H2]2[H] + F6[H2][H]3 + F7[H]5

... (2.1314)

The square bracket indicates a trace, with indices raised with g(0)µν :

[H] = g(0)µνHµν ,

[H2] = g(0)µνHµαg
(0)αβHνβ

... (2.1315)

The coefficients Ck are generic. Note that the dimension of ~Ck in Un(g(0), H)
whenever n > D is actually redundant by 1, not n, because of Cayley-Hamiltonian
theorem, which guarantees that existence of combination of the contractions
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(the combination that is the characteristic polynomial LTDh (H)) that annihilates

Un(g
(0)
H ). This means one of the coefficients in Un(g(0), H) whenever n > D can

be set to zero.

For convenience, we will want to reorganize the terms in the potential by rais-
ing and lowering with the full metric gµν rather than the absolute metric g(0)µν ,
so that we get a common factor of

√
−g in the action. Under this “transforma-

tion” we can write the action in terms of the new potential V (g,H) = U(g(0), H):

S =
1

2κ2

ˆ
dDx

[√
−g
(
R− 1

4
m2V (g,H)

)]
(2.1316)

where just as before:

V (g,H) =

N∑
n=2

Vn(g,H) = V2(g,H) + V3(g,H) + V4(g,H) + V5(g,H) + . . .

(2.1317)

with

V2(g(0), H) = gµαgνβ (HµνHαβ −HµαHνβ)

= gµαgνβHµνHαβ︸ ︷︷ ︸
≡〈H2〉

− gµαHµαg
νβHνβ︸ ︷︷ ︸

≡〈H〉2

= 〈H2〉 − 〈H〉2

V3(g,H) = C1〈H3〉+ C2〈H2〉〈H〉+ C3〈H〉3

V4(g,H) = D1〈H4〉+D2〈H3〉〈H〉+D3〈H2〉2 +D4〈H2〉〈H〉2 +D5〈H〉4

V5(g,H) = F1〈H5〉+ F2〈H4〉〈H〉+ F3〈H3〉〈H〉2 + F4〈H3〉〈H2〉
+ F5〈H2〉2〈H〉+ F6〈H2〉〈H〉3 + F7〈H〉5

... (2.1318)

where the angled brackets are traces with he indices raised with respect to gµν

(not g(0)µν anymore). It does not matter if we use the full or absolute metric, as
long as we correctly relate the coefficients of the two by expanding the inverse full
metric and the full determinant in powers of Hµν raise with the absolute metric.

The coefficients Ci, Di, Fi are a priori arbitrary, but will be determined by
demanding that no ghosts are present at least up to quintic order in the decou-
pling limit.
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The tensor Hµν is related to te metric tensor as:

gµν = g(0)
µν +

hµν
MPl

= ηµν +
hµν
MPl

= Hµν + ηab∂µφ
a∂νφ

b (2.1319)

where a, b = 0, 1, 2, 3, ηab = diag(−1, 1, 1, 1), and Hµν is a covariant tensor as
long as the four (Stuckelberg) fields φa transform as scalars under a change of
coordinates. After writing the Stuckelberg fields (as we did before) as

φa = (xα − πα)δaα (2.1320)

we get (as we did):

Hµν =
hµν
MPl

+ ∂µπν + ∂νπµ − ηαβ∂µπα∂νπβ . (2.1321)

By looking at this Lagrangian with a general potential we can’t really see
what the scale of the effective field theory is. This will become clear by studying
the decoupling limit of the theory.

Now, we will focus only on the helicity-2 and helicity-0 modes, but ignore
the vector mode (because it has been argued that the vector sector can be made
harmless due to U(1) gauge invariance).

We use the substitution:

πα =
∂απ

Λ3
3

, (2.1322)

so that

Hµν =
hµν
MPl

+
2

MPlm2
Πµν −

1

M2
Plm

4
Π2
µν (2.1323)

where

Πµν = ∂µ∂νπ (2.1324)

Π2
µν = ηαβΠµαΠβν (2.1325)

. . . = . . .

Note: From here on out, I will switch from using angled bracket to square
brackets, just to keep things consistent with papers.

〈·〉 ≡ [·]. (2.1326)

The rule for contraction (using the Minkowski metric) remains the same. I will
also use Ui instead of Vi, again for consistency.
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• Decoupling scale Looking at U2 ≡ V2, U3 ≡ V3 again:

U2 = [H2]− [H]2 (2.1327)

U3 = C1[H3] + C2[H2][H] + C3[H]3. (2.1328)

As we have seen in previous sections, these terms lead to terms of the form

(∂2π)3

MPlm4
∼ (∂2π)3

Λ5
5

(2.1329)

The decoupling limit is taken by fixing the scale Λ5 and send MPl → ∞ and
m→ 0.

Now, we will show eventually that for some special values of the coefficients
Ci, such interactions cancel (up to a total derivative), generalizing the FP term
to the cubic order. This procedure can be extended further to an arbitrary order.

Here’s how it’s done. At a given order the leading contributions are of the
form:

Ln ∼
(∂∂π)2

Mn−2
Pl m2(n−1)

(2.1330)

which we can check with n = 3. We can verify this by simply plugging the
expression for Hµν in terms of Π and h into the FP term.

Then, one chooses the interactions Un(H) ∼ Hn so that the above terms
combine into a total derivative. At each order, there is a unique total derivative

combination L(n)
der that can be written as

L(n)
der = −

n∑
m=1

(−1)m
(n− 1)!

(n−m)!
[Πm]L(n−m)

der (2.1331)

with L(0)
der = 1 and L(1)

der = [Π] = �π. Let’s see what happens when n =
2, 3, 4, 5, . . .

L(2)
der = [Π]2 − [Π2] (2.1332)

L(3)
der = [Π]3 − 3[Π][Π2] + 2[Π3] (2.1333)

L(4)
der = [Π]4 − 6[Π2][Π]2 + 8[Π3][Π] + 3[Π2]2 − 6[Π4] (2.1334)

L(5)
der = 0 (2.1335)

L(6)
der = 0 (2.1336)

We can readily verify by integration by parts for the n = 2, 3, 4 cases that these

are total derivatives. Further, at n ≥ 5, L(n)
der ≡ 0 identically, again because of
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integration by parts and the fact that we’re working in 4 dimensions.

By ensuring that all the leading terms (2.1330) takes the form of a total
derivative (2.1331), all interactions that arise at an energy scale lower than Λ3

disappear. With this in mind, we consider the decoupling limit with

m→ 0, MPl →∞, Λ3 = (m2MPl)
1/3 fixed. (2.1337)
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Decoupling limit of massive gravity

• Cubic order Here we explicitly compute the decoupling limit for the inter-
actions Ui then generalize the FP term to higher orders. The decoupling limit
Lagrangian of massive gravity up to cubic order reads as

L =− 1

2
hµνEαβµν hαβ + hµνX(1)

µν

− 1

4Λ5
5

(
(8c1 − 4)[Π3] + (8c2 + 4)[Π][Π2] + 8c3[Π]3

)
+

1

Λ3
3

hµνX(2)
µν .

(2.1338)

where

X(1)
µν = [Π]ηµν −Πµν , (2.1339)

and X
(2)
µν is quadratic in Π (which I won’t write out for now), and Eαβµν is the

Einstein operator, which arises from the lineared Ricci scalar (refer to linearized
gravity). We are not going to pay a lot of attention to this term. All we care
about that this point are terms with Λj scalings.

To remove the interactions at scale Λ5, we want to turn third term of the
Lagrangian into a total derivative, to which end we want to set c1, c2, c3 so that

it is a multiple of L(3)
der. And so we set

c1 = 2c3 +
1

2
, c2 = −3c3 −

1

2
. (2.1340)

It is easy to check that the third term of the Lagrangian is now 8c3L(3)
der.

After some algebra, one finds the expression for X
(2)
µν :

X(2)
µν = −(6c3 − 1)

{
(Π2

µν − [Π]Πµν)− 1

2
([Π2]− [Π]2)ηµν

}
(2.1341)

We notice that both X
(1)
µν and X

(2)
µν are conserved, i.e.,

∂µX(1)
µν = ∂µ (�πηµν − ∂µ∂νπ) = ∂ν (�π −�π) = 0 (2.1342)

and

∂µX(2)
µν ∼ ∂µ

{
(ηαβΠµαΠνβ)− 1

2
(ΠµνΠµν −Πµ

µΠν
ν)ηµν

}
= ηαβ(�∂απ)∂β∂νπ − 1

2
ηµν∂

µ∂νπ�∂νπ −
1

2
∂ν(�π)2

= ∂ν(�π)2 − 1

2
∂ν(�π)2 − 1

2
∂ν(�π)2 (2.1343)

= 0, (2.1344)
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as they should for the reparametrization invariance to be retained and the
Bianchi identity to be satisfied.

We can also check that these cubic interactions bear at most two time deriva-
tives, and are therefore free of any ghost-like pathologies.

• Quartic order At the quartic order, we find the following interactions in
the decoupling limit:

L(4) =
1

Λ6
3

hµνX(3)
µν +

1

Λ8
4

{(
3c1 − 4d1 −

1

4

)
[Π4] +

(
c2 − 4d3 +

1

4

)
[Π2]2

+(2c2 − 4d2)[Π][Π3] + (3c3 − 4d4) [Π2][Π]2 − 4d5[Π]4
}

(2.1345)

where

Λ4 = (MPlm
3)1/4 (2.1346)

and X
(3)
µν cubic in Π. We want to remove pathologies at Λ4 scale, so we want

to make this term in the Lagrangian be some multiple of L(4)
der. We find that

setting

d1 = −6d5 +
1

16
(24c3 + 5) (2.1347)

d2 = 8d5 −
1

4
(6c3 + 1) (2.1348)

d3 = 3d5 −
1

16
(12c3 + 1) (2.1349)

d4 = −6d5 +
3

4
c3. (2.1350)

Substituting these coefficients in X
(3)
µν we obtain:

X(3)
µν = (c3 + 8d5)

{
6π3

µν − 6[Π]Π2
µν + 3([Π]2 − [Π2])Πµν

−([Π]3 − 3[Π][Π2] + 2[Π3])ηµν
}

(2.1351)

The reader can check that ∂µX
(3)
µν = 0, i.e. X

(3)
µν is conserved, as it should

be for the reparameterization invariance to be present and the Bianchi identity
to be automatically satisfied.

For i, j space-like indices and 0 time-like index:

• X(3)
ij has at most two time derivatives,

• X(3)
0i has at most one time derivative,

• X(3)
00 has no time derivatives.

These properties ensure that no ghost-like pathology arise at the quartic level
in the decoupling limit as long as the interactions come in with the generalized
FP structure set by the coefficients.



374 PART 2. QUANTUM & CLASSICAL FIELD THEORIES

• Quintic order At the quintic order, the pathological term scales as

LΠ5 ∼ (∂∂π)5

M3
Plm

8
. (2.1352)

Following the previous procedure, we can cancel this scaling by picking the
appropriate coefficients f1 to f6:

f1 =
7

32
+

9

8
c3 − 6d5 + 24f7 (2.1353)

f2 = − 5

32
− 15

16
c3 + 6d5 − 30f7 (2.1354)

f3 =
3

8
c3 − 5d5 + 20f7 (2.1355)

f4 = − 1

16
− 3

4
c3 + 5d5 − 20f7 (2.1356)

f5 =
3

16
c3 − 3d5 + 15f7 (2.1357)

f6 = d5 − 10f7. (2.1358)

Since L(5)
der vanishes identically, any limiting Lagrangian of the form L(n) ∼

f(Π)L(5)
der, where f is an analytic function, gives no dangerous interactions and

can be used at higher orders.

With the coefficients above, the only quintic interaction in the decoupling
limit then is

L(5) =
1

Λ9
3

hµνX(4)
µν , (2.1359)

where (the reader can check with some algebra)

X(4)
µν ∼ 24(Π4

µν −ΠΠ3
µν) + 12L(2)

derΠ
2
µν − 4L(3)

derΠµν + L(4)
der ≡= 0. (2.1360)

And so the decoupling limit is well-behaved up to the quintic order, and the
number of free parameters at higher order suggests that one can always make
appropriate choices to avoid any host mode from appearing in the entire decou-
pling limit.

We might argue that the absence of the ghost up to the quintic order rep-
resents represents no proof of the stability of the theory even in the decoupling
limit, since the ghost could be pushed to the next order in interactions. It is
also not a proof of the consistency of the full theory, as was discussed in section
1, since the ghost may appear away from the decoupling limit. The arguments
concerning these two points, respectively, are:

• Beyond the quintic order, the number of free coefficients in the interac-
tions seems sufficient to eliminate pathological contributions of the form
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(∂∂π)5s. Furthermore, beyond the quartic order all conserved tensors

of the form X
(n)
µν ∼ (∂∂π)nµν vanish identically, and cannot lead to any

ghost-like pathologies in the mixing hµνX
(n)
µν between the helicity-0 and 2

modes.

• The ghost may exist in a given order away from the decoupling limit (say
at the quartic or higher order), but disappear in the decoupling limit.
If so, then, the ghost should come with a mass greater than Λ3. Then,
the theory would be acceptable as an effective theory below the Λ3 scale.
However, at scales above Λ3, one would need to specify an infinite number
of terms in the full nonlinear theory in order to conclude whether or not
the ghost is removed by the resummation of these terms.
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General formulation for an arbitrary order

In this section formulate the procedures we just saw in a unified way, from
which we can see how thing might generalize to higher orders. For this, in th
Nth order expansion (with N ≤ 5 so far), we introduce the notations:

ŪN (g,H) ≡ −M
2
Plm

2

4

N∑
i=2

√
−gUi(g,H) (2.1361)

where the tensor Hµν is defined as before:

Hµν =
hµν
MPl

+
2

MPlm2
Πµν −

1

M2
Plm

4
Π2
µν . (2.1362)

If the Nth order expression for the function ŪN satisfies

ŪN (g,H)

∣∣∣∣
hµν=0,Aµ=0

= total derivative, (2.1363)

where Aµ denotes the helicity-1 field, then the decoupling limit Lagrangian for
the helicity-0 and helicity-2 interactions ,up to a total derivative, takes the form:

Llim
Λ3

= −1

2
hµνEαβµν hαβ + hµνX̄(N)

µν (π), (2.1364)

with the conserved tensor X̄
(N)
µν :

X̄(N)
µν (π) =

δŪN (g,H)

δhµν

∣∣∣∣
hµν=0,Aµ=0

. (2.1365)

To see why this makes sense, the reader can go back to the examples in the
previous sections. This is left as an exercise to the reader to verify.

