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Abstract

In this thesis, we consider a class of function on Rd, called positive homogeneous functions, which
interact well with certain continuous one-parameter groups of (generally anisotropic) dilations.
Generalizing the Euclidean norm, positive homogeneous functions appear naturally in the study
of convolution powers of complex-valued functions on Zd. As the spherical measure is a Radon
measure on the unit sphere which is invariant under the symmetry group of the Euclidean norm,
to each positive homogeneous function P , we construct a Radon measure σP on S = {η ∈ Rd :
P (η) = 1} which is invariant under the symmetry group of P . With this measure, we prove
a generalization of the classical polar-coordinate integration formula and deduce a number of
corollaries in this setting. We then turn to the study of convolution powers of complex functions
on Zd and certain oscillatory integrals which arise naturally in that context. Armed with our
integration formula and the Van der Corput lemma, we establish sup-norm-type estimates for
convolution powers; this result is new and partially extends results of [21] and [22]. Much of this
thesis is based on the article [5].
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Chapter 1

Introduction

In this thesis, we make two distinct studies, a study of surface-carried measures and associated
(generalized) polar-coordinate integration formulas and a study of the convolution powers of
finitely-supported complex-valued functions on Zd. Though these topics appear unrelated, we
will utilize the former (Theorem 3.1.1) as a tool to deduce certain estimates for oscillatory inte-
grals, which are subsequently used to prove a new result related to the latter (Theorem 5.1.2).

1.1 A generalized polar-coordinate integration formula

In R3, we can write every non-zero x in its polar/spherical coordinates as x = rη(θ, φ) where
r = |x| > 0 and η(θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ) is a unique point on the unit sphere. With
this parameterization, we obtain the integration formula

∫

R3

f(x) dx =

∫ ∞

0

∫ 2π

0

∫ π

0
f(rη(θ, φ))r2 sin θ dθ dφ dr,

where the formula breaks the computation into integration over a radial part (integration over r)
and an angular part (integration over the polar and azimuthal angles). In d dimensions, we may
generalize this approach by introducing the spherical measure for the angular part. To introduce
this generalization, we let m be the Lebesgue measure on Rd, and write dx = m(dx) = dm(x). Let
S denote the standard unit sphere in Rd. The spherical measure is the canonical Radon measure
on S for which Θ(S) = d ·m(B) and Θ(OF ) = Θ(F ) for every orthogonal transformation O and
Borel set F ⊆ S. With this measure, we state the classical polar coordinate integration formula as
follows: For every f ∈ L1(Rd) (or non-negative measurable f ),

∫

Rd

f(x) dx =

∫

S

(∫ ∞

0
f(rη)rd−1 dr

)
Θ(dη) =

∫ ∞

0

(∫

S

f(rη)Θ(dη)

)
rd−1 dr. (1.1)

Precise formulation of this classical result can be found in [26] and [11]. For two interesting appli-
cations which provide some useful context, we encourage the reader to see [3] and [10].

In this thesis, we generalize the polar-coordinate integration formula (1.1) and its correspond-
ing measure Θ in a way that is well-aligned to the analysis of certain oscillatory integrals which
appear in the study of convolution powers of complex-valued functions on Zd. Inspired by the
classical integration formula, our generalized integration formula also breaks the integration over
Rd into a radial integration and an angular integration. However, the spherical measure in the

7



8 CHAPTER 1. INTRODUCTION

classical formula is replaced by a more general surface-carried measure which arises naturally
from the (Fourier) analysis of convolution powers. Our generalized formula will prove to be a
useful tool in the analysis of such oscillatory integrals, leading to the advertised sup-norm-type
estimate (Theorem 5.1.2) for convolution powers of complex-valued functions and, in a forthcom-
ing article, a theory of local limit theorems.

To describe the generalized polar coordinate integration formula treated in this article, we must
first introduce a class of functions on Rd which share several desirable properties with the Eu-
clidean norm. This gives rise to the notion of positive homogeneous functions, which we will
define and study in Chapter 2. First, let us introduce the other main focus of this thesis: a study of
convolution powers of complex-valued functions.

1.2 Beyond the Classical Local (Central) Limit Theorem

In random walk theory and probability theory, convolution powers are of central importance.
Given a sequenceX1, X2, · · · ∈ Zd of i.i.d. random vectors with a common probability distribution
φ, i.e., for each k = 1, 2, . . . ,

φ(x) = P(Xk = x)

for all x ∈ Zd, we consider the sequence of random vectors S1, S2, . . . where Sn = X1+X2+· · ·+Xn

for each n ∈ N+. Sn represents the position of a random walker after n steps where each step is
taken according to φ, independently of the last step. The sequence {Sn} is called a random walk
driven by φ.

Using the fact that the random vectors X1, X2, . . . are i.i.d, we may compute the distribution of Sn
as follows. Since S1 = X1, the distribution of S1 is simply φ. To compute the distribution of S2, for
each x ∈ Zd, we have

P(S2 = x) = P(X1 +X2 = x)

= P(X2 = x−X1)

=
∑

y∈Zd

P(X2 = x− y|X1 = y)

=
∑

y∈Zd

P(X2 = x− y)P(X1 = y)

=
∑

y∈Zd

φ(x− y)φ(y)

where the penultimate equality follows from the independence of X1 and X2. In other words, the
distribution of S2 is given by the convolution of φ with itself:

(φ ∗ φ)(x) =
∑

y∈Zd

φ(y − x)φ(y).

By induction, the distribution of Sn is the nth-convolution power of φ and is defined iteratively by

φ(n)(x) =
∑

y∈Zd

φ(n−1)(x− y)φ(y) = φ(n−1) ∗ φ(1)

for n = 2, . . . and x ∈ Zd, where φ(1) = φ.
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Example 1. Consider the following simple random walk driven by φ : Zd → R, which is given by

φ(x) =

{
1/2d, x = ±ej
0, otherwise

for j = 1, 2, . . . , d, where ej denotes the unit vector pointing in the jth direction. Here, Sn repre-
sents the position of the random walker after n steps where each step is taken uniformly in any
direction on the lattice, independently of the last step. For d = 2,

(φ ∗ φ)(x) =





1/4, x = (0, 0)

1/8, x = (±1,±1)

1/16, x = (±2, 0) or (0,±2)

0, otherwise

.

Figure 1.1 shows the distribution of Sn for n = 10 and n = 200.

(a) n = 10. (b) n = 200.

Figure 1.1: Distribution of Sn for n = 10 and n = 200.

△

Two interesting concepts in random walk theory are recurrence and transience. A random walk
is recurrent if it visits its starting position infinitely often with probability one and transient if it
visits its starting position finitely often with probability one

Definition 1.2.1. Let {Xn} be a collection of Zd-valued i.i.d random vectors with zero mean and
consider the associated random walk {Sn}. We say that the random walk is called recurrent if

P(Sn = 0 for infinitely many n) = 1.

It is called transient if
P(Sn = 0 for infinitely many n) = 0.
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What’s amazing is that the two possibilities of recurrence and transience for a random walk are
collectively exhaustive: A random walk is either recurrent or it is transient. This is a consequence
of the first and second Borel-Cantelli Lemmas. The following theorem gives a characterization of
recurrence and transience in terms of the convolution powers of the distribution φ.

Theorem 1.2.2. The random walk driven by φ is recurrent if and only if
∑∞

n=1 φ
(n)(0) = ∞.

It can be shown that a simple symmetric random walk on Zd is recurrent in dimensions d = 1, 2
and transient in dimensions d ≥ 3. A famous quote by Shizuo Kakutani summarizes this result
as follows: “A drunken man will always find his way home but a drunken bird may get lost for-
ever.” Here, we are of course assuming that the motion of both biological entities can be described
as simple random walks. For a more thorough description of random walk theory, the reader may
refer to [25].

Fourier analysis allows one to learn about the asymptotic behavior of φ(n) as n→ ∞. For example,
when φ is associated with a random walk that is symmetric, aperiodic, irreducible, or of finite
range (The reader may again refer to [25] for more details regarding these terminologies), one
may establish the following theorem (Theorem 1.2.3). The first statement concerns the sup-norm
behavior of φ(n) and helps one determine if the random walk is recurrent or transient. The second
is the celebrated local limit theorem (originally stated by Abraham de Moivre for independent
Bernoulli trials and proved by Pierre-Simon Laplace [18]). The third is a so-called Gaussian-type
estimate.

Theorem 1.2.3. Let φ be a symmetric, aperiodic and irreducible probability distribution on Zd with
finite variance.

1. There are positive constants C1, C2 for which

C1

nd/2
≤ ‖φ(n)‖∞ ≤ C2

nd/2

for all n ∈ N+, where ‖φ(n)‖∞ = supx∈Zd

∣∣φ(n)(x)
∣∣.

2. There exists a simple point-wise description of φ(n) in the large n limit: The classical local limit
theorem states that

φ(n)(x) =
1

nd/2
Φφ

( x

nd/2

)
+ o

(
1

nd/2

)

uniformly for x ∈ Zd, where Φφ is the generalized Gaussian density

Φφ(x) =
1

(2π)d

∫

Rd

exp (−ξ · Cφξ) e−ix·ξ dξ =
1

(2π)d/2
√
detCφ

exp

(
−
x · C−1

φ x

2

)
,

with Cφ the positive definite covariance matrix associated to φ.
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3. A global point-wise estimate for φ(n) is the so-called Gaussian estimate: There are positive con-
stants C and M for which

φ(n)(x) ≤ C

nd/2
exp

(
−M |x|2

n

)

for all x ∈ Zd and n ∈ N+, where | · | denotes the Euclidean norm.

Example 2. To illustrate the claim of the first item of Theorem 1.2.3, we may return to the simple
random walk in Z2 from Example 1. Figure 1.2 shows that sup |φ(n)| decays like 1/n, as expected.

0 2 4 6 8 10 12 14

log
2
(n)

-14

-12

-10

-8

-6

-4

-2

0

log
2
 f(n)

log
2
(n

-1
)

(a) n = 300.

0 50 100 150 200 250 300 350 400 450 500

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 f(n)

n
-1

(b) n = 600.

Figure 1.2: The decay of f(n) := sup |φ(n)| in n. Here, φ is defined in Example 1 for
d = 2.

△
When φ is not necessarily a probability distribution, the question of whether one can still obtain
global and local/point-wise decay estimates and descriptions of its convolution powers φ(n) in the
large n limit remains valid despite the lack of an underlying stochastic (probabilistic) process 1. In
the works of Persi Diaconis, Evan Randles, and Laurent Saloff-Coste (see, for example, [21], [22],
[7]), one drops the positivity and real-valuedness of φ, and considers the collection of absolutely
summable complex-valued functions φ defined on the d-dimensional integer lattice Zd, i.e., this is
the set of functions φ : Zd → C for which

‖φ‖1 =
∑

x∈Zd

|φ(x)| <∞.

We denote this collection (a Banach space) but ℓ1(Zd). For each such φ ∈ ℓ1(Zd), one can com-
pute its convolution powers2 φ(n) (as done in the probabilistic setting) and study the asymptotic
behavior of φ(n). As illustrated in Example 3, one still finds rich limiting behaviors of φ(n), many
of which do not appear in the probabilistic setting.

1There is a related generalized notion of “pseudo-process” whose steps are driven by “pseudo random variables”
whose distributions are signed (See [14]).

2Equipped with the convolution product, ℓ1(Zd) becomes a Banach algebra.
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Example 3. Consider the function φ : Z2 → C defined below. Figure 1.3 shows the real part of φ(n)

for n = 300 and n = 600.

φ(x, y) =
1

768
×





602− 112i (x, y) = (0, 0)

56 + 32i (x, y) = (−1, 0)

72 + 32i (x, y) = (1, 0)

−16 (x, y) = (±2, 0)

56 + 32i (x, y) = (0,±1)

−28− 8i (x, y) = (0,±2)

56 (x, y) = (0,±3)

−1 (x, y) = (0,±4)

4 (x, y) = (−1,±1)

−4 (x, y) = (1,±1)

0 otherwise.

(a) n = 300. (b) n = 600.

Figure 1.3: The real part of φ(n) for (a) n = 300 and (b) n = 600

△

In contrast to the probabilistic setting (as see in Example 1 (with your pictures), the non-Gaussian
behavior of φ(n) for a general complex-valued φ calls for new analysis and theory beyond The-
orem 1.2.3.. This is the main objective of the recent papers [21], [22], [7], in which great strides
have been made towards proving local limit theorems for a large class of sufficiently nice func-
tions φ. In [21], the theory is developed for the case where φ is defined on Z. Extending earlier
works by Thomée, de Forest, Schoenberg3, and Greville and using techniques of Fourier analy-
sis, [21] not only established asymptotic bounds for the sup-norm of the convolution powers of
finitely-supported complex-valued functions on Z but also proved extended local limit theorems
pertaining to this entire class. In [22], a local limit theorem is attained for the case concerning the

3Mathematician Isaac Jacob Schoenberg (1903-1990) was a Romanian-American Assistant Professor of Mathematics
at Colby College from 1936 to 1941. He is most well-know for his discovery of mathematical splines – special functions
defined piecewise by polynomials.
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d-dimensional integer lattice; however, it is only applicable to special subset of φ’s. The natural
next step is therefore to generalize the result of [22] to all admissible φ on Zd.

In this thesis, we will mainly be concerned with the question of how the sup-norm of φ(n) decays
in n, which is paralleled by Item 1 in Theorem 1.2.3, and our goal is to obtain a global estimate
for ‖φ(n)‖∞. The following theorem (Theorem 1.1 of [21]) provides a complete answer for finitely
supported functions in Zd where d = 1.

Theorem 1.2.4 (Theorem 1.1 of [21]). Let φ : Z → C be finitely supported and whose support
contains more than one point. Then there is a natural number m ≥ 2, and positive constants, A, C,
and C ′ such that

Cn−1/m ≤ A−n‖φ(n)‖∞ ≤ C ′n−1/m

for all natural numbers n. Here, A = sup |φ̂(ξ)| where φ̂ is φ’s Fourier transform, introduced in our
Chapter 5.

Theorem 1.4 of [22] (Theorem 1.2.5 below) treats the d ≥ 1 case and considers “sufficiently nice”
rather than an all encompassing class of functions. Its hypotheses will be defined in Chapter 5; the
objects Sd, µφ, Ω(φ) and the notion of positive homogeneous type are due to [22] and will be made
more precise in the following chapters. The reader may refer to [22] for their definitions; however,
knowing these definitions is not a prerequisite for what is to come in this paper.

Theorem 1.2.5 (Theorem 1.4 of [22]). Let φ ∈ Sd be such that sup |φ̂| = 1 and suppose that each

ξ ∈ Ω(φ) is of positive homogeneous type for φ̂. Then there are positive constants µφ, C, and C ′ for
which

C ′n−µφ ≤ ‖φ(n)‖∞ ≤ Cn−µφ

for all n ∈ N.

The main idea of the above result is that, similar to the results of [21], one can obtain a uniform sup-
norm bound for the convolution powers of φ when d > 1, but under the positive homogeneous
condition. One main objective of this thesis is thus to relax this condition and partially extend the
above theorem. This requires the generalized polar-coordinate integration formula, which we will
formally construct in Chapter 3.

1.3 Some notational conventions

In addition to the conventions outlined in the previous sections, we shall denote by N, and N+

the set of (non-negative) natural numbers and positive natural numbers, respectively; the d-tuples
formed by elements of these sets will be denoted by Zd, Nd, and Nd+. Our setting is d-dimensional
Euclidean space Rd with coordinates (x1, x2, . . . , xd) equipped with the dot product and associ-
ated Euclidean norm. We take Rd to be equipped with its usual topology and (oriented) smooth
structure. Given x ∈ Rd and R > 0, the open ball with center x and radius R is denoted by BR(x)
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and its corresponding sphere is denoted by SR(x). We write B = B1(0) to denote the standard
unit ball in Rd. For a subset A of a topological space, we denote by Int (A), A, and ∂A its interior,
closure and boundary, respectively. We shall denote by End(Rd) the collection of linear transfor-
mations on Rd and by Md(R) the corresponding set of d × d real matrices. We denote by Gl(Rd)
the general linear group and by Gld(R) the corresponding group of d× d invertible real matrices.
For E ∈ End(Rd) (or E ∈ Md(R)), ‖E‖ will denote the so-called operator norm.



Chapter 2

Positive Homogeneous Functions

In this chapter, we make precise and extend the definition of positive homogeneous polynomi-
als as it appeared in [22]. We also introduce the notions of subhomogeneous functions and
strongly subhomogeneous functions, which appear alongside positive homogeneous polynomi-
als/functions in a certain Taylor expansion related to the Fourier transform of φ. These classes of
functions are key ingredients for estimating the convolution powers of φ via the Van der Corput
lemma, particularly in the cases where oscillatory integrals are involved. This chapter is essen-
tially Section 2 of [5].

To start, we shall review the notion of continuous one-parameter groups defined in Definition
2.0.1. Continuous one-parameter groups appear naturally when one characterizes the radial scal-
ing when parameterizing Rd. For instance, in the usual polar coordinates, we have isotropic

scaling in the radial variable r and can simply choose our continuous one-parameter group to be
one which corresponds nicely with the Euclidean norm: {Tr}r>0 = rE where E = diag(1/2, 1/2)
in the standard representation. It is clear that {Tr}r>0 is a group, and that any point v ∈ Rd \ {0}
can be written uniquely as rEη where η ∈ S. In general, E needs not be a multiple of the iden-
tity transformation I (whose standard representation is of course diag(1, 1)). In such cases, we
have anisotropic scaling. For example, let E′ be diag(1/2, 1/4) in the standard basis. Any point
v ∈ R2 \ {0} can also be written uniquely as rE

′

η′ where η′ ∈ {(η′1, η′2) ∈ R2 : η′21 + η′42 = 1} and
r > 0.

Definition 2.0.1. {Tr}r>0 ⊆ Gl (Rd) is said to be a continuous one-parameter group if

1. Tr is continuous in r (in the usual topology of Gl(Rd));

2. T0 = Id, where Id denotes the identity map on Rd;

3. Tuv = TuTv, for all u, v > 0.

It is well-known (c.f., [8, 9, 22]) that every continuous one-parameter group {Tr} has the unique
representation

Tr = rE = exp((ln r)E) =
∞∑

k=0

(ln r)k

k!
Ek

15
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for some E ∈ End(Rd). E is called the (infinitesimal) generator of {Tr}, and {Tr} is said to be
generated by E. For simplicity, we shall use this representation throughout the paper, i.e., any
element of {Tr}r>0 has the form rE . We write Tr = rE to be explicit about E.

An important possible feature of a continuous one-parameter group {Tr}r>0 is the contracting

property. Intuitively, this means that the radial scaling becomes vanishingly small as the param-
eter r approaches 0. This property will become useful in our construction of the measure on S,
where it is used to contract sufficiently nice sets F ⊆ S into the unit ball. Here, S is the unital level
set of a positive homogeneous function to be introduced later in this section.

Definition 2.0.2. A continuous one-parameter group {Tr} is said to be contracting if

lim
r→0

‖Tr‖ = 0.

The next two results follow immediately from this definition. The first result is by virtue of conti-
nuity and the Banach-Steinhaus theorem (or, the uniform boundedness principle), while the sec-
ond by the continuity of the determinant with respect to the operator norm. The proof of Proposi-
tion 2.0.3 is presented in Appendix 6.1.

Proposition 2.0.3. Let {Tr} be a continuous one-parameter group. Then {Tr} is contracting if and
only if for all x ∈ Rd,

lim
r→0

|Trx| = 0. (2.1)

Proposition 2.0.4. Let {Tr} ⊆ Gl(Rd) be a continuous one-parameter group with generator E. If
{Tr} is contracting, then trE > 0.

Proof. The supposition that {Tr} is a contracting group implies that rE → 0 in the operator-norm
as r → 0; here 0 is zero transformation. Because the determinant is continuous with respect to the
operator norm, we have

0 = det(0) = det
(
lim
r→0

rE
)
= lim

r→0
det
(
rE
)
= lim

r→0
rtrE

in view of the preceding proposition. Therefore, trE > 0.

Now we are ready to define the notion of “positive homogeneous functions.” Recall the previous
example of anisotropic scaling in which any point v ∈ R2 can be written as rEη where E has
standard matrix representation diag(1/2, 1/4) and η ∈ {(η1, η2) ∈ R2 : P (η1, η2) = η21 + η42 = 1}.
We observe that the function P is “homogeneous” with respect to the matrix E in the sense that

P (rEx) =
(
r1/2x1

)2
+
(
r1/4x2

)4
= rP (x)
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for all x ∈ Rd and r > 0. Because such functions (which are not necessarily polynomials, as we
will see) often show up in estimating convolution powers and their attractors, we will generalize
and make precise this notion of homogeneity. In what is to follow, for a function P : Rd → R, we
shall call

S = {η ∈ Rd : P (η) = 1}
the unital level set of P . We say that P is positive definite if P is non-negative and P (x) = 0 only
when x = 0. Given a continuous one-parameter group {Tr}, we say that P is homogeneous with

respect to {Tr} if
rP (x) = P (Trx) = P (rEx) (2.2)

for all r > 0 and x ∈ Rd. For a given map P : Rd → R, the set of all E for which (2.2) is satisfied is
called the exponent set of P and shall be denoted by Exp(P ). We note that even though P often
appears as a polynomial in the convolution powers setting, we only require that it be a continuous
function.

The forthcoming Proposition 2.0.5 relates the unital level set S to the contracting group {rE}
for a positive-definite P and lists the (equivalent) defining characteristics of a positive homoge-

neous function. This characterization highlights an interplay between positive definite functions,
contracting groups, and unital level sets and sets the stage for our definition of positive homoge-
neous functions.

Just before we state and prove this proposition, however, we introduce some notation and
point out some basic topological objects connected to positive homogeneous functions. Given a
positive homogeneous function P , we define

Br = {ξ ∈ Rd : P (ξ) < r} and Ars = {ξ ∈ Rd : s ≤ P (ξ) < r}
for r > 0 and 0 ≤ s < r; these are P -adapted analogues of the Euclidean ball, Br, and the annulus
of inner radius s and outer radius r, respectively. In view of of Proposition 2.0.5 and the continuity
of P , we see that, for each r > 0, Br is open and Br is compact. Further, by setting B = B1, it is a
straightforward exercise to see that B = B ∪ S where ∂B = S is the unital level set associated to
P .

Proposition 2.0.5. Let P : Rd → R be continuous, positive definite, and have Exp(P ) 6= ∅. The
following are equivalent:

(a) S is compact.

(b) There is a positive number M for which

P (x) > 1

for all |x| ≥M .

(c) For each E ∈ Exp(P ), {rE} is contracting.

(d) There exists E ∈ Exp(P ) for which {rE} is contracting.

(e) limx→∞ P (x) = ∞.
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Proof. In the case that d = 1, it is easy to see that every function satisfying the hypotheses is of the
form

P (x) =

{
P (1)xα for x ≥ 0

P (−1)(−x)α for x < 0

for some α > 0 where P (1), P (−1) > 0 and Exp(P ) consists only of the linear function x 7→ x/α.
In this setting, it is easy to see that Conditions (a)–(e) are satisfied (always and) simultaneously.
We shall therefore assume that d > 1 for the remainder of the proof.