The Lagrangian above gives rise to equations of motion with no more than
two time derivatives and appropriate constraints for N ≤ 5. It seems reasonable
to conjecture that this will also be the case for N > 5.

At a given order n in the expansion, there should be enough freedom to
set the polynomial Un(g,H) appropriately, so as to ensure that the leading
interactions Ln ∼ (∂∂π)n/ . . . enter as a total derivative of the recursive formula

we have seen, or as f(Π)L(m)
der for m ≥ 5 where f is an arbitrary function of Πµν .

The resulting leading contribution is then of the form

L(n) =
β

Λ
(n−1)
3

hµνX(n)
µν , (2.1366)

where β depends on the coefficients ci, di, etc, and X
(n)
µν ∼ Πn

µν must be con-
served as a straightforward consequence of reparameterization invariance in the
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decoupling limit.

At each order n, there is a unique combination of Πn
µν ’s which is conserved.

This combination is of the form

X(n)
µν ∝

δL(n+1)
der

δΠµν
. (2.1367)

In 4 dimensions, L(n5)
der ≡ 0. This implies that there is a limit on the number

of possible interactions in the decoupling limit: X
(n)
µν ≡ 0 for any n ≥ 4. This

suggests that all theories of massive gravity (with the scale Λ3) can only have
at most quartic couplings between the helicity-0 and 2 modes in the decoupling
limit.

Note: A more careful treatment of how the conserved tensorsX
(n)
µν arise/their

constructions is given in the section on the paper by Chkareuli and Pirtskhalava
in the Λ3 theory section.
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2.8.2 Resummation of Massive Gravity

In this paper, dRGT construct four-dimensional covariant non-linear theories of
massive gravity which are ghost-free in the decoupling limit to all orders. These
theories resum explicitly all the nonlinear terms of an effective field theory of
massive gravity.

Introduction

In the last paper we have seen how the coefficients of the effective field theory
can be chosen o that the decoupling limit Lagrangian is ghost-free. This involves
(1) choosing the appropriate coefficients order-by-order, and an algorithm was
set for this procedure to an arbitrary order, and (2) once the appropriate co-
efficients are chosen in the effective Lagrangian, in the decoupling limit only a
few terms vanish identically. The surviving terms are unique as their structure
is fixed by symmetries

This paper builds on those two points and beyond. We will see how (1)
we can construct Lagrangians tat automatically produce the appropriate coef-
ficients once expanded in powers of the fields (hence give rise to theories that
are ghost-free automatically to all orders in the decoupling limit), and (2) we
can remove the Boulware-Deser ghost from the theories. We probably will not
worry too much about the second point.
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Formalism

As before, we define the tensor Hµν :

gµν = ηµν + hµν = Hµν + ηab∂µφ
a∂νφ

b (2.1368)

where φa are the Stuckelberg fields, which transform as scalars. The helicity-0
mode π of the graviton can be extracted by expressing φa = (xa − ηaµ∂µπ) so
that we have

Hµν = hµν + 2Πµν − ηαβΠµαΠνβ , (2.1369)

where Πµν is defined as before.

Now, we define the quantity:

Kµν (g,H) = δµν −
√
δµν −Hµ

ν = −
∞∑
n=1

dn(Hn)µν (2.1370)

where

dn =
(2n)!

(1− 2n)(n!)24n
. (2.1371)

Here Hµ
ν = gµαHαν and (Hn)µν = Hµ

α1
. . . H

αn−1
ν . All contractions are made

using the metric tensor gµν . The tensor

Kµν = gµαKαν (2.1372)

is defined in such a way that

Kµν(g,H)

∣∣∣∣
hµν=0

≡ Πµν . (2.1373)

The verification is left to the reader.

We use the square brackets [·] to represent the trace of a tensor contracted
by the Minkowski metric ηµν , while 〈·〉 by the physical metric gµν .

We are first interested in the decoupling limit. For that, we define the
canonically normalized variables:

π̂ = Λ3
3π ≡ (m2MPl)π (2.1374)

ĥµν = MPlhµν . (2.1375)

The decoupling limit is obtained by taking

MPl →∞, m→ 0, π̂, ĥµν ,Λ3 fixed. (2.1376)

First, we construct an explicit example of a non-linear theory that bears no
ghosts in the decoupling limit, and then give a general formulation and show
the absence of the BD ghost beyond the decoupling limit in quartic order.
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Massive Gravity

The consistency of the Fierz-Pauli combination relies on the fact that the La-
grangian

L(2)
der = [Π]2 − [Π2] (2.1377)

is a total derivative. To ensure that no ghost appears in the decoupling limit,

it is sufficient to extend L(2)
der covariantly away from hµν = 0, i.e. replace [Π]2

and [Π2] by 〈K〉 and 〈K2〉 respectively, so that the total Lagrangian reads as

L =
M2
Pl

2

√
−g
(
R− m2

4
U(g,H)

)
(2.1378)

where now

U(g,H) = −4
(
〈K〉2 − 〈K2〉

)
= −4

∑
n≥1

dn〈Hn〉

2

− 8
∑
n≥2

dn〈Hn〉. (2.1379)

The reader verifies the second equality.

To quintic order, this expression reads

U(g,H) =
(
〈H2〉 − 〈H〉2

)
− 1

2

(
〈H〉〈H2〉 − 〈H3〉

)
− 1

16

(
〈H2〉2 + 4〈H〉〈H3〉 − 5〈H4〉

)
− 1

32

(
2〈H2〉〈H3〉+ 5〈H〉〈H4〉 − 7〈H5〉

)
+ . . . (2.1380)

If we pick c3 = d5 = f7 = 0 for (2.1353), we obtain the same result as here.



2.8. DGRT THEORY 381

Decoupling limit

It is not hard to see that the leading contribution to the decoupling limit

√
−gU(g,H)

∣∣∣∣
hµν=0

= −4
(
(�π)2 − (∂α∂βπ)2

)
(2.1381)

is a total derivative (by integration by parts). The resulting interaction La-
grangian in the decoupling limit is then given by (as before):

Lint = ĥµνX̄
µν (2.1382)

where

X̄µν = −M
2
Plm

2

8

δ

δhµν

(√
−gU(g,H)

) ∣∣∣∣
hµν=0

. (2.1383)

Using the identities (which the reader will verify)

δK(g,H)

δhµν
=

1

2
(gµν −Kµν) (2.1384)

δ〈K(g,H)2〉
δhµν

= Hµν −Kµν , (2.1385)

the tensor X̄µν simplifies to

X̄µν =
1

2
Λ3

3

[
Πηµν −Πµν + Π2

µν −ΠΠµν +
1

2

(
Π2 −Π2

αβ

)
ηµν

]
. (2.1386)

The reader verifies that this tensor is conserved and gives rise to at most second
order derivative terms in the equations of motion.

The rest of this paper discusses the general formulation, the Boulware-Deser
ghost, etc. While I don’t think we should worry too much about these topics, I
think what we should take away from this section is how the scale Λ3 arises as
a result of the resummation of gravity/setting coefficients to get cancellations.
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2.9 The Λ3 theory

In this section we look at Hinterbichler’s exposition of the Λ3 theory. We have
seen that the Λ5 theory contains undesirable features, including a ghost instabi-
ilty and quantum corrections that become important before classical nonlinear-
ities can restore continuity with GR. In this section, we consider tthe higher
order potential terms and see if they alleviate the problems. We will see (more
qualitatively than we did in the previous sections) that there is a special choice
of potential that cures all these problems.

This choice has the advantage of raising the cutoff from Λ5 = (MPlm
4)1/5

to Λ3 = (MPlm
2)1/3, which is parametrically higher than Λ5.

2.9.1 Tuning interactions to raise the cutoff

Recall that the term suppressed by the smallest scale is the cubic scalar term,
which is suppressed by the scale Λ5:

∼ (∂∂φ̂)3

MPlm4
. (2.1387)

The next highest scale is Λ4 = (MPlm
3)1/4, carried by a quartic scalar interac-

tion, and a cubic term with a single vector and two scalars,

∼ (∂∂φ̂)4

M2
Plm

6
, ∼ ∂Â(∂∂φ̂)2

MPlm3
. (2.1388)

The next highest scalar is a quintic scalar, and so on. The only terms which
carry a scalar less than Λ3 = (MPlm

2)1/3 are terms with only scalars (∂∂φ̂)n,

and terms with one vector and the rest scalars ∂Â(∂∂φ̂)n.

The scale Λ3 is carried only by the following terms:

∼ ĥ(∂2φ̂)n

Mn−1
Pl m2(n−1)

, ∼ (∂Â)2(∂2φ̂)n

Mn
Plm

2n
. (2.1389)

We can arrange to cancel all of the scalar self-couplings by appropriately choos-
ing the coefficients of the higher order terms. Since we are only interested in
the scalar self-interactions, we can just ignore the vector fields, by making the
replacement:

Hµν →2∂µ∂νφ− ∂µ∂αφ∂ν∂αφ
= 2Πµν −Π2

µν

(2.1390)

As we have seen, there is at each other in φ a single polynomial in Πµν which
is a total derivative. By choosing the correct coefficients (as we have seen), we
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can arrange for the φ terms to appear in these total derivative combinations.

We have also seen how these coefficients are determined, in terms of c3, d5, f7,
each associated with orders 3,4, and 5, respectively. Note that at order 5 and
above (or D + 1 and above if we were doing this in D dimensions), there is
one linear combination of all the terms, the characteristic polynomial of h, that
vanishes identically.

The paper goes on more about scaling terms and the decoupling limit, so
I won’t worry about that any further. Now, we will skip the appearance of
Galileon and the absence of ghosts, and move directly to the Λ3 Vainshtein
radius and Vainshtein mechanism in the Λ3 theory. More details related to
the Lagrangian will be covered when we study the Vainshtein mechanism more
carefully.
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2.9.2 The Vainshtein radius

We now derive the scale at which the linear expansion breaks down around
heavy point sources in the Λ3 theory. To linear order around a central source
of mass M , the fields still have their usual Coulomb form:

φ̂, ĥ ∼ M

MPl

1

r
. (2.1391)

The nonlinear terms are suppressed relative to the linear term by a different
factor than in the Λ5 theory (as to how these appear, please refer to the section
The appearance of Galileons and the absence of ghosts):

∂2φ̂

Λ3
3

∼ M

MP

1

Λ3
3r

3
. (2.1392)

Nonlinearities become important when this factor becomes of the order of 1,
which happens at the radius

r
(3)
V ∼

(
M

MP

)1/3
1

Λ3
∼
(
GM

m2

)1/3

(2.1393)

This is parametrically larger than the Vainshtein radius found in the Λ5 theory.

It is important that the decoupling limit is ghost-free. To see what could
go wrong if there were a ghost, we expand around some spherical background
φ̂ = Φ(r) + ϕ and similarly for hµν . It turns out that there are ghosts with
r-dependent masses:

m2
ghost(r) ∼

Λ3
3

Φ
,

Λ6
3

Φ∂2Φ
. (2.1394)

Now, if Φ ∼ (M/MP )(1/r), we have

m2
ghost(r) ∼

(
MP

M

)
Λ3

3r,

(
MP

M

)2

Λ6
3r

4 (2.1395)

The ghost mass sinks below the cutoff Λ3, at the radius

r
(3)
ghost ∼

M

MP

1

Λ3
,

√
M

MP

1

Λ3
.. (2.1396)

As happened in the Λ5 theory, these radii are larger than the Vainshtein radius.
This is a fatal instability which renders the whole nonlinear region inaccessible,
unless we lower the cutoff of the effective theory so that the ghost stays above

it, in which case unknown uantum corrections would also kick in at r
(3)
ghost,

swamping the entire nonlinear Vainshtein region.
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2.9.3 The Vainshtein mechanism in the Λ3 theory

In the Λ5 theory, the key to the resolution of the vDVZ discontinuity and re-
covery of GR was the activation of the BD ghost. In the Λ3 theory, there is no
ghost, so there must be some other method by which the scalar screens itself
to restore continuity with GR. This method uses nonlinearities to enlarge the
kinetic terms of the scalar, rendering its couplings small.

We consider a Lagrangian obtained from this formalism. This Lagrangian is
the same Lagrangian studied by Nicolis & Rattazzi (2004) in the DGP context.
I won’t worry too much about how this Lagrangian is obtained (please refer to
Hinterbichler’s for details), but in any case here it is:

S =

ˆ
d4x − 3(∂φ̂)2 − 1

Λ3
3

(∂φ̂)2�φ̂+
1

M4
φ̂T. (2.1397)

Verifying/obtaining this Lagrangian from Hinterbichler’s is left as an exercise
for the reader.

Consider a spherically symmetric solution φ̂(r) around a point source of
mass M,T ∼ Mδ3(r). The solution transitions between linear and nonlinear

regime at the Vainshtein radius r
(3)
V = (M/MP )1/3(1/Λ3). For r � r

(3)
V the

kinetic term dominates over the cubic term and we get the usual Coulombic

1/r dependence. When r � r
(3)
V , the cubic term is dominant, and we get a

nonlinear
√
r potential. The reader can check (since this is very similar to the

similar section in the Λ5 discussion) that

φ̂(r) ∼


Λ3

3r
(3)2
V

(
r

r
(3)
V

)1/2

, r � r
(3)
V ,

Λ3
3r

(3)2
V

(
r
(3)
V

r

)
, r � r

(3)
V .