(a) ⇒ (b). Given that S is compact, it is bounded and so we have a positive number M for which
P (x) 6= 1 for all |x| ≥ M . Observe that, if for two points x1, x2 ∈ Rd \ BM , P (x1) < 1 < P (x2)
or P (x2) < 1 < P (x1), then by virtue of the path connectedness of Rd \ BM and the intermediate
value theorem, we would be able to find x0 ∈ Rd \ BM for which P (x0) = 1, an impossibility.
Therefore, to show that Condition (b) holds, we must simply rule out the case in which P (x) < 1
for all |x| ≥ M . Let us therefore assume, to reach a contradiction, that this alternate condition
holds. In this case, we take E ∈ Exp(P ) and y ∈ Rd \ {0} and observe that

lim
r→∞

P (rEy) = lim
r→∞

rP (y) = ∞.

By virtue of our supposition, we find that |rEy| < M for all sufficiently large r. In particular, there
exists a sequence rk → ∞ for which |rEk y| ≤M for all k and

lim
k→∞

P (rEk y) = ∞.

Because BM , the closure of BM , is compact, {rEk y} has a convergent subsequence which we also
denote by {rEk y} by a slight abuse of notation. In view of the continuity of P at η := limk→∞ rEk y,
we have

P (η) = lim
k→∞

P (rEk y) = lim
k→∞

rkP (y) = ∞,

which is impossible. Thus Condition (b) holds. //

(b) ⇒ (c). We shall prove the contrapositive statement. Suppose that, for E ∈ Exp(P ), {rE}
is not contracting. In this case, by virtue of Proposition 2.0.3, there exists x ∈ Rd \ {0} and
a sequence rk → 0 for which rEk x does not converge to zero in Rd. If our sequence {rEk x} is
bounded, then it must have a convergent subsequence {rEkmx} with non-zero subsequential limit

η := limm→∞ rEkmx. By the continuity of P , we have

P (η) = lim
m→∞

P (rEkmx) = lim
k→∞

rkmP (x) = 0

which cannot be true for it would violate the positive definiteness of P . We must therefore con-
sider the other possibility: The sequence {rEk x} is unbounded. In particular, there must be some
k0 for which rk0 < 1/P (x) and |rEk0x| > M . Upon putting y = rEk0x, we have |y| > M and

P (y) = P (rEk0x) = rk0P (x) < 1 which shows that Condition (b) cannot hold. //

(c) ⇒ (d). This is immediate. //

(d) ⇒ (e). Let E ∈ Exp(P ) be such that the one-parameter group {rE} is contracting and let
{xk} ⊆ Rd be such that limk→∞ |xk| = ∞. By virtue of Proposition 6.1.7, there exist sequences
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{rk} ⊆ (0,∞) and {ηk} ∈ S for which rEk ηk = xk for all k and limk→∞ rk = ∞. Given that P is
continuous and strictly positive on the compact set S, we have infη∈S P (η) > 0 and therefore

lim inf
k

P (xk) = lim inf
k

rkP (ηk) ≥ lim inf
k

rk

(
inf
η∈S

P (η)

)
= ∞

showing that limk→∞ P (xk) = ∞, as desired. //

(e) ⇒ (a). Because S is the preimage of the closed singleton {1} under the continuous function
P , it is closed. By virtue of Condition (e), S is also be bounded and thus compact in view of the
Heine-Borel theorem. //

The characterizing Proposition 2.0.5 gives us the following definition.

Definition 2.0.6. Let P : Rd → R be continuous, positive definite and have Exp(P ) 6= ∅. If any one
(and hence all) of the equivalent conditions in Proposition 2.0.5 are fulfilled, we say that P is positive
homogeneous.

Example 4. For any α > 0, the αth-power of the Euclidean norm x 7→ |x|α is positive homoge-
neous. In this case, the unital level set S is the standard unit sphere S = S1, B = B = B1, and

Exp(| · |α) = 1

α
I + o(d)

where I is the identity and o(d) is the Lie algebra of the orthogonal group Od(R) and is character-
ized by the set of skew-symmetric matrices. △
Example 5. In the language of L. Hörmander [13], consider a semi-elliptic polynomial of the form

P (x) =
∑

|α:n|=1

aαx
α, (2.3)

where n = (n1, n2, . . . , nd) is a d-tuple of positive even natural numbers1, and, for each multi-index
α = (α1, α2, . . . , αd) ∈ Nd,

|α : n| :=
d∑

k=1

αk
nk
,

and
xα =

(
x1
)α1
(
x2
)α2 · · ·

(
xd
)αd

for x =
(
x1, x2, . . . , xd

)
∈ Rd. If we consider E ∈ End(Rd) whose standard matrix representation

is diag(1/n1, 1/n2, . . . , 1/nd), we have

P
(
rEx

)
=

∑

|α:n|=1

aα

(
r1/n1x1

)α1
(
r1/n2x2

)α2

· · ·
(
r1/ndxd

)αd

=
∑

|α:n|=1

aαr
|α:n|xα = rP (x)

for all x ∈ Rd and r > 0 and therefore E ∈ Exp(P ). It is easy to see that Tr = rE is a contracting
group and so we have the following statement by virtue of Proposition 2.0.5:

1In Section 5.2, we will write this as n = 2m for m ∈ Nd
+.
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If a semi-elliptic polynomial P (x) of the form (2.3) is positive definite, then it is positive homogeneous.

For two concrete examples, consider the polynomials P1 and P2 on R2 defined by

P1(x, y) = x2 + y4 and P2(x, y) = x2 +
3

2
xy2 + y4

for (x, y) ∈ R2. It is straightforward to see that P1 and P2 are both positive definite and semi-
elliptic of the form (2.3) with n = (2, 4). Figure 2.1 illustrates P1 and P2 along with their associated
unital level sets S1 and S2 and corresponding sets B1 = {(x, y) ∈ R2 : P1(x, y) < 1} and B2 =
{(x, y) ∈ R2 : P2(x, y) < 1} written with a slight abuse of notation.

Figure 2.1: The left column illustrates the graph of P1 with its associated S1 and
convex B1. The right column illustrates the graph of P2 with its associated S2 and
non-convex B2.

Remark 1. In [22], a positive homogeneous polynomial P is, by definition, a complex-valued multivariate
polynomial on Rd for which Exp(P ) contains an element of End(Rd) whose spectrum is purely real and
for which R = ReP is positive definite (see Proposition 2.0.7 below). By virtue of Proposition 2.2 of [22],
for each such polynomial P and E ∈ Exp(P ) with real spectrum, there exists A ∈ Gl(Rd) (representing
a change of basis of Rd) and a d-tuple of even positive natural numbers n = (n1, n2, . . . , nd) ∈ Nd+ for
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which A−1EA has standard matrix representation diag(1/n1, 1/n2, . . . , 1/nd) and (P ◦ A)(x) is semi-
elliptic of the form (2.3) with, in this case, complex coefficients. It follows that every real-valued positive
homogeneous polynomial (in the sense of [22]) is a positive homogeneous function in the sense of the present
article. Of course, the semi-elliptic polynomials discussed above are positive homogeneous polynomials in
the sense of [22] where A = I . We refer the reader to Section 7.3 of [22] which presents a real-valued
positive homogeneous polynomial which is not semi-elliptic (and so A 6= I).

△

Example 6. Let Q be a positive homogeneous function with exponent set Exp(Q) and unital level
set SQ = {η : Q(η) = 1}. Given any f ∈ C0(SQ) which is positive on SQ and E ∈ Exp(Q), define
P = Pf,E,Q : Rd → R by

P (x) =

{
Q(x)f

(
(Q(x))−Ex

)
x 6= 0

0 x = 0

for x ∈ Rd. We claim that P is positive homogeneous and E ∈ Exp(P ).

Proof. To see this, we first observe that, for any x ∈ Rd \ {0}, Q((Q(x))−Ex) = Q(x)/Q(x) = 1
and hence Q(x)−Ex ∈ SQ and so the above formula makes sense and ensures that P is continuous
on Rd \ {0}. Furthermore, because f is continuous and positive on the compact set SQ, we have
0 < minSQ

f ≤ maxSQ
f < ∞. From this it follows that P is positive definite and, by virtue of the

squeeze theorem, continuous at x = 0. For any r > 0 and x ∈ Rd, we have

P (rEx) = Q(rEx)f(Q(rEx)−ErEx) = rQ(x)f(Q(x)−Ex) = rP (x)

and therefore E ∈ Exp(P ). Upon noting that {rE} is contracting by virtue of Proposition 2.0.5, we
conclude that P is positive homogeneous. //

The utility of this construction allows us to see that “most” positive homogeneous functions are
not smooth. To see this, we fix a positive homogeneous function Q ∈ C∞(Rd) and remark that SQ
is necessarily a compact smooth embedded hypersurface of Rd (see Proposition 3.2.1). If P = Pf,Q
is C∞(Rd), P |SQ

= f is necessarily C∞(SQ). It follows that P /∈ C∞(Rd) whenever f is chosen

from C0(SQ) \C∞(SQ). By precisely the same argument, we see that P ∈ C0(Rd) \Ck(Rd) when-
ever f ∈ C0(SQ) \ Ck(SQ) for each k ∈ N+.

As a straightforward example, consider Q(x, y) = |(x, y)| =
√
x2 + y2 on R2 with SQ = S and

define

f(x, y) = w(Arg(x, y)) + 3

where w : R → R is defined by

w(t) =
∞∑

n=0

2−n cos (3nt)

for t ∈ R. w is 2π-periodic version of the Weierstrass function. The resulting positive homoge-
neous function P is continuous but is nowhere differentiable. Figure 2.2 illustrates this function P
alongside Q, and together with their associated unital level sets. We note that SP 6= SQ and this is
generally the case unless f ≡ 1.

△
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Figure 2.2: The left column illustrates P ’s graph and associated level set SP con-
taining BP . The right column illustrates Q’s graph and associated level set SQ
containing BQ.

In most situations when estimating convolution powers, we are working with a continuous, positive-
definite P and some E ∈ Exp(P ). To see if P is a positive homogeneous function, we can check if
the spectrum of E is real. The following proposition captures this result.

Proposition 2.0.7. If P is continuous, positive definite and Exp(P ) contains an E ∈ End(Rd) with
real spectrum, then {rE} is contracting and hence all of the conditions in Proposition 2.0.5 are (simul-
taneously) met.

Proof. Since Spec(E) is real, the characteristic polynomial of E factors completely over R and so
we may apply the Jordan-Chevalley decomposition to writeE = D+N whereD is diagonalizable,
N is nilpotent, and DN = ND. Let v1, v2, . . . , vd ∈ Rd be an eigenbasis of D whose corresponding
eigenvalues λ1, λ2, . . . , λd satisfy λk ≤ λk+1 for all k = 1, 2 . . . , d− 1.

Let us assume, to reach a contradiction, that {rE} is not contracting. Repeating the same
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argument given in (b) ⇒ (c) in the proof of Proposition 2.0.5, leaves us with only one possibility:

There is a non-zero x =
∑d

i=1 αivi ∈ Rd, and a sequence rk → 0 for which |rEk x| → ∞. Let n + 1
denote the index of N , then we have

rEk x = rN+D
k x = rNk r

D
k x =

n∑

j=0

d∑

i=1

rλik (log rk)
j

j!
αiN

jvi

for all k. Since
∣∣rEk x

∣∣ → ∞ and rk → 0, at least one eigenvalue of D must be non-positive. To see
this, suppose λi > 0 for all i = 1, 2, . . . , d, then in view of L’Hôpital’s rule we have

lim
rk→0

(log rk)
jrλik = 0

for any j = 0, 1, 2, . . . , n and i = 1, 2, . . . , d, which implies that
∣∣rEk x

∣∣ 6→ ∞ as rk → 0, contradicting
our assumption. Thus, λ1 = min{Spec(D)} ≤ 0. Let k be such that Nkv1 6= 0 but Nk+1v1 = 0, then

rENkv1 = rDrNNkv1 = rD
∞∑

j=0

(log r)j

j!
N jNkv1 = rDNkv1 = NkrDv1 = rλ1Nkv1

where we have used the fact that DN = ND. If λ1 = 0, then

∞ = lim
r→∞

rP (Nkv1) = lim
r→∞

P (rDrNNkv1) = lim
r→∞

P (r0Nkv1) = lim
r→∞

P (Nkv1) = P (Nkv1)

which is impossible since P is continuous at Nkv1. On the other hand, if λ1 < 0, then

∞ = lim
r→∞

rP (Nkv1) = lim
r→∞

P (rDrNNkv1) = lim
r→∞

P (rλ1Nkv1) = P (0) = 0

which is also impossible.

Given a positive homogeneous function P , let Sym(P ) be the set of O ∈ End(Rd) for which

P (Ox) = P (x)

for all x ∈ Rd. By virtue of the positive-definiteness of P , it is easy to see that Sym(P ) is a subgroup
of Gl(Rd). For this reason, Sym(P ) is said to be the symmetry group associated to P . It turns out
that Sym (P ) is a subgroup of SL±(Rd), the group of matrices with determinant ±1. Later, we will
show later that the measures of sufficiently nice sets on S are invariant under transformation by
any element of Sym(P ), as expected.

Example 7. In Example 4, Sym(| · |α) is precisely the orthogonal group Od(R) and µ|·|α = d/α.
In Example 5, the symmetric set of a semi-elliptic polynomial P of the form (2.3) depends on
the specific nature of the polynomial in question. Concerning the polynomials P1 and P2 in that
example, it is easily shown that Sym(P1) is the four-element dihedral group D2 and Sym(P2) is
the two-element group consisting of the identity and the transformation (x, y) 7→ (x,−y). For a
semi-elliptic polynomial P of the form (2.3),

µP = |1 : n| = 1

n1
+

1

n2
+ · · ·+ 1

nd

and, in particular, µP1
= µP2

= 1/2 + 1/4 = 3/4. △
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Proposition 2.0.8. For each positive homogeneous function P , Sym(P ) is a compact subgroup of
Gl(Rd). Further, it is a subgroup of SL±(Rd).

Proof. By virtue of the Heine-Borel theorem (and the fact that Gl(Rd) is finite dimensional), we
prove that Sym(P ) is closed and bounded. To this end, let {On} ⊆ Sym(P ) be a sequence converg-
ing to O ∈ Gl(Rd). For each x ∈ Rd, the continuity of P guarantees that

P (Ox) = P
(
lim
n→∞

Onx
)
= lim

n→∞
P (Onx) = lim

n→∞
P (x) = P (x).

Hence, O ∈ Sym(P ) and so Sym(P ) is closed.
We assume, to reach a contradiction, that Sym(P ) is not bounded. In this case, there is a

sequence {ηn} ⊆ S for which limn→∞ |Onηn| = ∞. Given that S is compact, by passing to a
subsequence if needed, we may assume without loss in generality that limn→∞ ηn = η ∈ S. By
virtue of Proposition 2.0.5 and the continuity of P ,

P (η) = lim
n→∞

P (ηn) = lim
n→∞

P (Onηn) = ∞

which is impossible. Hence Sym(P ) is bounded.
Now, we want to show that every element of Sym (P ) has determinant ±1. To this end, as-

sume to reach a contradiction that this is not the case. By the homomorphism property of the
determinant, there must exist some O ∈ Sym(P ) for which |det(O)| > 1. Consider the sequence
{On} := {On} ⊆ Sym(P ). Since Sym(P ) is compact, there exists a convergent subsequence
{Onk

} = {Onk} → O′ ∈ Sym(P ). It follows that
∣∣det(O′)

∣∣ = lim
nk→∞

|det(O)|nk = ∞,

which is impossible because this contradicts the continuity of the determinant.

Remark 2. A stronger statement than the second part of Proposition 2.0.8 would be “Sym(P ) is conjugated
to a subgroup of O(Rd).” However, Proposition 2.0.8 as it appears is sufficient for our purposes.

Corollary 2.0.9. Let P be a positive homogeneous function, then for all E,E′ ∈ Exp(P ),

trE = trE′ > 0.

Proof. By virtue of Propositions 2.0.4 and 2.0.5, trE > 0 for all E ∈ Exp(P ). It remains to show
that the trace map is constant on Exp(P ). To this end, let E,E′ ∈ Exp(P ). Then, for all r > 0 and
x ∈ Rd,

P (x) = r(1/r)P (x) = rP ((1/r)E
′

x) = P (rE(1/r)E
′

x) = P (rEr−E
′

x).

Thus Or = rEr−E
′ ∈ Sym(P ) for each r > 0. In view of the Propositions 6.1.1 and 2.0.8 and the

homomorphism property of the determinant,

1 = |det(Or)| =
∣∣∣det(rEr−E′

)
∣∣∣ =

∣∣∣det(rE) det(r−E′

)
∣∣∣ =

∣∣∣rtrE−trE′

∣∣∣ = rtrE−trE′

for all r > 0 and therefore trE = trE′.
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In view of the preceding corollary, to each positive homogeneous function P , we define the ho-

mogeneous order of P to be the unique positive number µP for which

µP = trE

for all E ∈ Exp(P ).

We end this section by addressing a useful proposition which connects Exp(P ) and Sym(P ). Given
O ∈ Sym(P ), we write

OF = {Oη : η ∈ F}.

The following proposition will be useful when we show that the measure on S (which we will
construct from some E ∈ Exp(P )) is in fact independent of the choice of E ∈ Exp(P ). In other
words, we will show that the measure is intrinsic to P .

Proposition 2.0.10. For any O ∈ Sym (P )

Exp(P ) = O−1 Exp(P )O.

In other words, the set Exp(P ) is invariant under conjugation by Sym(P ).

Proof. Since Sym(P ) is a subgroup of SL±(Rd), for O ∈ Sym(P ) and E ∈ Exp(P ), we have O−1 ∈
Sym (P ) and therefore

P (rO
−1EOx) = P (O−1rEOx) = P (rEOx) = rP (Ox) = rP (x),

for all r > 0 and x ∈ Rd. Thus, O−1 Exp(P )O ⊆ Exp(P ). Moreover, any E ∈ Exp(P ) can be
written as O−1(OEO−1)O, where OEO−1 ∈ Exp(P ) because

P (rOEO
−1

x) = P (OrEO−1x) = P (rEO−1x) = rP (O−1x) = rP (x).

Thus, Exp(P ) ⊆ O−1 Exp(P )O, and hence Exp(P ) = O−1 Exp(P )O as desired.

2.1 Subhomogeneous Functions

In this section, we introduce the notions of subhomogeneous functions and strongly subhomo-
geneous functions with respect to a given endomorphism E ∈ End(Rd). As briefly discussed in
the beginning of this chapter, these functions show up in the Taylor expansion of Γ and play an
important role in estimating

∣∣φ(n)
∣∣ using the Van der Corput lemma. Roughly speaking, for some

E ∈ End (Rd), a sufficiently nice function Q : Rd → C is said to be subhomogeneous with respect
to E if Q(rEξ) = o(r) as r → 0. If

∣∣∂rQ(rEξ)
∣∣ = o(1) as r → 0, then Q is said to be strongly subho-

mogeneous with respect to E. It is then straightforward to use the mean value theorem to show
that strong subhomogeneity implies subhomogeneity. The following definition and proposition
make precise these ideas.
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Definition 2.1.1. LetQ be a continuous and complex-valued function defined on an open neighborhood
O of 0 in Rd and let E ∈ End(Rd) be such that {rE} is a contracting group.

1. We say that Q is subhomogeneous with respect to E if, for each ǫ > 0 and compact set
K ⊆ Rd, there is a δ > 0 for which ∣∣Q(rEξ)

∣∣ ≤ ǫr

for all 0 < r < δ and ξ ∈ K.

2. Given k ≥ 1, we say that Q is strongly subhomogeneous with respect to E of order k if
Q ∈ Ck(O) and, for each ǫ > 0 and compact set K ⊆ Rd, there is a δ > 0 for which

∣∣rj∂jrQ(rEξ)
∣∣ ≤ ǫr

for all j = 1, 2, . . . , k, 0 < r < δ and ξ ∈ K.

When the endomorphismE is fixed, we will say thatQ is subhomogeneous if it is subhomogeneous with
respect to E. Also, we will say that Q is k-strongly subhomogeneous if it is strongly subhomogeneous
with respect to E of order k.

The following proposition, in particular, justifies our choice of vocabulary and give credence to
the interpretation that 0-strongly subhomogeneous is synonymous with subhomogeneous.

Proposition 2.1.2. LetQ be differentiable on an open neighborhood of 0 in Rd and letE ∈ End(Rd) be
such that {rE} is a contracting group. If, for some k ≥ 1, Q is strongly subhomogeneous with respect
to E of order k and Q(0) = 0, then Q is subhomogeneous with respect to E.

Proof. Let ǫ > 0 and K be a compact set. In view of our supposition that Q is strongly subhomo-
geneous with respect to E or order k, let δ > 0 be given so that

∣∣r∂rQ(rEξ)
∣∣ ≤ ǫr for all ξ ∈ K

and 0 < r < δ. Given that rE is a contracting group and Q(0) = 0, it follows that, for each ξ ∈ K,
fξ : [0, δ) → C defined by

fξ(r) =

{
Q(rEξ) 0 < r < δ

0 r = 0

is differentiable on (0, δ) and continuous on [0, δ), for each ξ ∈ K. Consequently, for every 0 < r <
δ and ξ ∈ K, the mean value theorem guarantees a c = cξ,r ∈ (0, r) for which

|fξ(r)− fξ(0)| ≤ r
∣∣f ′ξ(c)

∣∣ = r

∣∣∣∣∣∂rQ(rEξ)
∣∣∣
r=c

∣∣∣∣∣ ≤ rǫ.

Consequently, for all 0 < r < δ and ξ ∈ K,

∣∣Q(rEξ)
∣∣ = |fξ(r)− fξ(0)| ≤ rǫ.
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When estimating convolution powers, we are often presented with a Q that is (strongly) subho-
mogeneous with respect to someG = E/k ∈ End (Rd) where k > 0 and E belongs to the exponent
of some positive homogeneous or imaginary-homogeneous function P . It is then useful to char-
acterize how the notions of subhomogeneity and strong homogeneity with respect to E/k depend
on k.

Proposition 2.1.3. Let P be positive homogeneous and P̃ be complex-valued and continuous on a
neighborhood of 0 in Rd. The following are equivalent:

(a) P̃ (ξ) = o(P (ξ)) as ξ → 0.

(b) For every E ∈ Exp(P ), P̃ is subhomogeneous with respect to E.

(c) There exists E ∈ Exp(P ) for which P̃ is subhomogeneous with respect to E.

Proof. (a) ⇒ (b). Let ǫ > 0, K be a compact set and choose E ∈ Exp(P ). Given our supposition

that P̃ (ξ) = o(P (ξ)) as ξ → 0, we can find an open neighborhood O of 0 for which
∣∣∣P̃ (ξ)

∣∣∣ ≤ ǫ

1 + supη∈K P (η)
P (ξ)

for all ξ ∈ O. Now, because rE is contracting in view of Proposition 2.0.5, we can find a δ > 0 for
which rEξ ∈ O for all 0 < r < δ and ξ ∈ K by virtue of Proposition 6.1.8. Consequently, for all
0 < r < δ and ξ ∈ K,

∣∣∣P̃ (rEξ)
∣∣∣ ≤ ǫ

1 + supη∈K P (η)
P (rEξ) = ǫr

P (ξ)

1 + supη∈K P (η)
≤ rǫ.