(2.1398)

To see how the Vainshtein mechanism might work we can take the ratio of Fφ
(fifth force due to the scalar) over FNewton (ordinary Newtonian gravity):

Fφ
FNewton

=
φ̂′(r)/MP

M/M2
P r

2
∼


(

r

r
(3)
V

)3/2

, r � r
(3)
V

1, r � r
(3)
V

. (2.1399)

For sanity, let’s check this. When r � r
(3)
V :

φ̂′(r)

MP
=

1

2
Λ3

3r
(3)2
V

(
r

r
(3)
V

)−1/2(
1

r
(3)
V

)
=

1

2
Λ3

3r
(3)
V

(
r

r
(3)
V

)−1/2

. (2.1400)
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And so in this regime,

φ̂′(r)/MP

M/M2
P r

2
=

1

2
Λ3

3r
(3)
V

(
r

r
(3)
V

)−1/2
r2M2

P

M

=
1

2

(
M

MP

)
1

r
(3)
V

r
(3)
V

(
r

r
(3)
V

)−1/2
r2M2

P

M

∼

(
r

r
(3)
V

)1/2

. (2.1401)

When r � r
(3)
V , φ̂ has Coulombic form so the ratio is on the order of constantly

1. From here, we say that there is a gravitational strength fifth force at dis-
tances much farther than the Vainshtein radius, but the force is suppressed at
distances smaller than the Vainshtein radius.

This suppression extends to all scalar interactions in te presence of the
source. To see how this comes about, we study perturbations around a given
background solution Φ(x). Expanding

φ̂ = Φ + ϕ, T = T0 + δT, (2.1402)

we have after using the identity:

(∂µϕ)�ϕ = ∂ν

[
∂νϕ∂µϕ− 1

2
ηµν(∂ϕ)2

]
(2.1403)

on the quadratic parts and integrating by parts:

Sϕ =

ˆ
d4x − 3(∂ϕ)2 +

2

Λ3
3

(∂µ∂νΦ− ηµν�Φ) ∂µϕ∂νϕ− 1

Λ3
3

(∂ϕ)2�ϕ+
1

M4
ϕδT.

(2.1404)

Expanding the cubic term (the one that involves both ϕ and Φ) yields new
contributions to the kinetic terms, with coefficients that depend on the back-
ground. Unlike the Λ5 Lagrangian, however, no higher derivative kinetic terms
are generated, so no extra degrees of freedom are propagated on any background.

Around the solution

φ̂(r) = Φ + ϕ ∼


Λ3

3r
(3)2
V

(
r

r
(3)
V

)1/2

, r � r
(3)
V ,

Λ3
3r

(3)2
V

(
r
(3)
V

r

)
, r � r

(3)
V ,

(2.1405)

the coefficients of the kinetic term in Sϕ are on the order of 1 at r � r
(3)
V but are

on the order of (r
(3)
V /r)3/2 when r � r

(3)
V . So, the kinetic term is enhanced at
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distances below the Vainshtein radius, which means that after canonical normal-
ization the couplings of the fluctuations to the source are reduced. The fluctua-
tions ϕ effectively decouple near a large source, so the scalar force between two
small test particles in the presence of a large source is reduced, and continuity
with GR is restored. A more careful study of the Vainshtein screening in the
Λ3 theory, including numerical solutions of the decoupling limit action can be
found in Chkareuli - Pirtskhalava (2011), which we will attempt to investigate
in the next section.
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2.9.4 Vainshtein Mechanism in Λ3 Theories (Chkareuli,
Pirtskhalava, 2011)

In this subsection we study the Vainshtein mechanism in the Λ3 theory more
carefully, following Chkareuli, Pirtskhalava, 2011. This paper explores the space
of spherically symmetric, static solution in the decoupling limit of a class of non-
linear covariant extension of FP massive gravity obtained by the resummation
scheme. In general, several such solutions with various asymptotic limits exist.
The paper looks at their approximate short and long-distance behaviour and
use numerical analysis to match them at the Vainshtein radius, r∗.

We will see that for broad range of parameters, the theory possesses the
Vainshtein screening mechanism. We will see more explicitly how the Vain-
shtein mechanism works in the Λ3 regime.

Introduction & Summary

FP first introduced a free mass term for a free Minkowskian graviton. Breaking
the gauge invariance of GR, the model propagates 5 degrees of freedom of a
4-dimensional spin-2 particle with a nonzero mass m. However, FP gravity
experiences the vDVZ discontinuity. Explicitly, in the m → 0 limit, the FP
Lagrangian describes the helicity-0 mode, coupled with gravitational strength
to the trace of the external energy-momentum source:

Lm→0 ⊃ −
1

2
(∂π)2 +

1

MP
πT (2.1406)

The reader should find the Lagrangian above somewhat familiar since we spent
a large chunk of time on the FP theory and deriving the vDVZ discontinuity.

As we have seen the vDVZ discontinuity is troublesome. The nonlinear the-
ory of the helicity-0 mode is also problematic due to the appearance of the
Boulware-Deser ghost (found via Hamiltonian analysis). The ghost manifests
itself in the loss of the Hamiltonian constraint, leading to propagation of an
additional, sixth ghost-like degree of freedom on top of the five of the linear
Fierz-Pauli theory.

The BD ghost can also be found via the Stückelberg treatment of the theory.
In this approach, one restores the broken gauge invariance of massive gravity
by introducing four scalars, encoding the longitudinal degrees of freedom of a
massive graviton at high energies. The high-energy regime is then captured by
going to the decoupling limit, in which only the operators suppressed by the
lowest scale are retained. Schematically, the decoupling limit lagrangian for the
helicity-0 graviton on Minkowski background can be written in the following

https://arxiv.org/pdf/1105.1783.pdf
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form for a generic extension of the FP model:

Lm→0 ⊃ −
1

2
(∂π)2 +

1

Λ5
5

(∂2π)3 +
1

MP
πT (2.1407)

The reader should find this Lagrangian very familiar!

Here, Λ5 = (MPm
4)1/5 is the scale which is held finite (or fixed, however you

want) in the decoupling limit. The cubic self-interaction of the helicity-0 mode
screens its contribution to the gravitational potential of a source of mass M
below the Vainshtein radius r∗ = (M/MP )1/5(1/Λ5) = (M/M2

Pm
4)1/5. Due to

this interaction, however, the equation of motion for the scalar graviton is higher
than quadratic in time derivatives, leading to the ill-posedness of the Cauchy
problem and the propagation of an extra scalar degree of freedom, which is the
BD ghost.

dRGT theories is a class of nonlinear generalizations of FP massive grav-
ity which bypass these issues in the decoupling limit. By appropriately tuning
the graviton potential, the problematic (∂2π)-dependent operator terms cancel
order-by-order in nonlinearity. Further, the infinite number of contributions
in the potential are resummed into a two-parameter class of models, and the
ghost-free property of the full theory has been proven up to and including the
quartic order in nonlinearity in the Hamiltonian formalism.

This paper explores the space of spherically symmetric, static solutions in
the Minkowski-space decoupling limit of the class of ghost-free extensions of the
FP model (i.e., dRGT theories). For short, we call these models Λ3-theories.
We will study the Vainshtein mechanism that arises from these theories.
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Formalism & Technical Analysis

Our starting point is the two-parameter decoupling limit action of the ghost-free
class of generalizations of Fierz-Pauli theory:

L = −1

2
hµνEαβµν hαβ + hµνX(1)

µν +
α

Λ3
3

hµνX(2)
µν +

β

Λ6
3

hµνX(3)
µν +

1

MP
hµνTµν

(2.1408)

This Lagrangian (or some variants of it) can be found in Hinterbichler (Eq.
8.10 in VIIA), and other papers too. In the dGRT papers, we have seen cubic,
quartic, and quintic versions of this Lagrangian.

The first term is the usual GR kinetic term for the tensor mode, which comes
from the Ricci scalar part of the action. α, β are two arbitrary constants and
Λ3 = (MPm

2)1/3 is the scale that is held fixed in the decoupling limit. The
term Eαβµν hαβ ≡ (Eh)µν is the linearized Einstein operator acting on the metric
perturbation:

Eαβµν hαβ = −1

2

(
�hµν − ∂µ∂αhαν − ∂ν∂αhαµ + ∂µ∂νh− ηµν�h+ ηµν∂α∂βh

αβ
)

(2.1409)

which we have seen multiple times (even as early as in Sean Carroll’s Space-

time. . . ). What are these X
(n)
µν ’s? We have seen them in the section on the

dRGT papers, but they weren’t given an explicit description and seemed to
have arrived out of nowhere. In the following paragraphs we will look at how

these X
(n)
µν are generated.

Basically, these X
(n)
µν ’s are identically conserved symmetric tensors that de-

pend on second derivatives of the helicity-0 field, Πµν = ∂µ∂νπ. These arise
naturally from the Stückelberg treatment of the Lagrangian and are dependent
on Π in the following way (Appendix by Hinterbichler):

Let us start from the beginning. Define the matrix of second derivatives:

Πµν = ∂µ∂νφ. (2.1410)

We already discussed the fact the every order in φ, there is a unique (up
to an overall constant) contraction of Π’s that reduces to a total derivative
(the proof of this is similar to the one found in Nicholis, Rattazzi, and
Trincherini 2008 paper where they show the uniqueness of the Galileons -
we won’t worry too much about this at this point). These combinations are
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(again, as we’ve seen before):

LTD
1 (Π) = [Π]

LTD
2 (Π) = [Π]2 − [Π2]

LTD
3 (Π) = [Π]3 − 3[Π][Π2] + 2[Π3]

LTD
4 (Π) = [Π]4 − 6[Π2][Π]2 + 8[Π3][Π] + 3[Π2]2 − 6[Π4]

... (2.1411)

where the brackets are traces, and LTD
2 is just the FP term. The higher

order terms can be thought of as higher order generalizations of it. They
are characteristic polynomials, terms in the expansion of the determinant
in powers of H,

det(1 + Π) = 1 + LTD
1 (Π) +

1

2
LTD

2 (Π) +
1

3!
LTD

3 (Π) +
1

4!
LTD

4 (Π) + . . .

(2.1412)

The term LTD
n (Π) vanishes identically whenever n > D with D being the

spacetime dimension. This makes sense in that with, say D = 4, the de-
terminant shouldn’t contain any term of order 5 or higher. So there are
only D nontrivial such combinations: those with n = 1, . . . , D. The general
formula for these LTD

n is

LTD
n (Π) =

∑
p

(−1)pηµ1p(ν1)ηµ2p(ν2) . . . ηµnp(νn) × (Πµ1ν1 . . .Πµnνn)

(2.1413)

with the sum being over all permutations of the ν indices, with (−1)p the
sign of the permutation. This satisfies the recursion relation (which we have
seen before)

LTD
n (Π) = −

n∑
m=1

(−1)m
(n− 1)!

(n−m)!
[Πm]LTD

n−m(Π) (2.1414)

with LTD
0 = 1.

The tensors X
(n)
µν that arise from the Stückelberg treatment of the La-

grangian obey the following rule:

X(n)
µν =

1

n+ 1

δ

δΠµν
LTD
n+1(Π) (2.1415)

This is a pretty good rule, so we turn it into a definition! This simplifies
calculations in the sense that we don’t make to apply the Stückelberg to
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a Lagrangian every time we want to generate a higher order term. Under

this definition, the tensors X
(n)
µν are

X(0)
µν = ηµν

X(1)
µν = [Π]ηµν −Πµν

X(2)
µν = ([Π]2 − [Π2])ηµν − 2[Π]Πµν + 2Π2

µν

X(3)
µν = ([Π]3 − 3[Π][Π2] + 2[Π3])ηµν

− 3([Π]2 − [Π2])Πµν + 6[Π]Π2
µν − 6Π3

µν

... (2.1416)

to name a few. The reader can (and should!) go back the section where

we discussed the dRGT papers and check it that these X
(n)
µν match. It’s

easy to be confused about whether these X
(n)
µν are constructed or arise

from the calculations, so I’ll say it again here: while it looks like these
tensors are constructed by the formula given above, they actually arise
from the Stückelberg treatment of the Lagrangians as “functions” of Π

and ηµν . We call these functions X
(n)
µν , and the pattern in which these

X
(n)
µν is captured in the formula given above. Now, since we don’t want to

Stückelberg every time we want to generate a higher order term, we call the
pattern we discovered earlier the definition of these tensors. This allows us
to bypass the tedious calculations and obtain the (correct) tensors with ease.

With that out of the way, we see more pattern in the way the X
(n)
µν ,

which the next formula captures:

X(n)
µν =

n∑
m=0

(−1)m
n!

(n−m)!
Πm
µνLTD

n−m(Π) (2.1417)

The suspicious reader is welcome to check this also gives the same X
(n)
µν .

So, we have two equivalent definitions of the tensors X
(n)
µν :

X(n)
µν =

1

n+ 1

δ

δΠµν
LTD
n+1(Π) =

n∑
m=0

(−1)m
n!

(n−m)!
Πm
µνLTD

n−m(Π)

(2.1418)

Further, since we have a recursion relation for the LTD
n , we also have a

recursion relation for these X
(n)
µν ’s:

X(n)
µν = −nΠ α

µ X(n−1)
αν + ΠαβX

(n−1)
αβ ηµν (2.1419)
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Since LTD
n vanishes for n > D, the X

(n)
µν vanishes for n ≤ D. This is easy

to verify.

Next, we have the properties of these tensors:

• They are symmetric and identically conserved and are the only com-
binations of Πµν at each order with these properties:

∂µX(n)
µν = 0 ∀n. (2.1420)

• For spatial indices i, j and time index 0,

– X
(n)
ij has at most two time derivatives ,

– X
(n)
0i has at most one time derivative,

– X
(n)
00 has no time derivative.

Finally, we have the following relations involving the massless kinetic
Einstein linearized operator Eαβµν :

E αβ
µν (φηαβ) = −(D − 2)X(1)

µν (2.1421)

and

E αβ
µν (∂αφ∂βφ) = X(2)

µν (2.1422)

Note: these two properties complete the picture. In some sense, these

properties “explain” how the tensors X
(1)
µν arise after the conformal transfor-

mation hµν → hµν + ηµνφ that we used during the Stückelberg treatment.
But of course, this line of reasoning is kind of backwards because these

properties exist because we defined X
(n)
µν based on how they arise in the first

place. Regardless, this fortifies our understanding of how the Lagrangians
arise.