//

(b) ⇒ (c). This implication is trivial. //

(c) ⇒ (a). Let ǫ > 0. Choose E ∈ Exp(P ) and let S = {η ∈ Rd : P (η) = 1}. Using the supposition

that P̃ is subhomogeneous with respect to E, we may choose δ > 0 for which
∣∣∣P̃ (rEη)

∣∣∣ ≤ ǫr

for all 0 < r < δ and η ∈ S. We remark that, in view of the continuity of P̃ and the fact that rE

is contracting, this inequality ensures that P̃ (0) = 0. We fix O to be the open set Bδ = {ξ ∈ Rd :
P (ξ) < δ}. For each non-zero ξ ∈ O, we observe that ξ = rEη where 0 < r = P (ξ) < δ and
η = P (ξ)−Eξ ∈ S and therefore

∣∣∣P̃ (ξ)
∣∣∣ =

∣∣∣P̃ (rEη)
∣∣∣ ≤ rǫ = ǫP (ξ)

If ξ = 0, obviously,
∣∣∣P̃ (ξ)

∣∣∣ = 0 = ǫP (0) = ǫP (ξ). Thus, for all ξ ∈ O,

∣∣∣P̃ (ξ)
∣∣∣ ≤ ǫP (ξ),

as desired. //
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Proposition 2.1.4. Let E ∈ End(Rd) be for which {rE} is contracting and suppose that Q is strongly
subhomogeneous with respect to E of order 2. Given α > 0, set F = αE. Then, for any ǫ > 0 and
compact set K, ∣∣θ∂θQ(θF η)

∣∣ ≤ ǫθα

and ∣∣θ2∂2θQ(θF η)
∣∣ ≤ ǫθα

for all 0 < θ ≤ δ1/α and η ∈ K.

Proof. Let ǫ > 0 and K ⊆ Rd be a compact set. By virtue of the strong subhomogeneity of Q, let
δ > 0 be such that ∣∣r∂rQ(rEη)

∣∣ ≤ ǫ′r and
∣∣r2∂2rQ(rEη)

∣∣ ≤ ǫ′r

for 0 < r < δ and η ∈ K where ǫ′ = ǫ/(2α2 + α). We set r = θα so that rE = θF and observe that

∣∣θ∂θQ(θF η)
∣∣ =

∣∣∣∣θ∂rQ(rEη)
∂r

∂θ

∣∣∣∣ =
∣∣θ∂rQ(rEη)αθα−1

∣∣ = αr
∣∣∂rQ(rEη)

∣∣ ≤ αǫ′r < ǫθα

for all 0 < θ ≤ δ1/α and η ∈ K. Further, we have

∣∣θ2∂2θQ(θF η)
∣∣ = θ2

∣∣∣∣∣∂
2
rQ(rEη)

(
∂r

∂θ

)2

+ ∂rQ(rEη)
∂2r

∂θ2

∣∣∣∣∣
= θ2

∣∣∂2rQ(rEη)α2θ2α−2 + ∂rQ(rEη)α(α− 1)θα−2
∣∣

≤ α2
∣∣r2Q(rEη)

∣∣+ |α(α− 1)|
∣∣r∂rQ(rEη)

∣∣
< α2ǫ′r +

∣∣α2 − α
∣∣ǫ′r

< ǫθα

for all 0 < θ < δ1/α and η ∈ K.



Chapter 3

A generalized polar integration formula

In this chapter, we obtain our generalized polar integration formula from two perspectives: mea-
sure theory and smooth-manifold theory. In Subsection 3.1.1, we construct a measure on the unital
level set of a positive homogeneous function. Our construction only uses results from point-set
topology and measure theory and this measure will appear later as the surface measure which
appears in our generalization of the polar coordinate integration formula. In a later section (Sec-
tion 3.2), we will consider the case in which the positive homogeneous function is smooth and, in
this case, we will find that its unital level set is a smooth hypersurface of Rd and the measure con-
structed in Subsection 3.1.1 is characterized by a smooth d− 1 form which related to the canonical
Riemann volume form. This chapter is essentially Section 4 of [5].

To start, we let a positive homogeneous function P on Rd be fixed with homogeneous order µP ,
exponent set Exp(P ), and symmetry group Sym (P ). Let Md denote the Lebesgue σ-algebra on
Rd \ {0} and m the Lebesgue measure. We take the unital level set S = {η ∈ Rd : P (η) = 1} to be
equipped with the relative topology inherited from Rd and (0,∞)× S with the product topology,
where (0,∞) carries the usual topology on R. Let B(S) denote the σ-algebra on S. We denote
by L = L(0, 1) the σ-algebra of Lebesgue measurable sets on (0,∞) and let λP be the σ-finite
measure on ((0,∞),L) with λP (dr) = rµP−1 dr. For basic notions of measure theory, the reader
is encouraged to refer to [4], [26]. For selected definitions and theorems from measure theory,
see [11] and [26].

3.1 A surface measure on S

Our main result of this section is as follows.

Theorem 3.1.1. There exists a σ-algebra Σ on S containing B(S) and a finite Radon measure σP on
(S,Σ) which satisfies the following properties:

1. (S,Σ, σP ) is the completion of (S,B(S), σP ). In particular, (S,Σ, σP ) is a complete measure
space.

2. For any F ∈ ΣP and O ∈ Sym(P ), OF ∈ ΣP and σP (OF ) = σP (F ).

29
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3. For any F ∈ Σ and E ∈ Exp(P ),

F̃E :=
⋃

0<r<1

(
rEF

)
=
{
rEη ∈ Rd \ {0} : 0 < r < 1, η ∈ F

}

is a Lebesgue measurable subset of Rd \ {0}, i.e., F̃E ∈ Md, and

σP (F ) = µP ·m
(
F̃E

)

where m denotes the Lebesgue measure on Rd.

Further, denote by ((0,∞)× S, (L × Σ)′, λP × σP ) the completion of the product measure space
((0,∞)× S,L × Σ, λP × σP ). We have

1. Given any E ∈ Exp(P ), the map ψE : (0,∞) × S → Rd \ {0}, defined by ψE(r, η) = rEη for
r > 0 and η ∈ S, is a point isomorphism of the measure spaces ((0,∞)× S, (L × Σ)′, λP × σP )
and (Rd \ {0},Md,m). That is

Md =
{
A ⊆ Rd \ {0} : ψ−1

E (A) ∈ (L × Σ)′
}

and, for each A ∈ Md,
m(A) = (λP × σP )(ψ

−1
E (A)).

2. Given any Lebesgue measurable function f : Rd → C and E ∈ Exp(P ), f ◦ ψE is (L × Σ)′-
measurable and the following statements hold:

(a) If f ≥ 0, then

∫

Rd

f(x) dx =

∫ ∞

0

(∫

S
f(rEη)σP (dη)

)
rµP−1 dr

=

∫

S

(∫ ∞

0
f(rEη)rµP−1 dr

)
σP (dη). (3.1)

(b) When f is complex-valued, we have

f ∈ L1(Rd) if and only if f ◦ ψE ∈ L1
(
(0,∞)× S, (L × Σ)′, λP × σP

)

and, in this case, (3.1) holds.

From this theorem we have a useful corollary.

Corollary 3.1.2. Given g : S → C and E ∈ Exp(P ), define f : Rd → C by

f(x) =

{
µP · χ(0,1)(P (x))g(P (x)

−Ex) for x 6= 0

0 for x = 0
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for x ∈ Rd where χ(0,1)(·) is the indicator function of the interval (0, 1). Then g ∈ L1(S,ΣP , σP ) if

and only if f ∈ L1(Rd) and, in this case,

∫

Rd

f(x) dx =

∫

S
g(η)σP (dη). (3.2)

Proof. Observe that, for the (L × ΣP )
′-measurable function k(r, η) = χ(0,1)(r)g(η),

k ◦ ψ−1
E (x) = k(P (x), P (x)−Ex) = f(x)

for x ∈ Rd \ {0}. By virtue of Theorem 3.1.1, it follows that f is Lebesgue measurable and

∫

Rd

|f(x)| dx =

∫

S

(∫

(0,∞)
|k(r, η)|rµP−1 dr

)
σP (dη)

=

(∫

S
|g(η)|σP (dη)

)(∫ 1

0
µP r

µP−1 dr

)

=

∫

S
|g(η)|σP (dη)

and therefore f ∈ L1(Rd) if and only if g ∈ L1(S,ΣP , σP ) and ‖f‖L1(Rd) = ‖g‖L1(S). By an analo-
gous computation (for f instead of |f |), we have

∫

Rd

f(x) dx =

∫

S
g(η)σP (dη),

by virtue of Property 2 of Theorem 3.1.1.

Our construction of σP is as follows. In Subsection 3.1.1, we fix E ∈ Exp(P ) and consider the one-
parameter contracting group {rE}. As the standard isotropic one-parameter group r 7→ rI = rI is
well-fitted to the unit sphere S and allows every non-zero x ∈ Rd to be written uniquely as x = rη
for r ∈ (0,∞) and η ∈ S, {rE} is well-fitted to S and has the property that every non-zero x ∈ Rd

can be written uniquely as x = rEη where r ∈ (0,∞) and η ∈ S. With this one-parameter group
as a tool, we define a surface-carried measure σP,E on S by taking sufficiently nice sets F ⊆ S,
stretching them into a quasi-conical region of the associated “ball” B with the contracting group
{rE}, and computing the Lebesgue measure of the result. Figure 3.1 illustrates the action of rE for

r ∈ (0, 1) on a set F (red) in S (blue) to create the set F̃ . Here, we choose P (x, y) = x2+3xy2/2+y4

andE = diag(1/2, 1/4). Figure 3.2 illustrates a different example withP (x, y, z) = x2+xy2+y4+z4.
In Subsection 3.1.2, we turn our focus to an associated product measure λP×σP,E on (0,∞)×S

with which we are able to formulate and prove a generalization of (1.1); this is Theorem 3.1.8. We
then derive a number of corollaries of Theorem 3.1.8, including the result that σP,E is a Radon
measure on S. In Subsection 3.1.3, we prove that even though Subsections 3.1.1 and 3.1.2 require a
choice ofE ∈ Exp(P ), σP,E is independent of the choice ofE ∈ Exp(P ), and so we write σP = σP,E
and this quickly yields a stronger version of Theorem 3.1.8, which is Theorem 3.1.1.

3.1.1 Construction of σP,E

Let E ∈ Exp(P ). Define ψE : (0,∞)× S → Rd \ {0} by

ψE(r, η) = rEη (3.3)
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Figure 3.1: Quasi-conical region F̃ = F̃E (in red) for F ⊆ S. Here, S is the unital
level set of P = P2 from Example 5 and E ∈ Exp(P2) has the standard representa-
tion diag(1/2, 1/4).

Figure 3.2: Quasi-conical region F̃ = F̃E (in red) for F ⊆ S. Here, S is the unital
level set of P (x, y, z) = x2 + xy2 + y4 + z4 and E ∈ Exp(P ) has standard represen-
tation diag(1/2, 1/4, 1/4).

for r > 0 and η ∈ S. As ψE is the restriction of the continuous function (0,∞) × Rd ∋ (r, x) 7→
rEx ∈ Rd to (0,∞)× S, it is necessarily continuous. We now show that ψE is a homeomorphism.
This will be particularly useful later on when we are required to regularly “move” back and forth
between Rd \ {0} and (0,∞)× S.
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Proposition 3.1.3. The map ψE : (0,∞) × S → Rd \ {0} is a homeomorphism with continuous
inverse ψ−1

E : Rd \ {0} → (0,∞)× S given by

ψ−1
E (x) = (P (x), (P (x))−Ex)

for x ∈ Rd \ {0}.

Proof. Given that P is continuous and positive definite, P (x) > 0 for each x ∈ Rd \ {0} and the
map Rd \ {0} ∋ x 7→ (P (x))−Ex ∈ Rd is continuous. Further, in view of the homogeneity of P ,

P
(
(P (x))−Ex

)
= P (x)−1P (x) = 1

for all x ∈ Rd \ {0}. It follows from these two observations that

ρ(x) = (P (x), (P (x))−Ex),

defined for x ∈ Rd \ {0}, is a continuous function taking Rd \ {0} into (0,∞)× S. We have

(ψE ◦ ρ)(x) = ψE(P (x), (P (x))
−Ex) = (P (x))E(P (x))−Ex = x

for every x ∈ Rd \ {0} and

(ρ ◦ ψE)(r, η) = ρ(rEη) = (P (rEη), (P (rEη))−E(rEη)) = (rP (η), (rP (η))−E(rEη)) = (r, η)

for every (r, η) ∈ (0,∞)× S. Thus ρ is a (continuous) inverse for ψE and so it follows that ψE is a
homeomorphism and ρ = ψ−1

E .

As in the statement of Theorem 3.1.1, for each F ⊆ S, define

F̃E =
⋃

0<r<1

(
rEF

)
= {rEη : 0 < r < 1, η ∈ F},

which we can identify as a quasi-conical region discussed in the previous chapter. Next, we let

ΣP,E be the collection of subsets F of S for which F̃E ∈ Md, i.e.,

ΣP,E = {F ⊆ S : F̃E ∈ Md}.

We now show that this is a σ-algebra ΣP,E on S.

Proposition 3.1.4. ΣP,E is a σ-algebra on S containing the Borel σ-algebra on S, B(S).

Proof. Throughout the proof, we write Σ = ΣP,E and F̃ = F̃E for each F ⊆ S. We first show that Σ

is a σ-algebra. Since S̃ = B \ {0}, it is open in Rd \ {0} and therefore Lebesgue measurable. Hence
S ∈ Σ. Let G,F ∈ Σ be such that G ⊆ F . Then,

F̃ \G =
⋃

0<r<1

rE (F \G) =
⋃

0<r<1

(
rEF \ rEG

)
=

( ⋃

0<r<1

rEF

)
\
( ⋃

0<r<1

rEG

)
= F̃ \ G̃
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where we have used the fact that the collection {rEF}0<r<1 is mutually disjoint to pass the union

through the set difference. Consequently F̃ \ G̃ is Lebesgue measurable and therefore F \G ∈ Σ.
Now, given a countable collection {Fn} ⊆ Σ, observe that

∞̃⋃

n=1

Fn =
⋃

0<r<1

rE

( ∞⋃

n=1

Fn

)
=

⋃

0<r<1

∞⋃

n=1

rEFn =

∞⋃

n=1

⋃

0<r<1

rEFn =

∞⋃

n=1

F̃n ∈ Md

whence ∪nFn ∈ Σ. Thus Σ is a σ-algebra.
Finally, we show that

B(S) ⊆ Σ.

As the Borel σ-algebra is the smallest σ-algebra containing the open subsets of S, it suffices to
show that O ∈ Σ whenever O is open in S. Armed with Proposition 3.1.3, this is an easy task:
Given an open set O ⊆ S, observe that

Õ = {rEη : 0 < r < 1, η ∈ O} = ψE((0, 1)×O).

Upon noting that (0, 1) × O is an open subset of (0,∞) × S, Proposition 3.1.3 guarantees that

Õ = ψE((0, 1)×O) ⊆ Rd \ {0} is open and therefore Õ ∈ Md. Thus, O ∈ Σ.

With the σ-algebra ΣP,E , we now specify a measure on the measurable space (S,ΣP,E). For each
F ∈ ΣP,E , define σP,E : ΣP,E → [0,∞) by

σP,E(F ) = µP ·m(F̃E)

where m is the Lebesgue measure on Rd and µP = trE > 0 is the homogeneous order associated
to P .

Proposition 3.1.5. σP,E is a finite measure on (S,ΣP,E).

Proof. Throughout the proof, we will write σ = σP,E , Σ = ΣP,E , and, F̃ = F̃E for each F ⊆ S. It
is clear that σ is non-negative and σ(∅) = 0. Let {Fn}∞n=1 ⊆ Σ be a mutually disjoint collection.

We claim that {F̃n}∞n=1 ⊆ Md is also a mutually disjoint collection. To see this, suppose that

x = rEn ηn = rEmηm ∈ F̃n ∩ F̃m, where rn, rm ∈ (0, 1), ηn ∈ Fn, and ηm ∈ Fm. Then

rn = P (rEn ηn) = P (x) = P (rEmηm) = rm,

implying that ηn = ηm ∈ Fn ∩ Fm. Because {Fn}∞n=1 is mutually disjoint, we must have n = m
which verifies our claim. By virtue of the countable additivity of Lebesgue measure, we therefore
have

σ

( ∞⋃

n=1

Fn

)
= µP ·m




∞̃⋃

n=1

Fn


 = µP ·m

( ∞⋃

n=1

F̃n

)
= µP

∞∑

n=1

m(F̃n) =
∞∑

n=1

σ(Fn).

Therefore σ is a measure on (S,Σ). In view of Condition (b) of Proposition 2.0.5, S̃ = B \ {0} is a
bounded subset of Rd \ {0} and hence σ(S) = µP ·m(B \ {0}) <∞ showing that σ is finite.
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Corollary 3.1.6. By virtue of the two preceding propositions, σP,E is a finite Borel measure on S.

3.1.2 Product Measure and Point Isomorphism

So far, we have only worked with a surface-carried measure σP,E on S. To obtain the full polar-
coordinate integration formula in 3.1.1, we need to construct a product measure that combines
the surface measure σP,E on the unital level set S and the radial measure λP on R to obtain a “vol-
ume” measure. Once we have the product measure, we shall use Fubini’s theorem, stated below
for complete (product) measure spaces, to obtain our main result for this section.

To start, let (S,ΣP,E , σP,E) denote the finite measure space of Proposition 3.1.5. Recall that L
denotes the σ-algebra of Lebesgue measurable subsets of (0,∞) and λP denotes the measure on
(0,∞) with λP (dr) = rµP−1 dr, i.e., for each L ∈ L,

λP (L) =

∫ ∞

0
χL(r)r

µP−1 dr.

It is easy to see that λP is σ-finite and so, in view of the finiteness of the measure σP,E , there exists
a unique product measure λP ×σP,E on (0,∞)×S equipped with the product σ-algebra L×ΣP,E
which satisfies

(λP × σP,E)(L× F ) = λP (L)σP,E(F )

for all L ∈ L and F ∈ ΣP,E . We shall denote by ((0,∞)×S, (L×ΣP,E)
′, λP ×σP,E) the completion

of the measure space ((0,∞) × S,L × ΣP,E , λP × σP ). With this, we state (without proving) the
following Fubini-Tonelli theorem associated to λP×σP,E , which combines the results of the Fubini-
Tonelli Theorem and the “measureable slice” theorem (see [11]). This allows us to exchange the
order of integration, which is crucial for future applications.

Theorem 3.1.7 (Analogous to Theorem 8.12 of [24]). Let g : (0,∞) × S → C be (L × ΣP,E)
′-

measurable. For each r ∈ (0,∞), define gr : S → C by gr(η) = g(r, η) for η ∈ S and, for each η ∈ S,
define gη : (0,∞) → C by gη(r) = g(r, η) for r ∈ (0,∞).

1. For λP -almost every r, gr is ΣP,E-measurable and, for σP,E-almost every η, gη is L-measurable.

2. If g ≥ 0, then:

(a) For λP -almost every r,

H(r) =

∫

S
gr(η)σP,E(dη)

exists as a non-negative extended real number.

(b) For σP,E-almost every η,

G(η) =

∫ ∞

0
gη(r)r

µP−1 dr

exists as a non-negative extended real number.



36 CHAPTER 3. A GENERALIZED POLAR INTEGRATION FORMULA

(c) We have
∫ ∞

0
H(r)rµP−1dr =

∫

(0,∞)×S
g d(λP × σP,E) =

∫

S
G(η)σP,E(dη) (3.4)

and, in particular,

∫ ∞

0

(∫

S
g(r, η)σP,E(dη)

)
rµP−1 dr =

∫

S

(∫ ∞

0
g(r, η)rµP−1 dr

)
σP,E(dη). (3.5)

3. If g is complex valued and

∫

S

(∫ ∞

0
|g(r, η)|rµP−1 dr

)
σP,E(dη) <∞ or

∫ ∞

0

(∫

S
|g(r, η)|σP,E(dη)

)
rµP−1 dr <∞,

then g ∈ L1((0,∞)× S, (L × ΣP,E)
′, λP × σP,E).

4. If g ∈ L1((0,∞) × S, (L × ΣP,E)
′, λP × σP,E), then gr ∈ L1(S,ΣP,E , σP,E) for λP -almost

every r, gη ∈ L1((0,∞),L, λP ) for σP,E-almost every η, and Equations (3.4) and (3.5) hold.

Our primary goal in this subsection is to prove the theorem below, which is a slightly more special
statement of the second half of Theorem 3.1.1.

Theorem 3.1.8. Let ((0,∞)× S, (L × ΣP,E)
′, λP × σP,E) be as above.

1. The map ψE : (0,∞) × S → Rd \ {0}, defined by (3.3), is a point isomorphism of the measure
spaces ((0,∞)× S, (L × ΣP,E)

′, λP × σP,E) and (Rd \ {0},Md,m). That is

Md = {A ⊆ Rd \ {0} : ψ−1
E (A) ∈ (L × ΣP,E)

′}

and, for each A ∈ Md,
m(A) = (λP × σP,E)(ψ

−1
E (A)).

2. If f : Rd → C is Lebesgue measurable, then f ◦ψE is (L×ΣP,E)
′-measurable and the following

statements hold:

(a) If f ≥ 0, then

∫

Rd

f(x) dx =

∫ ∞

0

(∫

S
f(rEη)σP,E(dη)

)
rµP−1 dr

=

∫

S

(∫ ∞

0
f(rEη)rµP−1 dr

)
σP,E(dη). (3.6)

(b) When f is complex-valued, we have

f ∈ L1(Rd) if and only if f ◦ ψE ∈ L1((0,∞)× S, (L × ΣP,E)
′, λP × σP,E)

and, in this case, (3.6) holds.
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Properties 1 and 2 in Theorem 3.1.8 differ only from Properties 1 and 2 in Theorem 3.1.1 only
in the apparent dependence on our choice of E ∈ Exp(P ). We shall see in Subsection 3.1.3 and
Proposition 3.1.16 therein that ΣP,E1

= ΣP,E2
and σP,E1

= σP,E2
for all E1, E2 ∈ Exp(P ) and so the

dependence is indeed superficial. With this result, we shall obtain Properties 1 and 2 of Theorem
3.1.1 immediately from Theorem 3.1.8.

To prove Theorem 3.1.8, we shall first treat several lemmas. These lemmas isolate and generalize
several important ideas used in standard proofs of (1.1) (See, e.g., [11] and [26]). Lemma 3.1.9
establishes the scaling property of {rE} on the Lebesgue measures and measurability of sets in
Rd. Lemma 3.1.10 relates the Lebesgue measure of sets of the form ψE(I ×F ), where I ⊆ (0,∞) is
sufficiently nice and F ∈ ΣP,E , to the product measure λP × σP,E .

Lemma 3.1.9. Let A ⊆ Rd and r > 0. A is Lebesgue measurable if and only if rEA = {x = rEa :
a ∈ A} is Lebesgue measurable and, in this case,

m(rEA) = rµPm(A).

Proof. Because x 7→ rEx is a linear isomorphism, rEA is Lebesgue measurable if and only if A is
Lebesgue measurable. Observe that x ∈ rEA if and only if r−Ex ∈ A and therefore

m(rEA) =

∫

Rd

χrEA(x) dx =

∫

Rd

χA(r
−Ex) dx

where χrEA and χA respectively denote the indicator functions of the sets rEA and A. Now, by
making the linear change of variables x 7→ rEx, we have

m(rEA) =

∫

Rd

χA(x)| det(rE)| dx = rµPm(A),

because det(rE) = rtrE = rµP > 0 by virtue of Proposition 6.1.1 and Corollary 2.0.9.