Okay, now back to the 2011 paper by Chkareuli & Pirtskhalava. Varying the
Lagrangian

L = −1

2
hµνEαβµν hαβ + hµνX(1)

µν +
α

Λ3
3

hµνX(2)
µν +

β

Λ6
3

hµνX(3)
µν +

1

MP
hµνTµν

(2.1423)

with respect to the hµν gives

Eαβµν hαβ −X(1)
µν −

α

Λ3
3

X(2)
µν −

β

Λ6
3

X(3)
µν =

1

MP
Tµν (2.1424)
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The most general spherically symmetric ansatz for the metric perturbation is
given as

h00 = a(r), hij = f(r)δij + b(r)ninj , (2.1425)

where a, b, f are general functions of the radial variable r, while ni denotes
the unit vector in the radial direction. By the diffeomorphism invariance of
the original Lagrangian we can set b(r) = 0. Plugging this ansatz into the 00
equation above we find

1

r2

(
−r2f ′ + r2π′ − α

Λ3
3

r(π′)2 − 2β

Λ6
3

(π′)3

)′
=

1

MP
T00 (2.1426)

where primes denote r-derivatives. The spatial components reduce to the fol-
lowing equations: (

rf ′ − ra′ − 2rπ′ +
α

Λ3
3

(π′)2

)′
= 0 (2.1427)(

f ′

r
− a′

r
− 2π′

r
+

α

Λ3
3

(π′)2

r2

)′
= 0 (2.1428)

Verification (which shouldn’t be hard) is left to the reader. These equations are
consistent only if the integration constants vanish, so we have a single equation:

rf ′ − ra′ − 2rπ′ +
α

Λ3
3

(π′)2 = 0 (2.1429)

Finally, we want the equation of motion for the helicity-0 field π. To get

this, we recall the dependence of X
(n)
µν on Π:

X(0)
µν = ηµν

X(1)
µν = [Π]ηµν −Πµν

X(2)
µν = ([Π]2 − [Π2])ηµν − 2[Π]Πµν + 2Π2

µν

X(3)
µν = ([Π]3 − 3[Π][Π2] + 2[Π3])ηµν

− 3([Π]2 − [Π2])Πµν + 6[Π]Π2
µν − 6Π3

µν

... (2.1430)

And thus from

L = −1

2
hµνEαβµν hαβ + hµνX(1)

µν +
α

Λ3
3

hµνX(2)
µν +

β

Λ6
3

hµνX(3)
µν +

1

MP
hµνTµν

(2.1431)
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the equation of motion for the scalar mode π can be found. First we plug in the

formulas for X
(n)
µν into this Lagrangian:

L =− 1

2
hµνEαβµν hαβ + hµν([Π]ηµν −Πµν)

+
α

Λ3
3

hµν(([Π]2 − [Π2])ηµν − 2[Π]Πµν + 2Π2
µν)

+
β

Λ6
3

hµν(([Π]3 − 3[Π][Π2] + 2[Π3])ηµν − 3([Π]2 − [Π2])Πµν + 6[Π]Π2
µν − 6Π3

µν)

+
1

MP
hµνTµν . (2.1432)

Next, vary L with respect to π. We have to do this carefully, because Πµν =
∂µ∂νπ. It’s easy to see that the first and last term from the equation above are
constants in the eyes of π, so they don’t appear in δL/δπ. Now we just want to
make sure we take δπ correctly. This will take some work, but the end result is

∂α∂βh
µν

(
1

2
ε αρσ
µ ε β

ν ρσ

)
+

α

Λ3
3

ε αρσ
µ ε βγ

ν σΠργ + 3
β

Λ6
3

ε αρσ
µ ε βγδ

ν ΠργΠσδ = 0

(2.1433)

where these ε...... are Levi-Civita symbols/tensors. The reader can qualitatively
check the first term and see that this result makes sense. Levi-Civita identities
are nasty, so I don’t recommend checking the whole thing.

Now this equation can be rewritten in terms of the linearized curvature
invariants in the following way (again, the reader can take this for what it is;
verification is hard):

R(1) +
2α

Λ3
3

G(1)µνΠµν +
6β

Λ6
3

(gµνG(1)αβ

− gµβG(1)αν + gαβR(1)µν − gανR(1)µβ −R(1)µανβ)ΠµνΠαβ = 0 (2.1434)

where R
(1)
µν , G

(1)
µν ≡ Eαβµν hαβ and R

(1)
µναβ denote respectively the linearized Ricci,

Einstein, and Riemann tensors composed of the helicity-2 field hµν . The pres-
ence of the Riemann tensor here makes it impossible in general to algebraically
reduce the system of equations of motion to a set of pure π and pure hµν equa-
tions, whereas for β = 0 this is possible. In any case, plugging the ansatz above
into this equation yields:(

2r2f ′ − r2a′ + 2
α

Λ3
3

rπ′(a′ − f ′) + 6
β

Λ6
3

a′(π′)2

)′
= 0 (2.1435)

Now we explore the space of spherically symmetric, static solutions to the sys-
tem of the boxed equations. We are interested in a spherical source of size R,
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constant density ρ and negligible pressure, so that the only non-vanishing com-
ponent of the energy-momentum tensor is T00 = ρθ(R). Integrating the boxed
equations subject to the boundary conditions

a(0) = f(0) = π(0) = 0, (2.1436)

one reduces the system to the following set of equations for the radial derivatives
of the fields,

a′ = −M(r)

MP r2
− Λ3

3rλ(1 + 2βλ2)

f ′ = −M(r)

MP r2
+ Λ3

3rλ(1 + 2βλ2)

3λ− 6αλ2 + (2α2 − 8β)λ3 − 12β2λ5 =

{
(r∗/r)

3(1 + 6βλ2), outside source

(r∗/R)3(1 + 6βλ2), inside source

where M(r) denotes the mass of the source within a sphere of radius r, and

λ ≡ π′

Λ3
3r
, r∗ =

(
M

M2
Pm

2

)1/3

=

(
M

MP

)1/3
1

Λ3
. (2.1437)
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Solutions

We first concentrate on solutions outside the source. The helicity-0 equation
(the last equation) is quintic in λ, so it cannot be solved exactly and in general
we should expect multiple solutions. Outside the source, there exists a distance
scale - the Vainshtein radius r∗, at which a typical solution changes regime;
we will therefore divide the space further into regions outside and inside the
Vainshtein radius and solve the system in each of these regions separately.

The nontrivial part is to find an appropriate matching of solutions in the
two regions, which in principle requires an exact solution to the system. Having
no handle on exact analytic solutions, we will look at what numerical analysis
says.

• Beyond the Vainshtein radius When r � r∗, there are two types of
solutions. One of them is obtained by simply neglecting all nonlinearities
in λ in the last equation, so that

λ =
1

3

(r∗
r

)3

=⇒ π = −1

3

M

MP r
, a =

4

3

M

MP r
, f =

2

3

M

MP r

(2.1438)

with corrections suppressed by powers of r∗/r. This is an asymptotically
flat solution of the linear FP theory - fields vanish at infinity, and it man-
ifestly exhibits the vDVZ discontinuity. This type of asymptotic behavior
one encounters in straightforward nonlinear generalizations of the FP mas-
sive gravity.

Since the right hand side of inside/outside equation contains a small overall
factor (r∗/r)

3, a second solution for which the left hand vanishes in the
zeroth approximation is possible. In this case,

λ ∝ π′/r = C =⇒ π ∼ Λ3
3r

2, a, f ∼ Λ3
3r

2 (2.1439)

with C a nonzero constant and up to corrections suppressed by powers of
r∗/r. This is an asymptotically non-decaying solution - both the helicity-0
and helicity-2 fields increase with distance on this branch. We will later
see the importance of this.

• Within the Vainshtein radius Well within the Vainshtein radius, r∗/r �
1, and for β < 0, there exists a solution for which the right hand of the
inside/outside equation vanishes in the zeroth approximation. On this
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branch, the leading r−dependence of the fields reads

λ =

√
−1

6β
+O

((
r

r∗

)3
)

=⇒ π ∼ Λ3
3r

2, a = f =
M

MP r
+O

((
r

r∗

)3
M

MP r

)
(2.1440)

and one recovers with great precision the gravitational potential of GR
(remember that a(r) belongs to the diagonal of hµν), up to tiny correc-
tions due to the helicity-0 graviton. So, for β < 0, the theory admits the
Vainshtein mechanism.

Finally, there’s a solution for which the usual 1/r part of the gravitational
potential is completely screened inside the Vainshtein radius. Mathemat-
ically, this corresponds to last terms on each side of the outside/inside
equation being dominant over the rest of the contributions. Then, the
leading dependence on r in a and f cancels, leaving the following expres-
sions for the solution at hand,

λ ≈
(
−1

2β

)1/3
r∗
r

=⇒ a ∼ M

MP r2
∗
r, f ∼ M

MP r∗
ln r (2.1441)

This modifies the gravitational potential within r∗ to an observationally
unacceptable form.

Within the source, as it follows from (14), is constant, matching the value
at r = R of a particular solution inside the Vainshtein radius discussed
above. This means, that π and its first derivative are continuous across
the surface of the source.

• Matching at the Vainshtein radius Matching the solutions found in-
side and outside the Vainshtein radius is hard. This procedure requires
numerical analysis. This means we cannot have a general result here.
Rather, we will look at results for a particular choice of the parameters α
and β.

The main takeaway here is that if β < 0, Vainshtein mechanism works.
This means that the GR solution (solution 3) which exhibits the Vain-
shtein mechanism inside r∗, does match the asymptotically flat Solution
1, exhibiting the vDVZ discontinuity beyond the Vainshtein scale.

In Figure 1, the asymptotic of the plotted solution at r/r∗ → 0 and
r/r∗ → ∞ clearly coincide with Solution 3 (λ ∼ C) and Solution 1
(λ ∝ 1/r3) respectively. In Figure 2, the asymptotically non-decaying
Solution 2 (λ ∼ C) outside the Vainshtein radius matches the Solution 4
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(λ ∝ 1/r) inside.

It is important to address the fact, that the leading terms in the expres-
sions for λ for Solutions 2 and 3 do not depend on the mass of the source.
One can then ask the question: how physical are these solutions, since the
fields do not vanish even in the M → 0 (decoupling) limit? In this limit,
the non-decaying Solution 2 describes an asymptotically non-flat configu-
ration with nonzero (and increasing with distance) gravitational potential
throughout the whole space. On the other hand, the region of validity of
the the sub-Vainshtein Solution 3, r � r∗ shrinks to zero for the vanishing
mass of the source. Moreover, for any nonzero M , corrections to the grav-
itational potential are tiny within the Vainshtein radius, as noted above
4. Finally, for M = 0, there of course exists a physical solution, on which
all fields are identically zero.

Summary: In general there are multiple spherically symmetric, static solu-
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tions in the Minkowski-space decoupling limit of ghost-free nonlinear extensions
of the Fierz-Pauli model. Moreover, for a wide range of parameters, defined by
β < 0, the Vainshtein mechanism seems to work in the theory - there exists
an asymptotically-flat solution, which screens the contribution of the helicity-
0 mode at sub-Vainshtein scales, successfully hiding it from the Solar System
tests. In addition, there exists an asymptotically non-decaying solution, which
totally screens the 1/r potential inside the Vainshtein radius, dramatically re-
ducing the gravitational attraction at these scales - this scenario is clearly ruled
out by observations.
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2.9.5 Quantum corrections in the Λ3 theory

Before we looks at quantum correction arguments let us go back and look at the
Λ3 Lagrangian, which we skip in our discussion of the new Vainshtein radius
and new Vainshtein mechanism.

The appearance of Galileons and the absence of ghosts. With
unknown coefficients, the Λ3 action up to quintic order in the decoupling
limit (which we just saw in the recent sections) is given by

S =

ˆ
d4x

1

2
ĥµνEµν,αβĥαβ −

1

2
ĥµν

[
−4X(1)

µν (φ̂) +
4(6c3 − 1)

Λ3
3

X(2)
µν (φ̂)

+
16(8d5 + c3)

Λ6
3

X(3)
µν (φ̂)

]
+

1

MP
ĥµνT

µν

(2.1442)

where the conserved tensors X
(n)
µν are those we have seen before. Now, we

partially diagonalize the interaction terms above using the identities (which
we have also seen but I’ll just repeat them here):

Eαβµν (φηαβ) = −(D − 2)X(2)
µν (2.1443)

Eαβµν (∂αφ∂βφ) = X(2)
µν (2.1444)

and X
(n)
µν can be generated recursively from these.

First, we perform the conformal transformation

ĥµν → ĥµν + φ̂, (2.1445)

after which the Lagrangian takes the form:

S =

ˆ
d4x

1

2
ĥµνEµν,αβĥαβ −

1

2
ĥµν

[
4(6c3 − 1)

Λ3
X(2)
µν +

16(8d5 + c3)

Λ6
3

X(3)
µν

]
+

1

MP
ĥµνT

µν − 3(∂φ̂)2 +
6(6c3 − 1)

Λ3
3

(∂φ̂)2�φ̂

+
16(8d5 + c3)

Λ6
3

(∂φ̂)2([Π̂]2 − [Π̂2]) +
1

MP
φ̂T.

(2.1446)

The cubic hφφ couping can be eliminated with a field redefinition

ĥµν → ĥµν +
2(6c3 − 1)

Λ3
3

∂µφ̂∂ν φ̂ (2.1447)
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after which the Lagrangian reads:

S =

ˆ
d4x

1

2
ĥµνEµν,αβĥαβ −

8(8d5 + c3)

Λ6
3

ĥµνX(3)
µν +

1

MP
ĥµνT

µν − 3(∂φ̂)2

+
6(6c3 − 1)

Λ3
3

(∂φ̂)2�φ̂− 4
(6c3 − 1)2 − 4(8d5 + c3)

Λ6
3

(∂φ̂)2([Π̂]2 − [Π̂2])

−40(6c3 − 1)(8d5 + c3)

Λ9
3

(∂φ̂)2([Π̂]3 − 3[Π̂2][Π̂] + 2[Π̂3])

+
1

MP
φ̂T +

2(6c3 − 1)

Λ3
3MP

∂µφ̂∂ν φ̂T
µν .