Lemma 3.1.10. Let F ∈ ΣP,E . If I ⊆ (0,∞) is open, closed, Gδ, or Fσ, then ψE(I × F ) ∈ Md and

m(ψE(I × F )) = (λP × σP,E)(I × F ) = λP (I)σP,E(F ). (3.7)

Proof. To simplify notation, we shall write λ = λP and σ = σP,E throughout the proof. We fix
F ∈ ΣP,E and consider several cases for I .

Case 1: I = (0, b) for 0 < b ≤ ∞. When b is finite, observe that

ψE(I × F ) = {rEη : 0 < r < b, η ∈ F} = bE{rEη : 0 < r < 1, η ∈ F} = bEF̃E .
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By virtue of Lemma 3.1.9, it follows that ψE(I × F ) ∈ Md and

(λ× σ)(I × F ) = λ(I)σ(F )

=

(∫ b

0
rµP−1 dr

)(
µP ·m(F̃E)

)

= bµPm(F̃E)

= m(bEF̃E)

= m(ψE(I × F )).

When b = ∞ i.e., I = (0,∞), we observe that

I =
∞⋃

n=1

(0, n) =
∞⋃

n=1

In

where the open intervals In = (0, n) are nested and increasing. In view of the result above (for
finite b = n), we have

ψE(I × F ) = ψE

( ∞⋃

n=1

(In × F )

)
=

∞⋃

n=1

ψE(In × F ) ∈ Md.

Given that ψE is a bijection, {ψE(In × F )} is necessarily a nested increasing sequence and so, by
the continuity of the measures λ× σ and m,

(λ× σ)(I × F ) = lim
n→∞

(λ× σ)(In × F ) = lim
n→∞

m(ψE(In × F )) = m(ψE(I × F )).

//

Case 2: I = (0, a] for 0 < a <∞. We have

I = (0, a] =
∞⋂

n=1

(0, a+ 1/n) =
∞⋂

n=1

In

where the open intervals In = (0, a + 1/n) are nested and decreasing. By reasoning analogous to
that given in Case 1, we have

ψE(I × F ) =
∞⋂

n=1

ψE(In × F ) ∈ Md

and
(λ× σ)(I × F ) = lim

n→∞
(λ× σ)(In × F ) = lim

n→∞
m(ψE(In × F )) = m(ψE(I × F )).

In particular, m(ψE(I × F )) = λ((0, a])σ(F ) = aµP σ(F )/µP <∞. //

Case 3: I = (a, b) for 0 < a < b ≤ ∞. In this case, I = (0, b) \ (0, a] and so, in view of Cases 1 and 2,
ψE(I × F ) = ψE((0, b)× F ) \ ψE((0, a]× F ) ∈ Md and

(λ× σ)(I × F ) = (λ× σ)((0, b)× F )− (λ× σ)((0, a]× F )

= m(ψE((0, b)× F ))−m(ψE((0, a]× F ))

= m(ψE(I × F ))

where we have used the fact that (λ× σ)((0, a]× F ) = m(ψE((0, a]× F )) <∞. //
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Case 4: I ⊆ (0,∞) is open. In this case, it is known that I can be expressed as a countable union of
disjoint open intervals {In} and, by virtue of Cases 1 and 3, we have

ψE(I × F ) =
∞⋃

n=1

ψE(In × F ) ∈ Md,

where this union is disjoint, and

m(ψE(I × F )) =
∑

n

m(ψE(In × F )) =
∑

n

(λ× σ)(In × F )

=
∑

n

λ(In)σ(F ) =

(∑

n

λ(In)

)
σ(F ) = λ(I)σ(F ) = (λ× σ)(I × F ).

//

Case 5: I ⊆ (0,∞) is closed. In this case, we have I = (0,∞) \O where O is open and so

ψE(I × F ) = ψE(F × ((0,∞) \O)) = ψE((0,∞)× F ) \ ψE(O × F ) ∈ Md.

At this point, we’d like to use the property that

m(ψE((0,∞)× F ) \ ψE(O × F )) = m(ψE((0,∞)× F ))−m(ψE(O × F )),

but this only holds when m(ψE(O × F )) is finite. We must therefore proceed differently. For each
natural number n, define On = O ∩ (0, n) and In = (0, n) \ On. It is straightforward to show that
{In} and {ψE(In × F )} are nested and increasing with

I =
∞⋃

n=1

In and ψE(I × F ) =
∞⋃

n=1

ψE(In × F ).

The results of Cases 1 and 4 guarantee that, for each n,

m(ψE(On × F )) = (λ× σ)(On × F ) ≤ (λ× σ)((0, n)× F ) < nµPm(F̃E) <∞

and therefore

m(ψE(In × F )) = m(ψE((0, n)× F ))−m(ψE(On × F ))

= (λ× σ)((0, n)× F )− (λ× σ)(On × F )

= (λ× σ)(In × F ).

Then, by virtue of the continuity of measure,

m(ψE(I × F )) = lim
n→∞

m(ψE(In × F )) = lim
n→∞

(λ× σ)(In × F ) = (λ× σ)(I × F ).

//

Case 6. I ⊆ (0,∞) is Gδ or Fσ. Depending on whether I is Gδ or Fσ, express I as an intersection of
nested decreasing open sets or a union of nested increasing closed sets. In both cases, by virtually
the same argument given in the previous cases, we find that ψE(I × F ) ∈ Md,

m(ψE(I × F )) = (λ× σ)(I × F ).

//
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The following lemma generalizes the result of Lemma 3.1.10 (which only deals with cases of “spe-
cial rectangles”) so that the previous statement holds for any set L ∈ L, the σ-algebra of Lebesgue
measurable subsets of (0,∞). The result allows us to express the product measure of sufficiently
nice sets L× F in terms of the Lebesgue measure of ψE(L× F ), with which we can translate inte-
gration over Rd to integration over (0,∞)×S as intended. The proof makes use of Fσ and Gδ sets
and properties of complete measure spaces.

Lemma 3.1.11. For any L ∈ L and F ∈ ΣP,E , ψE(L× F ) ∈ Md and

m(ψE(L× F )) = (λP × σP,E)(L× F ).

Proof. Fix L ∈ L and F ∈ ΣP,E . It is easy to see that λP and the Lebesgue measure dr on (0,∞) are
mutually absolutely continuous. It follows that ((0,∞),L, λP ) is a complete measure space and,
further, that there exists an Fσ set Lσ ⊆ (0,∞) and a Gδ set Lδ ⊆ (0,∞) for which Lσ ⊆ L ⊆ Lδ
and λP (Lδ \ Lσ) = 0. Note that, necessarily, λP (L) = λP (Lσ) = λP (Lδ). We have

ψE(L× F ) = ψE(Lσ × F ) ∪ ψE((L \ Lσ)× F ) (3.8)

where, by virtue of the preceding lemma, ψE(Lσ × F ) ∈ Md and

m(ψE(Lσ ×F )) = (λP × σP,E)(Lσ ×F ) = λP (Lσ)σP,E(F ) = λP (L)σP,E(F ) = (λP × σP,E)(L×F ).
(3.9)

Observe that

ψE((L \ Lσ)× F ) ⊆ ψE((Lδ \ Lσ)× F )

where, because Lδ \ Lσ is an Gδ set, the latter set is a member of Md and

m(ψE((Lδ \ Lσ)× F )) = (λP × σP,E)((Lδ \ Lσ)× F ) = λP (Lδ \ Lσ)σP,E(F ) = 0

by virtue of the preceding lemma. Using the fact that (Rd \ {0},Md,m) is complete, we conclude
that ψE((L \Lσ)×F ) ∈ Md and m(ψE((L \Lσ)×F )) = 0. It now follows from (3.8) and (3.9) that
ψE(L× F ) ∈ Md and

m(ψE(L× F )) = m(ψE(Lσ × F )) +m(ψE((L \ Lσ)× F )) = (λP × σP,E)(L× F ),

as desired.

The following two lemmas provide another key ingredient to proving Theorem 3.1.8. Lemma
3.1.12 is a standard result in real analysis which states that a compact subset of any metric space
contains a countably dense set. This results is then used in Lemma 3.1.13 to show that every open
set in Rd \ {0} can be written as a countable union of sets of the form ψE(U) where U is an open
rectangle in (0,∞) × S. In our proof of Theorem 3.1.8, we will use this result as justification for
the fact that ψE(L × ΣP,E) contains every open subset of Rd \ {0}.
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Lemma 3.1.12. Let S be a compact subset of a metric space. Then S contains a countably dense set.

Proof. For each n ∈ N, consider the open cover

{B1/n(x) ∩ S, x ∈ S}

of S. Since S is compact, there exists a finite subcover. Let xj,n, j = 1, 2, . . . Nn denote the center
of each of the balls, then, we have that S is covered by {B1/n(xj,n) ∩ S, j = 1, 2, . . . , Nn}. Thus,
for each n ∈ N, we have a finite set {xj,n} of centers. The countable union of these finite sets,⋃∞
n=1{xj,n}, is countable. It is also dense because for every point x ∈ S and ǫ > 0, there is always

some n such that |xj,n − x| < 1/n < ǫ.

Lemma 3.1.13. Every open subset U ⊆ Rd \ {0} can be written as a countable union of open sets of
the form ψE(U) where U = I ×O is an open rectangle in (0,∞)× S.

Proof. Let {rk}∞k=1 and {ηj}∞j=1 be countably dense subsets of (0,∞) and S, respectively. For each
triple of natural numbers j, l, n ∈ N+, consider the open set

Uj,l,n = {|r − rj | < 1/n} × Ol,n ⊆ (0,∞)× S

where

Ol,n = {η ∈ S : |η − ηl| < 1/n}.
Let U ⊆ Rd \ {0} be open. We will show that

U =
⋃

j,l,n
ψE(Uj,l,n)⊆U

ψE(Uj,l,n), (3.10)

where, in view of Proposition 3.1.3, each ψE(Uj,l,n) is open. It is clear that any element of the union
on the right hand side of (3.10) belongs to some ψE(Uj,l,n) ⊆ U and so the union is a subset of U .
To prove (3.10), it therefore suffices to prove that, for each x ∈ U , there exists a triple j, l, n with

x ∈ ψE(Uj,l,n) ⊆ U.

To this end, fix x ∈ U and let δ > 0 be such that Bδ(x) ⊆ U . Consider (rx, ηx) = ψ−1
E (x) ∈ (0,∞)×S

and set M = ‖rEx ‖ > 0 and C = ‖E‖ > 0. Observe that

‖I − αE‖ =

∥∥∥∥∥
∞∑

k=1

(lnα)k

k!
Ek

∥∥∥∥∥ ≤
∞∑

k=1

| lnα|k
k!

‖E‖k = e(C| lnα|) − 1

for all α > 0. Since α 7→ e(C| lnα|) − 1 is continuous and 0 at α = 1, we can choose δ′ > 0 for which

‖I − αE‖ < δ

2M(|ηx|+ 2)
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whenever |α − 1| < δ′. Fix an integer n > max {1/δ′rx, 4M/δ} and, using the density of the
collections {rj} and {ηl}, let rj and ηl be such that |rj − rx| < 1/n and |ηl − ηx| < 1/n. It follows
that the corresponding open set Uj,l,n contains ψ−1

E (x), or, equivalently, x ∈ ψE(Uj,l,n). Thus, it
remains to show that ψE(Uj,l,n) ⊆ Bδ(x). To this end, let y = ψE(ry, ηy) ∈ ψE(Uj,l,n) and observe
that

|x− y| ≤ |ψE(rx, ηx, )− ψE(rx, ηy)|+ |ψE(rx, ηy)− ψE(ry, ηy)|
= |rEx (ηx − ηy)|+ |(rEx − rEy )ηy|
≤ M |ηx − ηy|+ ‖rEx − rEy ‖|ηy|.