(2.1448)

Once again, we expect quantum mechanically the presence of all operators
with at least two derivatives per φ, now suppressed by the cutoff Λ3,

∼ ∂q(∂2φ)p

Λ3p+q−4
3

. (2.1449)

These are in addition to the classical Galileon terms in last Lagrangian above,
which have fewer derivatives per φ and are of the form

∼ (∂φ̂)2(∂2φ̂)p

Λ3p
3

. (2.1450)

An similar analysis to the quantum correction of Λ5 discussion shows that

the terms ∂q(∂2φ)p

Λ3p+q−4
3

become important relative to the kinetic term at the radius

r ∼
(
M

MP

)1/3
1

Λ3
. (2.1451)

Note that the 1/3 here also appeared in the Λ5 discussion, but this power was
“bad” before. However, it’s not so bad now because we have a new Λ3 cutoff.
This is the same radius at which classical nonlinear effects become important
and alter the solution from its Coulomb form. Thus, we must instead compare

the terms to the classical nonlinear effects due to (∂φ̂)2(∂2φ̂)p

Λ3p
3

become important

and alter the solution from its Coulomb form. So, we have to compare the terms
∂q(∂2φ)p

Λ3p+q−4
3

to the classical nonlinear Galileon terms (∂φ̂)2(∂2φ̂)p

Λ3p
3

. We see that the

former terms are all suppressed relative to the latter Galileon terms by powers
of

∂

Λ3
(2.1452)
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which translates to

∼ 1

Λ3r
(2.1453)

regardless of the nonlinear solution. Thus, quantum effects do not become
important until the radius

RQ ∼
1

Λ3
(2.1454)

which is parametrically smaller than the Vainshtein radius

rV =

(
M

MP

)1/3
1

Λ3
. (2.1455)

This behavior is much improved from that of the Λ5 theory, in which the Vain-
shtein region was swamped by quantum correction. Here there is parametrically
large intermediate classical region in which nonlinearities are imporatant but
quantum effects are not, and in which the Vainshtein mechanism should screen
the extra scalar. In this region, GR should be a good approximation:

Just a caution: as in the Λ5 theory, quantum corrections are generically
expected to ruin the various classical tunings for the coefficients, but the tunings
are still technically natural because the corrections are parametrically small.
There are also some potential problems with the Λ3 theory found by other
authors, but none of these potential problems have been confirmed/ruled out.
Some authors have argued these are not problematic, though.



404 PART 2. QUANTUM & CLASSICAL FIELD THEORIES

2.10 Chameleon Theory

In this section we look at the Chameleon Cosmology paper by Khoury and
Weltman (2003). link. Basically the hypothesis here is that the scalar field φ
generates a fifth force. The term “chameleon” is used to describe φ because its
physical properties, such as its mass, depend sensitively on the environment.
Moreover, in regions of high density, the chameleon “blends” with its environ-
ment and becomes essentially invisible to searches for EP violation and fifth
force.

2.10.1 Ingredients of the Model

The action governing the dynamics of the chameleon model is

S =

ˆ
d4x
√
−g
{
M2
P

2
R− 1

2
(∂φ)2 − V (φ)

}
−
ˆ
d4xLm(ψ(i)

m , g(i)
µν), (2.1456)

where MP ≡ 1/
√

8πG and ψ
(i)
m are matter fields. The scalar field φ interacts

directly with matter particles through a conformal coupling of the form eβiφ/MP .

Explicitly, each matter field ψ
(i)
m couples to a metric g

(i)
µν which is related to the

Einstein-frame metric gµν by the rescaling/conformal transformation

g(i)
µν = e2βiφ/MP gµν (2.1457)

where βi are dimensionless constants. We also assume for simplicity that the

matter fields ψ
(i)
m don’t interact with each other.

The potential V is assumed to be of the “runaway form,” i.e., it is mono-
tonically decreasing and satisfies

lim
φ→∞

∂nφV

∂n−1
φ V

= 0 (2.1458)

and

lim
φ→0

∂nφV

∂n−1
φ V

= 0 (2.1459)

for all n.

The equation of motion for φ erived from the action above is

�φ = V,φ −
∑
i

βi
MP

e4βiφ/MP gµν(i)T
(i)µν , (2.1460)

where

T (i)
µν =

2√
−g(1)

δLm
δgµν(i)

(2.1461)

https://arxiv.org/pdf/astro-ph/0309411.pdf
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is the stress-energy tensor for the ith form of matter.

We will assume from now that the geoemtry is Minkowskian, i.e., gµν = ηµν .
This is valid provided that the Newtonian potential is small everywhere, and
that the backreaction due to the energy density in φ is also small.

For non-relativistic matter,

gµν(i)T
(i)
µν ≈ −ρ̃i (2.1462)

where ρ̃i is the energy density. For convenience, we will express equations as

ρi ≡ ρ̃ie3βiφ/MP (2.1463)

which is conserved in Einstein frame. With this, we rewrite the equation of
motion as

�φ = V,φ +
∑
i

βi
MP

ρie
βiφ/MP ≡ ∂φVeff (2.1464)

where the effective potential Veff is defined so that it depends explicitly on the
matter density ρi. Veff exhibits a minimum for some values of βi. We will call
φmin the value at which Veff (φ) is minimized, i.e.,

∂φVeff (φmin) = V,φ(φmin) +
∑
i

βi
MP

ρie
βiφmin/MP = 0. (2.1465)

The mass of small fluctuations about φmin is obtained as usual by evaluating
the second derivative of the potential at φmin:

m2
min = V,φφ(φmin) +

∑
i

β2
i

M2
P

ρie
βiφmin/MP . (2.1466)

From our assumptions on V , we know that V,φ is negative and monotonically
increasing while V,φφ is positive and decreasing. This means that larger values of
ρi correspond to smaller φmin and larger mmin. So, the denser the environment,
the more massive is the chameleon.

2.10.2 Profile for a compact object

Here we look for spherically symmetric solutions around a static spherically
symmetric body of radius Rc, of homogeneous density ρc and total mass Mc =
4πR3

cρc/3. We treat the object as isolated but not in total vacuum, i.e., the
object sits in a background with homogeneous ρ∞, which is small compared to
ρc but not zero.

Under these assumptions, the equation of motion reduces to

∂2
rφ+

2

r
∂rφ = V,φ +

β

MP
ρ(r)eβφ/MP (2.1467)
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where

ρ(r) =

{
ρc, r < Rc

ρ∞, r > Rc
. (2.1468)

Now, we denote φc and φ∞ the field value which minimizes Veff when r < Rc
and when r > Rc respectively, i.e.,

∂φVeff (φc) = V,φ(φc) +
β

MP
ρce

βφc/MP = 0

∂φVeff (φ∞) = V,φ(φ∞) +
β

MP
ρ∞e

βφ∞/MP = 0. (2.1469)

Next, we denote mc,m∞ respectively the mass of small fluctuations about
φc and φ∞, i.e., mc/m∞ is the mass of the chameleon field inside/outside the
object.

To solve the differential equation above, we need two boundary conditions.
These are

∂rφ(0) = 0, φ→ φ∞ as r →∞ (2.1470)

Qualitative description of the solution

When r � Rc, we know that φ→ φ∞. There are two types of solutions in this
regime: one for “large” objects and one for “small” objects.

• Small objects don’t generate large variations in φ, so solutions can be
thought of as a perturbation on the background solution φ = φ∞. So, one
can just take φ ≈ φ0 everywhere in this case.

• For large objects, the solution is different depending whether we’re inside
or outside of the object. When r < Rc, φ ≈ φc since the chameleon nearly
minimizes the effective potential. So, the solution to this problem is just
an extrapolation between φ = φc and φ = φ∞.

Let us consider the exterior solution (r > Rc) for large objects. To this
end, we break the object into infinitesimal volume elements dV and consider
their individual contribution to the φ field. Well-within the object, φ ≈ φc and
mc � m∞. This means that the contribution from a volume element dV within
the core is ∝ e−mcr̃ and hence exponentially decays. So, any dV within the
object contributes negligibly to the φ field outside. This means only dV on a
thin shell of thickness ∆Rc near the surface contributes. The exterior is thus
obtained by summing over all elements within this shell:

φ(r) ≈ −
(

β

4πMP

)(
3∆Rc
Rc

)
Mce

−m∞r

r
+ φ∞, (2.1471)
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where r is the distance from the center of the object. We will find in the next
section that

∆Rc
Rc

=
φ∞ − φc
6βMPΦ

(2.1472)

where Φ = Mc/8πM
2
PRc is the Newtonian potential at the surface of the object

(or surface potential for short). We note that we’re assuming ∆Rc/Rc � 1,
which we refer to as the thin-shell condition.

Small objects, in the sense that ∆Rc/Rc > 1 do not have a thin shell. In
this case, the entire volume contributes to the φ field outside. In this case, the
exterior solution is

φ(r) ≈ −
(

β

4πMP

)
Mce

−m∞r

r
+ φ∞. (2.1473)

To summarize, the exterior solution for a compact object is given by

φ(r) ≈ −
(

β

4πMP

)(
3∆Rc
Rc

)
Mce

−m∞r

r
+ φ∞, ∆Rc/Rc > 1 (2.1474)

φ(r) ≈ −
(

β

4πMP

)
Mce

−m∞r

r
+ φ∞, ∆Rc/Rc � 1. (2.1475)
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Derivation

(this section is also a direct copy of the corresponding part from the paper –
I’m including this just for completeness-sake, for more details please refer to the
original paper, link in the introduction.)

To get an intuition for the boundary value problem at hand, it is useful to
think of r as a time coordinate and φ as the position of a particle, and treat
the differential equation as a dynamical problem in classical mechanics. In this
language, the particle moves along the inverted potential Veff , and the second
term on the left-hand side of the differential equation, proportional to 1/r, is
recognized as a damping term. An important difference here is that Veff is
“time”-dependent since ρ depends on r. More precisely, the effective potential
undergoes a jump at time r = Rc, as illustrated here:

The particle begins at rest, since dφ/dr = 0 at r = 0, from some initial value
which we denote by i:

φi ≡ φ(r = 0). (2.1476)

For small r, the friction term is large, and thus the particle is essentially
frozen at φ = φi. It remains stuck there until the damping term, proportional
to 1/r, is sufficiently small to allow the driving term, dVeff/dφ, to be effective.
In other words, the amount of “time” the particle remains stuck near φ = φi
depends on the slope of the potential, dVeff/dφ, at φ = φi. Once friction is
negligible, the particle begins to roll down the potential.

It rolls down until, at some later time r = Rc, the potential suddenly changes
shape as ρ(r) undergoes a jump from ρc to ρ∞. But φ and dφ/dr are of course
continuous at the jump, and the particle keeps rolling, this time climbing up the
inverted potential. If the initial position φi is carefully chosen, the particle will
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barely reach φ∞ in the limit r → ∞, as desired. Thus the problem is reduced
to determining the initial value φi.

φi depends on the physical properties of the compact object. But rather
than choosing these parameters and solve for φi, we a range of φi and choose a
region in parameter space that gives φi. More precisely, we shall consider the
two regimes (φi−φc)� φc and φi ≥ φc, and we will show that these correspond
respectively to ∆Rc/Rc � 1 and ∆Rc/Rc > 1. Anticipating this result, we refer
to these two regimes as thin-shell and thick-shell, respectively.

• Thin-shell ((φi − φc) � φc). In this regime, φi is very close to φc, at
which point the gradient of the potential is small. The field is basically
frozen at φc until friction is sufficiently small for the field to roll. Call this
point Rroll, then

φ(r) ≈ φc, 0 < r < Rroll. (2.1477)

Since ∂φV � βρeβφ/MP /MP as soon as φ s displaced significantly from
φc, we may approximate the original differential equation in the regime
Rroll < r < Rc by

∂2
rφ+

2

r
∂rφ ≈

β

MP
ρc (2.1478)

where we have also assumed βφ/MP � 1. With the two boundary condi-
tions φ = φc and ∂rφ = 0 at r = Rroll is

φ(r) =
βρc

3MP

(
r2

2
+
R2
roll

r

)
− βρcR

2
roll

2MP
+ φc. (2.1479)

The full solution for 0 < r < Rc is thus approximated by both these two
equations

φ(r) =
βρc

3MP

(
r2

2
+
R2
roll

r

)
− βρcR

2
roll

2MP
+ φc (2.1480)

∂2
rφ+

2

r
∂rφ ≈

β

MP
ρc (2.1481)

Beyond Rc, the density jumps to ρ∞. For r > Rc, the particle now
climbs up the hill. The speed of the particle is initially large compared to
the curvature of the potential, so the original differential equation can be
approximated by

∂2
rφ+

2

r
∂rφ ≈ 0 (2.1482)

whose solution satisfy φ→ φ∞ as r →∞ is given by

φ(r) ≈ −Ce
−m∞(r−Rc)

r
+ φ∞ (2.1483)
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where we have used the fact that the potential is approximately quadratic
near φ = φ∞.

The two unknowns, Rroll and C, are then determined by matching φ’s in
the 0 < r < Rc and r > Rc regimes and dφ/dr at r = Rc. With the
approximation that RcRroll � Rc, we can show that the exterior solution
is

φ(r) ≈ −
(

β

4πMP

)(
3∆Rc
Rc

)(
Mce

−m∞(r−Rc)

r

)
+ φ∞ (2.1484)

with

∆Rc
Rc
≡ φ∞ − φc

6βMPΦc
≈ Rc −Rroll

Rc
� 1 (2.1485)

where we have substituted the Newtonian potential Φc. So, this regime
corresponds to the “thin-shell condition.”

• Thick-shell (φi ≥ φc) In this case, the field is initially sufficiently dis-
placed from φc that it begins to roll almost as soon as it is released at
r = 0. There is no friction-dominated regime in this case, and the interior
solution for φ is obtained by taking the Rroll → 0 and replace φc by φc.
After the matching solutions, we get

φ(r) =
βr2

6MP
+ φi, 0 < r < Rc (2.1486)

and

φ(r) ≈ −
(

β

4πMP

)
Mce

−m∞(r−Rc)

r
+ φ∞, r > Rc. (2.1487)

Equating these two equations at r = Rc, we get

φi = φ∞ −
3βΦc
MP

. (2.1488)

Since φi ≥ φc and from the definition ∆Rc/Rc = (φ∞ − φc)/6βMPΦc,
this implies

∆Rc
Rc

> 1. (2.1489)

This of course corresponds to the “thick-shell” condition.
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2.11 Screening Long Range Force through Local
Symmetry Restoration

In this section we look at another (short) paper by Hinterbichler.link. In this
paper, Hinterbichler presents a screening mechanism that allows a scalar field
to mediate a long range (∼ Mpc) force of gravitational strength in the cos-
mos while satisfying local test of gravity. The mechanism works based on local
symmetry restoration in the presence of matter. In regions of sufficiently high
matter density, the field is drawn towards φ = 0 where its coupling to matter
vanishes and the φ ↔ −φ symmetry is restored. In region of low matter den-
sity, the symmetry is spontaneously broken, and the field couples to matter with
gravitational strength.

The ideas and results in this papers are very similar to those in the Chameleon
Cosmology paper, in the sense that while theories are different (because the po-
tentials are different), the screening mechanism works in the same way in the
sense that the field configuration (or physical properties) change as a function
of the matter density.

2.11.1 Introduction

Scalar fields may play a crucial role in dark energy as quintessence fields and
appear in many theories. However, no fundamental scalar field has been ob-
served in experiments.

There appears to be 3 classes of screening mechanisms.

• Chameleon mechanism: operates whenever scalars are nonminimally cou-
pled to matter in such a way that their effective mass depends on the
local matter density. When local mass density is low, scalars are light and
would display their effects. Near sources like Earth (where experiments
are performed) local mass density is high, and so scalars acquire a mass,
making their effects short range and unobservable.

• Vainshtein mechanism: operators when the scalar has derivative self-
couplings which become important near matter sources. Strong coupling
near sources cranks up the kinetic terms, which means that after normal-
ization, couplings to matter are weakened. As a result the scalar screens
itself and becomes invisible to experiments.

• The third class (of screening mechanism – that which hides a scalar) is
what we will look at in this section. In this mechanism, the VEV of the
scalar depends on the local matter density. In particular, the VEV be-
comes large in regions of low mass density, and small in regions of high
mass density. Further, the coupling of the scalar to matter is propor-
tional to the VEV, so that the scalar couples with gravitational strength

https://arxiv.org/abs/1001.4525
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in regions of low density, but it decoupled and screened in regions of high
density.

The third mechanism works through the interplay of the symmetry-breaking
potential

V (φ) = −µ
2φ2

2
+
λφ4

4
(2.1490)

and the universal coupling to matter φ2ρ/2M2. In vacuum, the scalar acquires
a VEV φ0 = µ/

√
λ, which spontaneously breaks the symmetry φ↔ −φ. When

ρ is high enough, however, the symmetry can be restored. Since the screening
mechanism relies on the local restoration of a symmetry, we refer to the scalar
as a symmetron field.

2.11.2 The Model

The model start with the general case of the chameleon model:

S =

ˆ
d4x
√
−g
[
M2
Pl

2
R− 1

2
(∂φ)2 − v(φ)

]
+

ˆ
d4xLm[g̃] (2.1491)

where the matter fields described by Lm are universally coupled to the metric
g̃µν , conformally related to the Einstein frame metric gµν by

g̃µν = A2(φ)gµν

g̃µν =
1

A2(φ)
gµν . (2.1492)

Varying this with respect to φ (and apply the chain rule carefully) one ob-
tains the equation of motion

(�φ− ∂φV ) +A3(φ)∂φAT̃ = 0 (2.1493)

where

T̃ = T̃µν g̃
µν (2.1494)

is the trace of the Jordan frame energy momentum tensor,

T̃µν =
−2√
−g

δLm
δg̃µν

. (2.1495)

Since we’re only in solar system and galactic scenarios, so we ignore the effects
of nonlinearities. This allow us to treat nonlinear scalar on its own. Assuming
sources are spherically symmetric and pressureless, we write ρ = A3ρ̃ which is
conserved in Einstein frame. The scalar field equation then has the form

∂2
rφ+

2

r
∂rφ = ∂φV + (∂φA)ρ ≡ ∂φ(V + ρA). (2.1496)



2.11. SCREENING LONGRANGE FORCE THROUGH LOCAL SYMMETRYRESTORATION413

For homogeneous ρ, we get an effective potential:

Veff (φ) = V (φ) + ρA(ρ) (2.1497)

with

V (φ) = −1

2
µ2φ2 +

1

4
λφ4 (2.1498)

and

A(φ) = 1 =
1

2M2
φ2 (2.1499)

described by two mass scales µ and M and one dimensionless coupling λ. The
spontaneous symmetry breaking is obvious in V (φ) alone. However, if we look
at the effective potential:

Veff (φ) =
1

2

( ρ

M2
− µ2

)
φ2 +

1

4
λφ4. (2.1500)

Whether the quadratic term is negative or not (hence whether spontaneous
symmetry breaking occurs or not) depends on the local matter density.

• Outside the source, ρ = 0, and so the potential breaks reflection symmetry
spontaneously (this is the trivial case), and the scalar acquires a VEV
φ0 = µ/

√
λ.

• Inside the source, there are two cases.

– If we choose parameters such that ρ > M2µ2, then the effective
potential no longer breaks symmetry, and VEV goes to zero.

– It is easy to see that fluctuations δφ around a a local background
value φV EV couple as

∼ φV EV
M2

δφρ. (2.1501)

This says that the coupling is proportional to the local VEV. For high
matter density, symmetry-restoring environment, the VEV should
be near zero and fluctuations of φ should not couple to matter. In
rare environments where ρ < M2µ2 the symmetry is broken and the
coupling turns back on.

To fix scales, we look at when fields are “tachyonic” around the current
cosmic density, that is H2

0M
2
P ∼ µ2M2. This fixes µ in terms of M , and hence

the mass m0 of small fluctuations around φ0 = µ/
√
λ:

m0 =
√

2µ ∼ MP

M
H0. (2.1502)
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Local tests of gravity require that M ≤ 10−3MP . Hence the range m−1
0 of

the symmetron-mediated force in voids is ≤ Mpc. Meanwhile, if this extra force
is to be comparable to gravity, then from the coupling φV EV δφρ/M

2 we must
impose φ0/M

2 ∼ 1/MP , that is

φ0 ≡
µ√
λ
∼ M2

MP
. (2.1503)

Together with the equation involving H0 above, we have

λ ∼ M4
PH

2
0

M6
� 1. (2.1504)

We note that φ0 � M so the field range of interest lies within the regime of
the effective field theory, and higher-order φ2/M2 corrections to A(φ) can be
neglected.

2.11.3 Spherical solutions

Now we see spherically symmetric solutions to the differential equation

∂2
rφ+

2

r
∂rφ = ∂φV + ρ∂φA (2.1505)

with

V (φ) = −1

2
µ2φ2 +

1

4
λφ4 (2.1506)

and

A(φ) = 1 +
1

2M2
φ2. (2.1507)

First, we take an object with radius R with constant mass density ρ such that
ρ > M2µ2. We also assume that the object is in vacuum. The radial field
equation can be thought of as a fictional particle rolling in a potential Veff
subject to the friction term (2/r)∂rφ. The solution must be continuous at the
origin, and approach its symmetry-breaking value far away from the object. So,

∂rφ(0) = 0, φ(r →∞) = φ0. (2.1508)

We approximate the potential as quadratic around the appropriate minima
both inside and outside the object, and then match at the surface of the object.

• Inside the object, we just drop the φ4 term to get

Veff =
1

2

( ρ

M2
− µ2

)
φ2, (2.1509)

and the solution satisfying the condition ∂rφ(0) = 0 is

φin(r) = A
R

r
sinh

(
r

√
ρ

M2
− µ2

)
(2.1510)

where A is an undetermined constant.
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• Outside the object, ρ = 0, and we approximate the potential as quadratic
around φ = φ0 = µ/

√
λ minimum:

Veff = µ2(φ− φ0)2. (2.1511)

The solution satisfying the condition φ(r →∞) = φ0 is

φout(r) = B
R

r
e−
√

2µr + φ0 (2.1512)

where B is an undetermined constant.

By matching the field and its first derivative across the boundary at r = R
we can determine the coefficients A and B.

We see that the solution involves 3 dimensionless parameters: µR, ρ/µ2M2, ρR2/M2.

• µR: measures the radius of the object relative to the range of the symmetron-
mediated force in vacuum. For most objects of interest we have µR� 1.

• ρ/µ2M2: density of the object as compared to the mean cosmic density.
We are always interested in objects that are much denser than deep cos-
mos, so ρ/µ2M2 � 1.

• There are two cases associated with the parameter ρR2/M2, which is the
ratio between the surface Newtonian potential Φ relative to M/MP :

α =
ρR2

M2
= 6

M2
P

M2
Φ ∼

(
Φ

GM

)
. (2.1513)

– For small objects where α� 1, we can find

A = φ0
1√
2

(
1− α

2

)
, B = −φ0

α

3
. (2.1514)

– For large objects, α� 1 and

A = φ0
2√
α
e−
√
α, B = φ0

(
−1 +

1√
α

)
(2.1515)

At distances R � r � µ−1, the force on a test particle due to a large
object is suppressed compared to gravity:

Fφ
Fn
∼ φ0

MP

ρR2
=

1

α
� 1. (2.1516)

Looking at φin and the coefficients A,B when α � 1 (large object), we
see that φ is exponentially suppressed compared to φ0 inside the object. The
symmetron is thus weakly coupled to the core of the object. From φin and the
coefficients A,B when α � 1 (small object), φ ∼ φ0 everywhere within the
objects, that is Fφ/FN ∼ O(1).
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2.12 xACT Tutorial

If you’re already here, you know what xACT is and what you might need it for.
This tutorial is for getting started with some basic xACT computations/manip-
ulations.

2.12.1 Importing packages

Please follow the online instructions for installation. This tutorial assumes a
correct installation of xACT. Quick debugging tip: if somethings goes wrong
with xACT while you’re working with in mathematica, just download a new
copy of xACT and overwrite xACT in the installation folder. That should go
the trick almost always.

Three xACT packages we will need for now are xTensor, xPert, and xTras.
xTensor extends Mathematica’s capabilities in abstract tensor calculus, most
useful for general relativity. However, note that xTensor does not do compo-
nent calculations. It only handles symbol manipulations, including arbitrary
symmetries, covariant derivatives, etc. Once a metric is defined, xTensor also
defines all the associated tensors: Riemann, Ricci, Einstein, Weyl, etc. With
each tensor, we can contract all the way down to scalars.

xPert allows for doing perturbations on a metric. With xPert, we can define
a Lagrangian and vary it with respect to fields to get equations of motion, etc.
xPert handles higher-order perturbations quite well, as we will see later in this
tutorial. xPert is probably useful for linearized gravity, etc.

xTras allows for doing variations with respect to fields. This is useful for,
say, obtaining Einstein’s field equations by varying the Lagrangian with respect
to the (inverse) metric.

Let’s get started. First, we will go ahead and import the necessary packages.
Run the following commands:

<< xACT ‘xTensor ‘

and

<< xACT ‘xPert ‘

The correct corresponding outputs are

<< xACT ‘xTensor ‘
------------------------------------------------------------
Package xAct ‘xTensor ‘ version 1.1.3 , {2018 ,2 ,28}

CopyRight (C) 2002 -2018 , Jose M. Martin -Garcia ,
under the General Public License.
------------------------------------------------------------

These packages come with ABSOLUTELY NO WARRANTY; for details type Disclaimer.
This is free software , and you are welcome to redistribute it under certain
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conditions. See the General Public License for details.
------------------------------------------------------------

and

<< xACT ‘xPert ‘
------------------------------------------------------------

Package xAct ‘xPert ‘ version 1.0.6, {2018 ,2 ,28}

CopyRight (C)2005 -2018 , David Brizuela , Jose M. Martin -Garcia and Guillermo A.
Mena Marugan , under the General Public License.

------------------------------------------------------------

These packages come with ABSOLUTELY NO WARRANTY; for details type Disclaimer.
This is free software , and you are welcome to redistribute it under certain
conditions. See the General Public License for details.

------------------------------------------------------------

** Variable $CovDFormat changed from Prefix to Postfix

** Option AllowUpperDerivatives of ContractMetric changed from False to True

** Option MetricOn of MakeRule changed from None to All

** Option ContractMetrics of MakeRule changed from False to True
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2.12.2 xTensor Basics

For more information about this package, please check this link for the correct
documentation.

Defining the Basics

There are a number things we need to define before doing anything. The man-
ifold must be defined first:

DefManifold[M4 , 4, {a, b, c, d, e, f, g, h, i, j, k, l}]

The output is

DefManifold[M4 , 4, {a, b, c, d, e, f, g, h, i, j, k, l}]

** DefManifold: Defining manifold M4.

** DefVBundle: Defining vbundle TangentM4.

Just to translate the command into English: the command defines a new
4-dimensional manifold called M4, with a list of indices. The number of indices
are arbitrary, but the more the merrier so we don’t run out of indices. However,
be careful not to use these indices to call something else, like ‘g’ for metric, for
instance.

Once that is done can we define the metric:

DefMetric[-1, gg[-i, -j], cd , {";", "\[Del]"}]

Translation: The -1 stands for the signature of the metric. “gg” is the name of
the metric. We can use “g” but remember that it has been taken in the manifold
definition. “cd” is what we call the covariant derivative. “/[Del]” is the symbol
denoting the covariant derivative. We will see this later.

The correct output should be

DefMetric[-1, gg[-i, -j], cd , {";", "\[Del]"}]

** DefTensor: Defining symmetric metric tensor gg[-i,-j].

** DefTensor: Defining antisymmetric tensor epsilongg[-a,-b,-c,-d].

** DefTensor: Defining tetrametric Tetragg[-a,-b,-c,-d].

** DefTensor: Defining tetrametric Tetragg \[ Dagger][-a,-b,-c,-d].

** DefCovD: Defining covariant derivative cd[-i].

** DefTensor: Defining vanishing torsion tensor Torsioncd[a,-b,-c].

** DefTensor: Defining symmetric Christoffel tensor Christoffelcd[a,-b,-c].

** DefTensor: Defining Riemann tensor Riemanncd[-a,-b,-c,-d].

** DefTensor: Defining symmetric Ricci tensor Riccicd[-a,-b].

** DefCovD: Contractions of Riemann automatically replaced by Ricci.

http://www.xact.es/Documentation/HTML/HTMLLinks/
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** DefTensor: Defining Ricci scalar RicciScalarcd [].

** DefCovD: Contractions of Ricci automatically replaced by RicciScalar.

** DefTensor: Defining symmetric Einstein tensor Einsteincd[-a,-b].

** DefTensor: Defining Weyl tensor Weylcd[-a,-b,-c,-d].

** DefTensor: Defining symmetric TFRicci tensor TFRiccicd[-a,-b].

** DefTensor: Defining Kretschmann scalar Kretschmanncd [].

** DefCovD: Computing RiemannToWeylRules for dim 4

** DefCovD: Computing RicciToTFRicci for dim 4

** DefCovD: Computing RicciToEinsteinRules for dim 4

** DefTensor: Defining weight +2 density Detgg []. Determinant.

There are a few interesting things we can pay attention to in the output. It
is clear that xACT has also defined associated tensors like the Riemann, Ricci
tensor, Ricci scalars, Christoffel symbols, etc. It also defined the determinant,
called “Detgg[]”. This will be useful when we write down the Lagrangian.

With this, we can nwo define some simple objects: scalars, contravariant
vectors, and covariant vectors:

DefTensor[s[], M4]

** DefTensor: Defining tensor s[].

DefTensor[contra[i], M4]

** DefTensor: Defining tensor contra[i].

DefTensor[covar[-i], M4]

** DefTensor: Defining tensor covar[-i].

Here the “-index” denotes a subscript, and “index” denotes a superscript. Defin-
ing something without giving indices makes a scalar. Note that we have to in-
clude the manifold in each of the definitions above.

Next, we can define a two-index tensor:

DefTensor[T[-i, -j], M4, Antisymmetric [{-i, -j}]];

** DefTensor: Defining tensor T[-i,-j].

Here, we are allowed to impose symmetry/antisymmetry on the defined ten-
sor. With our example here, the tensor is anti-symmetric, so we would expect
that

Tij = −Tji. (2.1517)

we can verify this:
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In [308]:= T[-i, -j] + T[-j, -i] // ToCanonical

Out [308]= 0

The ToCanonical command allows you to impose symmetry/anti-symmetry
on the outputs. This is basically a “smart simplification” command.

Covariant Derivatives

There is not much we can do with the covariant derivatives. Except showing
that it’s there in the definition of the metric. For example, we can do

∇iTjl (2.1518)

in xACT with the following command:

In [312]:= cd[-i][T[-j, -l]]

We can also do a multiple covariant derivative using “@” to denote a com-
position of two derivatives:

In [313]:= cd[-a]@cd[-b]@cd[-c]@T[-d, -e] // ToCanonical

Out [313]= cd[-a][cd[-b][cd[-c][T[-d, -e]]]]

In more readable symbols, this is just

∇a∇b∇cTde. (2.1519)

But of course, we haven’t evaluated this. To actually evaluate this expres-
sion, we use the SortCovsD command, which writes everything out in terms
of the Riemann tensor:

In [314]:= cd[-a]@cd[-b]@cd[-c]@T[-d, -e] // ToCanonical // SortCovDs

Out [314]= - Riemanncd[-c, -b, -e, f] cd[-a][
T[-d, -f]] - Riemanncd[-c, -b, -d, f] cd[-a][
T[-f, -e]] - T[-f, -e] cd[-b][
Riemanncd[-c, -a, -d, f]] - T[-d, -f] cd[-b][
Riemanncd[-c, -a, -e, f]] - Riemanncd[-c, -a, -e, f] cd[-b][
T[-d, -f]] - Riemanncd[-c, -a, -d, f] cd[-b][
T[-f, -e]] - Riemanncd[-b, -a, -e, f] cd[-c][
T[-d, -f]] - Riemanncd[-b, -a, -d, f] cd[-c][
T[-f, -e]] + cd[-c][
cd[-b][
cd[-a][
T[-d, -e]]]] - Riemanncd[-b, -a, -c, f] cd[-f][
T[-d, -e]] - Riemanncd[-c, -b, -a, f] cd[-f][
T[-d, -e]]

Not to worry, to actual Mathematica output looks much better:
It is possible for new users that the following output is obtained:
This is because the dollar signs are not screened off. To fix this, simply write

$PrePrint = ScreenDollarIndices;
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then run the code again. Ta-da!

One small test we can run is to check whether the covariant derivative of the
metric is zero:

∇cgab = gab;c = 0. (2.1520)

We run the following command:

In [419]:= cd[-a][gg[c, d]]

Out [419]= 0.

Makes sense.

Contract Everything

We know that the Ricci tensor is a contraction of the Riemann tensor:

Rbd = gacRabcd. (2.1521)

Let’s verify this in xACT with the ContractMetric command. We also use
the InputForm command to see what xACT actually thinks the output is.

In [309]:= gg[i, k] Riemanncd[-i, -j, -k, -l] // ContractMetric // InputForm

Out [309]= Riccicd[-j, -l]

We can see that xACT is smart enough to recognize the output is a Ricci tensor.
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Good, what about getting the Ricci scalar? We know that

R = gµνRµν . (2.1522)

Once again we can check this with/against xACT

In [311]:= gg[j, l] Riccicd[-j, -l] // ContractMetric // InputForm

Out [311]// InputForm=RicciScalarcd []

or without the InputForm command:

Verifying Bianchi’s Second Identity

Bianchi’s Second Identity is given by

Rabcd;e +Rabde;c +Rabec;d = 0 ⇐⇒ ∇eRabcd +∇cRabde +∇dRabec = 0.
(2.1523)

To do this in xACT, we first redefine out covariant derivative

DefCovD[CD[-a], {";", "\[Del]"}]

** DefCovD: Defining covariant derivative CD[-a].
** DefTensor: Defining vanishing torsion tensor TorsionCD[a,-b,-c].
** DefTensor: Defining symmetric Christoffel tensor ChristoffelCD[a,-b,-c].
** DefTensor: Defining Riemann tensor RiemannCD[-a,-b,-c,d].
Antisymmetric only in the first pair.

** DefTensor: Defining non -symmetric Ricci tensor RicciCD[-a,-b].
** DefCovD: Contractions of Riemann automatically replaced by Ricci.

Next, we establish a term:

term1 = Antisymmetrize[CD[-e][ RiemannCD[-c, -d, -b, a]], {-c, -d, -e}]

The AntiSymmetrize[expr, {i1, . . . , in}] command antisymmetrizes expr with
respect to the n free indices i1, . . . , in. By convention the result has a factor
(1/n!) multiplying.
It follows that the right hand side is 3 times this term:

bianchi2 = 3 term1 // ToCanonical
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To actually evaluate this, we first expand bianchi2 in terms of the Christoffel
symbols:

exp1 = bianchi2 // CovDToChristoffel

To actually evaluate this, we will have to write the leftover Riemann tensors in
terms of the Christoffel symbols:

exp2 = exp1 // RiemannToChristoffel

And finally, we canonicalize everything (i.e., imposing symmetries of Christof-
fel symbols) to get zero:

In [322]:= exp3 = exp2 // ToCanonical

Out [322]= 0

Not bad at all!
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2.12.3 xPert Basics

Assuming that the reader has successfully imported the xPert package, let’s get
started. For more information about this package, please check this link for the
correct documentation.

Pert, Perturbation, Perturbed, & Order Selection

In order to do anything, we must have had a metric already defined. In this
tutorial, I will be using the “gg” metric from the previous section.

To start, we will define a perturbation hµν to the metric and the amplitude
of this perturbation, called ε. To do this in xPert, we write

DefMetricPerturbation[gg, pert , \[ Epsilon ]]

** DefParameter: Defining parameter \[ Epsilon ].

** DefTensor: Defining tensor pert[LI[order],-a,-b].

What the second line in the output is telling us is that it has also defined per-
turbations of all orders hnµν , where n is the order. With this, we can recall any
perturbation order using the command suggested in the output.

In order to make this “pert” variable printed as hµν in the subsequent out-
puts, we will enforce:

PrintAs[pert] ^= "h";

In general, this can be done such that the output is more readable. But if
the reader is very efficient with reading terribly-named variables, no such en-
forcement is necessary.

From here, there are many many things we can do. First, let’s look what
the second-order perturbation looks like, based on the second output of the
perturbation definition. We expect this to be h2

µν . To do this, we use the
command pert[LI[order], -a,-b] where -a, -b are the subscripts.

In [327]:= pert[LI[2], -a, -b]

Not surprising. Equivalently, we can also run the following command and get
the same output

Perturbation[gg[-a, -b], 2]

Here, we’re basically wanting to looking at perturbation of the metric of a cer-
tain order.

http://www.xact.es/Documentation/HTML/HTMLLinks/
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Okay, so given a perturbation hµν of the metric, gµν , what can we say about
the perturbation of the inverse metric, gµν? Recall the result from GR:

gµν ≈ ηµν + hµν =⇒ gµν ≈ ηµν − hµν . (2.1524)

Let’s see if we get the same thing from xACT by running the command

Perturbation[gg[a, b], 1]

However, the output is not very illuminating:

We have to ExpandPerturbation to get a readable output:

This is exactly what we expected. We note that the Perturbation[...] com-
mand only gives us the perturbation part but not the entire perturbed metric.
This is fine, but it is something to keep in mind.

But what if we wanted second, third, fourth, etc. order perturbations? while
this gets much more cumbersome to do by hand, xACT handles perturbations
extremely efficiently. We basically run the code again, only changing the per-
turbation order:

Perturbation[gg[a, b], 2] // ExpandPerturbation

Perturbation[gg[a, b], 4] // ExpandPerturbation

Second-order perturbation:

Fourth-order perturbation:

Like I have mentioned, the Perturbation[...] command only gives the per-
turbation piece of the new metric. To get the full, newly perturbed, metric, we
use the Perturbed[gg[-a,-b], order] command. For example, the perturbed
metric, up to third order is

Perturbed[gg[-a, -b], 3]
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The perturbed inverse metric up to third order is

Perturbed[gg[a, b], 3] // ExpandPerturbation

Just for sanity check, we can get the first-order perturbed metric and inverse
metric with

Perturbed[gg[-a, -b], 1]

Perturbed[gg[a, b], 1] // ExpandPerturbation

Very nice!

There is also a way for us to pick out only the low-order perturbations in
a higher-order perturbed metric. With the following command, we are able to
pick out only the first-order perturbations from a third-order perturbed metric:

firstorderonly = pert[LI[n_], __] :> 0 /; n > 1;
Perturbed[gg[-a, -b], 3] /. firstorderonly
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Review of Variational Derivatives

Lets do a quick review of the variational derivative. In mathematics, the varia-
tional derivative is referred to as the functional derivative. Here we will consider
variational derivative in the context of Lagrangian mechanics.

Suppose we have an ordinary functional action in flat 3d:

S[φ] =

ˆ
dtL[φ(t), φ̇(t), t]. (2.1525)

The variational derivative of the action is given by δS/δt. Since we require
this derivative to vanish at the extrema, we obtain the Euler-Lagrange by setting
the integrand to zero:

δS

δy
= 0 =⇒ δ

δφ

(
L[φ(t), φ̇(t), t]

)
=

∂L
∂φ
− d

dt

∂L
∂φ̇

= 0 (2.1526)

In general, for

J [y(x)] =

ˆ
dx f [x, y(x), y′′(x), . . . , y(n)(x)], (2.1527)

the variational derivative of J with respect to y is given by

δJ

δy
=
∂f

∂y
− d

dx

∂f

∂y′
+

d2

dx2

∂f

∂y′′
− · · ·+ (−1)n−1 d

n

dxn
∂f

∂y(n)
(2.1528)

In general relativity, we no longer get the regular d/dx derivatives. Instead,
we work with covariant derivatives. This means the Lagrangian density in a
general action

S[φ] =

ˆ
d4x
√
−gL̂ (2.1529)

depends on the field, the covariant derivative of the field, and the “independent
variable” xν a vector in spacetime.

L̂ = L̂[φ(xν),∇µφ(xν), xν ]. (2.1530)

With this, when we take the variational derivative of S[φ] with respect to the
field φ and set it to zero to obtain an equation of motion, we have to change the
regular d/dx derivatives to covariant derivatives (which depend on Christoffel
symbols):

δS

δy
= 0 =⇒ ∂(L̂

√
−g)

∂φ
−∇µ

(
∂(L̂
√
−g)

∂(∇µφ)

)
= 0 (2.1531)
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Note that we can actually skip a step here and remove the
√
−g term because it

is a constant in this problem (we are varying the field). However, the
√
−g will

become important (i.e., has non-trivial derivative) when we do variations with
respect to the metric. This has been done in the CFT notes, but we will do it
again using xACT later in the section on xTras.

Here we will just recall how the covariant derivative is defined in GR. The
covariant derivative of a contravariant vector λa with respect to a contravariant
vector xc is given by

λa;c ≡ ∇cλa =
∂λa

∂xc
+ Γabcλ

b ≡ ∂cλa + Γabcλ
b (2.1532)

With reviews out of the way, we will look at how to define and use varia-
tional derivatives in xACT. First, we notice that variational derivatives are
taken with respect to some field/metric, and are defined alongside with some
covariant derivative (associated with existing Christoffel symbols, metric, etc).
This means to get a variational derivative (varD) we will need (1) the field/-
metric and (2) the existing covariant derivative (CovD).

Here are some examples of the VarD command:

s /: VarD [metricg [a_,b_], PD][s[], rest_] := - rest/2 metricg[-a,-b]s[]

Length [result = Expand @ VarD [metricg [a,b], PD][ s[]rs]]

result = VarD [MaxwellA[a], PD][s[] %]

In the next section(s), we will encounter an example where we vary a La-
grangian with respect to a scalar field in a perturbed metric to obtain an equa-
tion of motion.

Scalar Fields, Lagrangian, Varying the Lagrangian

Here’s the layout of this subsection. We would like to, in the end, get some
kind of physical result we are familiar with such as conservation of energy or
the Einstein field equation or some sort of equation of motion that we know
exists.

Let’s first set up some theory before actually doing the calculations and
getting lost in the symbols. Consider the Lagrangian for the scalar field φ:

L =
√
−g
(
m2R

2
− V (φ)− 1

2
∇bφ∇bφ

)
. (2.1533)

We would like to input this into xACT and look at a the perturbed Lagrangian
when we perturb the metric. In order to do this, we first define the scalar field
φ, the potential V (φ), and the constant mass, m:

https://huanqbui.com/LaTeX projects/Classical_Fields_Theory/HuanBui_ClassicalFieldTheory.pdf
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DefScalarFunction[V]
** DefScalarFunction: Defining scalar function V.
DefConstantSymbol[massP]
** DefConstantSymbol: Defining constant symbol massP.
PrintAs[massP] ^= "m";

With this we can define the Lagrangian:

L = Sqrt[-1* Detgg []]*( massP ^2* RicciScalarcd []/2 -
V[sf[]] - (1/2)* cd[-b][sf[]]*cd[b][sf[]])

xACT gives us a nice symbolic output of the Lagrangian, which matches what
we want:

Before actually doing any variations, we also have to define the variation of
the scalar field and make it appear as δφ

DefTensorPerturbation[pertsf[LI[order]], sf[], M4]
PrintAs[pertsf] ^= "\[Delta ]\[Phi]";

Time to do some variations. This requires the Perturbation command:

varL = L // Perturbation

To get the full expression, we have to expand on the result:

varL = L // Perturbation // ExpandPerturbation

There are a bunch of terms with the metric flying around, so we will contract
with the metric:

varL = L // Perturbation // ExpandPerturbation // ContractMetric

Finally, we enforce canonical relations to remove the leftover abundant terms:

varL = L // Perturbation // ExpandPerturbation // ContractMetric //
ToCanonical
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Now that we have the perturbed Lagrangian. What we want next the equa-
tion of motion. Recall that the action is given by

S =

ˆ
d4xL =

ˆ
d4x
√
−gL̂. (2.1534)

The associated Euler-Lagrange equation is

∂L̂
∂φ
−Dµ

(
∂L̂

∂(Dµφ)

)
=
δL̂
δφ

= 0 (2.1535)

We translate this equation as “the variational derivative of L̂ with respect to
the field is zero.” With our current Lagrangian density:

L =
√
−g
(
m2R

2
− V (φ)− 1

2
∇bφ∇bφ

)
, (2.1536)

the Lagrangian of which we want to take derivatives is

L̂ =
1√
−g
L =

m2R

2
− V (φ)− 1

2
∇bφ∇bφ. (2.1537)
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It follows that the equation of motion is obtained from taking variational deriva-
tive of L̂ with respect to φ and set it to zero.

Next, recall from Section 8.2 of the CFT notes that the equation of motion
for the scalar field theory is

∇µ∇µφ−
dV

dφ
= 0 (2.1538)

We would like to obtain this result, using only xACT.

Let’s start by taking the variational derivative of L̂ with respect to φ and
set it to zero. We do this with a simple command:

0 == VarD[pertsf[LI[1]], cd][varL]/Sqrt[-Detgg []]

where we explicitly divide the original L by
√
−g to get L̂, then take the vari-

ational derivative of L̂. The variation derivative is define by two objects: the
field with respect to which the derivative is taken, and the covariant derivative
associated with the metric. This is because as we saw before

∂L̂
∂φ
−Dµ

(
∂L̂

∂(Dµφ)

)
=
δL̂
δφ

(2.1539)

To simply the output above, we impose canonical relations:

0 == VarD[pertsf[LI[1]], cd][varL]/Sqrt[-Detgg []] // ToCanonical

By enforcing the Kronecker delta relation:

delta[-LI[1], LI[1]] -> 1;

This simplifies to the equation of motion we wanted:

So things work as we wanted.

https://huanqbui.com/LaTeX projects/Classical_Fields_Theory/HuanBui_ClassicalFieldTheory.pdf
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2.12.4 xTras Basics: Metric Variations

xTras handles variations with respect to the (inverse) metric. Two of its com-
mands that we will be using here are: VarD and VarL. VarD stands for vari-
ational derivative, whose definition includes the (inverse) metric and the as-
sociated covariant derivative. For our purposes, VarD acts on the Lagrangian
L =

√
−gL̂. VarL is also a variational derivative, except that it acts on the

Lagrangian density L̂.
The output of VarD[L] and VarL[L̂] should only differ by a factor of

√
−g.

By default,

VarD[g[-a,-b]], CD[L] returns
δL
δgab

(2.1540)

VarL[g[-a,-b]], CD[L̂] returns
1√
−g

δ(
√
−gL̂)

δgab
(2.1541)

where of course L =
√
−gL̂ as always.

Of course, we can also do variations with respect to the inverse metric.

VarD[g[a,b]], CD[L] returns
δL
δgab

(2.1542)

VarL[g[a,b]], CD[L̂] returns
1√
−g

δ(
√
−gL̂)

δgab
(2.1543)

With this, we can head over to Mathematica.

The first we’d like to do is import the packages. To avoid possible package-
missingness, we will just go ahead and import all three packages we know:
xTensor, xPert, and now xTras.

<< xACT ‘xTensor ‘
<< xACT ‘xPert ‘
<< xACT ‘xTras ‘

There is nothing interesting to see in the outputs of these commands so I won’t
go into them now.

The next thing to do is of course defining the manifold on which is the metric
will be defined:

DefManifold[M4 , 4, {a, b, c, d, e, i, j, k, l, m, n, p}]

** DefManifold: Defining manifold M4.

** DefVBundle: Defining vbundle TangentM4.

Here we have are to give as many indices as we can, so why not.

Next, we would like to define the metric. But before doing so, we have to
allow for metric perturbation in the metric definition. This is the feature in
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xTras that the other packages don’t have. Once this is done, we can define the
metric as usual:

In[5]:= DefMetricPerturbation /. Options@DefMetric

Out [5]= True

In[6]:= DefMetric[-1, g[-a, -b], CD, {";", "\[Del]"}]

During evaluation of In[6]:= ** DefTensor: Defining symmetric
metric tensor g[-a,-b].

<<< truncated output here >>>

During evaluation of In[6]:= ** DefTensor: Defining weight +2 density Detg [].

During evaluation of In[6]:= ** DefParameter: Defining parameter
PerturbationParameterg.

During evaluation of In[6]:= ** DefTensor: Defining tensor
Perturbationg[LI[order],-a,-b].

We notice that at the very end of the output the tensor Perturbationg[LI[order],-
a,-b] is defined. This allows us to do Lagrangian variations with respect to the
metric.

Now that we have the metric. We can construct some (simple enough)
Lagrangians and try to obtain some equation of motions.

Example: Einstein Field Equations, Λ 6= 0

First we construct the Lagrangian from L̂. We will do variations with VarD and
VarL. We expect to get the same equation of motion either way.

In theory, we have

L̂ = (R− 2Λ) L =
√
−gL̂. (2.1544)

And so in Mathematica:

DefConstantSymbol [\[ CapitalLambda ]]

** DefConstantSymbol: Defining constant symbol \[ CapitalLambda ].

LagHatCosmo := LagHatRicci - 2*\[ CapitalLambda]

LagCosmo := Sqrt[-Detg []]*( LagHatRicci - 2*\[ CapitalLambda ])

eom3 := VarD[g[-a, -b], CD][ LagCosmo]

eom3/Sqrt[-Detg []] == 0 // ContractMetric

eom4 := VarL[g[-a, -b], CD][ LagHatCosmo]

eom4 == 0 // ContractMetric

To get the equation of motion in the correct form when working with L, we
will need to divide out

√
−g in the end because it’s not taken care of by VarD.

Not surprisingly, we get
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For the forgetful reader, the Einstein field equation is given by

Rµν − 1

2
gµνR+ Λgµν = 0 (2.1545)

where Rµν is the Ricci (upper?) tensor, gµν is the inverse metric, Λ is the cos-
mological constant, and R is the Ricci scalar.

In the other covariant form with the inverse metric, the Einstein field equa-
tions look exactly the same, except for the inverted indices:

Rµν −
1

2
gµνR+ Λgµν = 0 (2.1546)

This could be obtained in exactly the same fashion with xACT, except that
the metric used in VarD and VarL are now the inverse metric:

eom3 := VarD[g[a, b], CD][ LagCosmo]

eom3/Sqrt[-Detg []] == 0 // ContractMetric

eom4 := VarL[g[a, b], CD][ LagHatCosmo]

eom4 == 0 // ContractMetric

Example: The weak field action

From Sean Carroll’s Spacetime & Geometry, or from the CFT notes, we have
seen the weak field action:

S =

ˆ
d4x
√
−gL =

ˆ
d4xL (2.1547)

https://huanqbui.com/LaTeX projects/Classical_Fields_Theory/HuanBui_ClassicalFieldTheory.pdf
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where

L =
1

2

[
(∂µh

µν)(∂νh)− (∂µh
ρσ)(∂ρh

µ
σ) +

1

2
ηµν(∂µh

ρσ)(∂νhρσ)− 1

2
ηµν(∂µh)(∂νh)

]
.

(2.1548)

We know that when requiring δS = 0 ⇐⇒ δS/δhµν = 0, i.e., the variational
derivative of S with respect to hµν is zero, we get the Einstein tensor Gµν given
by

Gµν = Rµν −
1

2
ηµνR

=
1

2

(
∂σ∂µh

σ
ν + ∂ν∂σh

σ
µ − ∂µ∂νh−�hµν − ηµν∂ρ∂λhρλ + ηµν�h

)
(2.1549)

Let’s check this in xACT, as an exercise in indexing and of course in using
xACT. Here are the things we will need to do, in order: (1) importing the pack-
ages, (2) defining the manifold, (3) turning on the metric variations option, (4)
defining the metric ηµν (don’t worry about making it Minkowskian), (5) defin-
ing the perturbation hµν , (6) defining the Lagrangian, (7) taking the variational
derivative of the Lagrangian with VarD (assuming

√
−η = 1, of course).

... (import packages here)

...
DefManifold[M4 , 4, {a, b, c, d, e, f, i, k, l, m, n}]

DefMetricPerturbation /. Options@DefMetric

DefMetric[-1, \[Eta][-a, -b], CD, {"%", "\[Del]"}]

DefMetricPerturbation [\[Eta], h, \[ Epsilon ]]

Lag := (1/
2)*((CD[-m][h[LI[1], m, n]])*(CD[-n][h[LI[1], -c, c]]) - (CD[-m][
h[LI[1], c, d]])*(CD[-c][h[LI[1], m, -d]]) + (1/2)*\[ Eta][m,
n]*(CD[-m][h[LI[1], c, d]])*( CD[-n][h[LI[1], -c, -d]]) - (1/
2)*\[ Eta][m,
n]*(CD[-m][h[LI[1], c, -c]])*(CD[-n][h[LI[1], d, -d]]))

(VarD[h[LI[1], c, d], CD][Lag*Sqrt[-Det\[Eta ][]]]/
Sqrt[-Det\[Eta ][]]) /. delta[-LI[1], LI[1]] -> 1 //
ExpandPerturbation // ContractMetric // ToCanonical

Here’s what we get:
Putting this back into LATEX after doing some manual contractions/simplifi-

cations, plus noting that the covariant derivative here is just the regular partial
derivative, we find that

Gµν =
1

2

(
−�hµν + ∂σ∂νh

σ
µ + ∂σ∂µh

σ
ν − ηµν∂λ∂σhλσ + ηµν�h− ∂µ∂νh

)
(2.1550)

which matches exactly with the Einstein tensor Gµν provided earlier.
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Note that when calling the perturbation metric hµν in xACT, make sure
that you are calling it by h[LI[order],-m,-n], so that xACT knows you mean
to call the perturbation metric.
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2.12.5 Undefining Basics: Playtime’s Over!

This is not a recommendation. This is something we have to do before once we
are done with a calculation session, unless we are absolutely sure you will not
need a separate sheet for other calculations.

It looks like xACT remembers all definitions, even after we have deleted/put
away an old Mathematica notebook and opened a new one.

To ask Mathematica for the currently defined objects, use the following
command:

?Global ‘*

This is will give a bunch of defined symbols and objects, some of which have
been manually defined by the user. Our job now is to undefine these. To do
this correctly, we have to do this in the correct order, as some of these objects’
existence depends on others’ existence.

First, we undefine all tensors (excluding the metric, including all scalars), all
scalars, all scalar functions, and all constant symbols. These don’t necessarily
have be in any order.

UndefTensor /@ {contra , covar}

UndefTensor[pert]

UndefTensor[pertsf]

UndefTensor[sf]

UndefTensor[T]

UndefTensor[s]

We then undefine all user-defined covariant derivatives

UndefCovD[CD]

Then we undefine the scalar functions:

UndefScalarFunction[V]

and constant symbols

UndefConstantSymbol[massP]

Now can we undefine the metric:

UndefMetric[gg]

Finally can we undefine the manifold:

UndefManifold[M4]
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With that, we can be sure nothing will go wrong the next time we launch a
new notebook for GR calculations.

A cowboy way to do all this undefining business without writing any com-
mands is to simply reinstall the packages, which comes down to overwriting the
existing packages with the originals. This works every time (and very quickly,
too).
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