Since both (ηx, rx), (ηy, ry) ∈ Uj,l,n, we have

|ηx − ηy| ≤ |ηx − ηj |+ |ηj − ηy| <
2

n
and |ηy| ≤ |ηy − ηx|+ |ηx| < |ηx|+

2

n
.

Also, since |rx − ry| < 1/n, it follows that ry = αrx where |1− α| < 1/nrx < δ′ by our choice of n.
Consequently,

|x− y| <
2

n
M +

(
|ηx|+

2

n

)
‖rEx − rEx α

E‖

<
2

n
M + (|ηx|+ 2)M‖I − αE‖

<
2

n
M +

δM (|ηx|+ 2)

2M(|ηx|+ 2)

<
δ

2
+
δ

2
= δ

and so we have established (3.10). Finally, upon noting that {Uj,l,n}(j,l,n)∈N3
+

is a countable col-

lection of open rectangles, the union in (3.10) is necessarily countable and we are done with the
proof.

In our final lemma preceding the proof of Theorem 3.1.8, we treat a general measure-theoretic
statement which gives sufficient conditions concerning two measure spaces to ensure that their
completions are isomorphic. This lemma is used in the proof of Theorem 3.1.8 to show that the
(complete) measure spaces ((0,∞), (L × ΣP,E)

′, λP × σP,E) and (Rd \ {0},Md,m) are isomorphic
with point isomorphism ψE . Here, ((0,∞), (L×ΣP,E)

′, λP ×σP,E) is the completion of ((0,∞),L×
ΣP,E , λP × σP,E), and (Rd \ {0},Md,m) is the completion of (Rd \ {0},B(Rd \ {0}),m).

Lemma 3.1.14. Let (X1,Σ1, ν1) and (X2,Σ2, ν2) be measure spaces, let ϕ : X1 → X2 be a bijection
and denote by (Xi,Σ

′
i, ν

′
i) the completion of the measure space (Xi,Σi, νi) for i = 1, 2. Assume that

the following two properties are satisfied:

1. For each A1 ∈ Σ1, ϕ(A1) ∈ Σ′
2 and ν ′2(ϕ(A1)) = ν1(A1).

2. For each A2 ∈ Σ2, ϕ−1(A2) ∈ Σ′
1 and ν ′1(ϕ

−1(A2)) = ν2(A2).

Then the measure spaces (X1,Σ
′
1, ν

′
1) and (X2,Σ

′
2, ν

′
2) are isomorphic with point isomorphism ϕ.

Specifically,
Σ′
2 = {A2 ⊆ X2 : ϕ

−1(A2) ∈ Σ′
1} (3.11)
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and
ν ′2(A2) = ν ′1(ϕ

−1(A2)) (3.12)

for all A2 ∈ Σ′
2.

Proof. Let us first assume that A2 ∈ Σ′
2. By definition, A2 = G2 ∪ H2 where G2 ∈ Σ2 and H2 ⊆

G2,0 ∈ Σ2 with ν ′2(A2) = ν2(G2) and ν ′2(H2) = ν2(G2,0) = 0. Consequently, ϕ−1(A2) = ϕ−1(G2) ∪
ϕ−1(H2) and ϕ−1(H2) ⊆ ϕ−1(G2,0). In view of Property 2, ϕ−1(G2), ϕ

−1(G2,0) ∈ Σ′
1 and we have

ν ′1(ϕ
−1(G2)) = ν2(G2) = ν ′2(A2) and ν ′1(ϕ

−1(G2,0)) = ν2(G2,0) = 0.

In view of the fact that (X ′
1,Σ

′
1, ν

′
1) is complete, ϕ−1(H2) ∈ Σ′

1 and ν ′1(ϕ
−1(H2)) = 0. Consequently,

we obtain ϕ−1(A2) = ϕ−1(G2) ∪ ϕ−1(H2) ∈ Σ′
1 and

ν ′2(A2) = ν ′1(ϕ
−1(G2)) ≤ ν ′1(ϕ

−1(A2)) ≤ ν ′1(ϕ
−1(G2)) + ν ′1(ϕ

−1(H2)) = ν2(G2) + 0 = ν ′2(A2).

From this we obtain that Σ′
2 ⊆ {A2 ⊆ X2 : ϕ−1(A2) ∈ Σ′

1} and, for each A2 ∈ Σ′
2, ν ′2(A2) =

ν ′1(ϕ
−1(A2)). It remains to prove that

{A2 ⊆ X2 : ϕ
−1(A2) ∈ Σ′

1} ⊆ Σ′
2.

To this end, let A2 be a subset of X2 for which ϕ−1(A2) ∈ Σ′
1. By the definition of Σ′

1, we have
ϕ−1(A2) = G1 ∪ H1 where G1 ∈ Σ1, H1 ⊆ G1,0 ∈ Σ1 and ν ′1(H1) = ν1(G1,0) = 0. In view
of Property 1, ϕ(G1) ∈ Σ′

2, ϕ(H1) ⊆ ϕ(G1,0) ∈ Σ′
2 and ν ′2(ϕ(G1,0)) = ν1(G1,0) = 0. Because

(X ′
2,Σ

′
2, ν

′
2) is complete, we have ϕ(H1) ∈ Σ′

2 and so

A1 = ϕ(ϕ−1(A2)) = ϕ(G1) ∪ ϕ(H1) ∈ Σ′
2,

as desired.

We are finally in a position to prove Theorem 3.1.8. Our approach can be described as follows.
We first argue that L × ΣP,E is contained in the monotone class C comprised of the sets G ⊆
(0,∞) × S for which ψE(G) ∈ Md and m(ψE(G)) = (λP × σP,E)(G) via the monotone class
lemma. This allows us to show that every set G in L×ΣP,E satisfies the two properties above, and
that the σ-algebra of Borel subsets of Rd \ {0} is contained in ψE(L × ΣP,E). Property 1 follows
from recognizing that the σ-algebras and measure spaces in the hypothesis of Theorem 3.1.8 are
completions of those in preceding arguments. To prove Property 2, we let a measureable function
f : Rd → C be given and use Property 2, the monotone convergence theorem (in case that f ≥ 0),
and Fubini’s theorem.

Proof of Theorem 3.1.8. Denote by C the collection of setsG ⊆ (0,∞)×S for which ψE(G) ∈ Md and
m(ψE(G)) = (λP × σP,E)(G). By virtue of Lemma 3.1.11, it follows that C contains all elementary
sets, i.e., finite unions of disjoint measurable rectangles. Using the continuity of measure (applied
to the measures m and λP × σP,E) and the fact that ψE is a bijection, it is straightforward to verify
that C is a monotone class. By the monotone class lemma (Theorem 8.3 of [24]), it immediately
follows that L × ΣP,E ⊆ C. In other words, for each G ∈ L × ΣP,E ,

ψE(G) ∈ Md and m(ψE(G)) = (λP × σP,E)(G). (3.13)
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We claim that, for each Borel subset A of Rd \ {0}, ψ−1
E (A) ⊆ L× ΣP,E . To this end, we write

ψE(L × ΣP,E) = {ψE(G) : G ∈ L × ΣP,E}

for the σ-algebra on Rd \ {0} induced by ψE . In view of Lemma 3.1.13, ψE(L × ΣP,E) contains
every open subset of Rd \ {0} and therefore

B(Rd \ {0}) ⊆ ψE(L × ΣP,E).

where B(Rd \ {0}) denotes the σ-algebra of Borel subsets of Rd \ {0} thus proving our claim.
Together, the results of the two preceding paragraphs show that, for each A ∈ B(Rd \ {0}),

ψ−1
E (A) ⊆ L× ΣP,E and m(A) = (λP × σP,E)(ψ

−1
E (A)). Upon noting that L × ΣP,E ⊆ (L × ΣP,E)

′,
we immediately obtain the following statement: For each A ∈ B(Rd \ {0}),

ψ−1
E (A) ∈ (L × ΣP,E)

′ and m(A) = (λP × σP,E)(ψ
−1
E (A)). (3.14)

In comparing (3.13) and (3.14) with Properties 1 and 2 of Lemma 3.1.14 and, upon noting that
((0,∞) × S, (L × ΣP,E)

′, λP × σP,E) is the completion of ((0,∞) × S,L × ΣP,E , λP × σP,E) and
(Rd \ {0},Md,m) is the completion of (Rd \ {0},B(Rd \ {0}),m), Property 1 of Theorem 3.1.8
follows immediately from Lemma 3.1.14.

It remains to prove Property 2. To this end, let f : Rd → C be Lebesgue measurable. Because
Md = {A ⊆ Rd \ {0} : ψ−1

E (A) ∈ (L× ΣP,E)
′}, it follows that f ◦ ψE is (L× ΣP,E)

′-measurable. In
the case that f ≥ 0, we may approximate f monotonically by simple functions and, by invoking
Property 1 and the monotone convergence theorem, we find that

∫

Rd

f(x) dx =

∫

Rd\{0}
f(x) dx =

∫

(0,∞)×S
f ◦ ψE d(λP × σP,E). (3.15)

From this, (3.6) follows from Fubini’s theorem (see, e.g., Part (a) of Theorem 8.8 and Theorem 8.12
of [24]). Finally, by applying the above result to |f | ≥ 0, we obtain f ∈ L1(Rd) if and only if f◦ψE ∈
L1((0,∞) × S, (L × ΣP,E)

′, λP × σP,E). In this case, by applying (3.15) to Re(f)+,Re(f)−, Im(f)+
and Im(f)−, we find that (3.15) holds for our integrable f and, by virtue Fubini’s theorem (see,
e.g., Part (b) of Theorem 8.8 and Theorem 8.12 of [24]), the desired result follows.

Our next result, Proposition 3.1.15, guarantees that, in particular, σP,E is a Radon measure.

Proposition 3.1.15. The following statements are true:

1. (S,ΣP,E , σP,E) is the completion of the measure space (S,B(S), σP,E). In particular, the
(S,ΣP,E , σP,E) is complete and every F ∈ ΣP,E is of the form F = G ∪ H where G is a
Borel set and H is a subset of a Borel set Z with σP,E(Z) = 0.

2. For each F ∈ ΣP,E ,

σP,E(F ) = inf{σP,E(O) : F ⊆ O ⊆ S and O is open} (3.16)

and
σP,E(F ) = sup{σP,E(K) : K ⊆ F ⊆ S and K is compact}. (3.17)
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Remark 3. This proposition can be seen as an application of Proposition 3.1.4 and Theorem 2.18 of [24].
The proof we give here is distinct and, we believe, nicely illustrates the utility of (3.6) of Theorem 3.1.8.

Proof. Throughout the proof, we shall write σ = σP,E , Σ = ΣP,E and, for each F ⊆ S, F̃ = F̃E . We
remark that, by standard arguments using Gδ and Fσ sets, Item 1 follows immediately from Item
2. Also, given that S is compact and σ is finite, it suffices to prove (3.16), i.e., it suffices to prove
the statement: For each F ∈ Σ and ǫ > 0, there is an open subset O of S containing F for which

σ(O \ F ) < ǫ.

To this end, let F ∈ Σ and ǫ > 0. Given that F̃ ∈ Md and m is outer regular, there exists an open

set U ⊆ Rd \ {0} for which F̃ ⊆ U and m(U \ F̃ ) < ǫ/(2µP ). Since F̃ is a subset of the open set

B \ {0}, we may assume without loss of generality that U ⊆ B \ {0} and so m(F̃ ) ≤ m(U) < ∞
and

m(U \ F̃ ) = m(U)−m(F̃ ) < ǫ/(2µP ). (3.18)

For each 0 < r < 1, consider the open set

Or = S ∩
(
r−EU

)

in S. Observe that, for each x ∈ F , rEx ∈ F̃ ⊆ U and therefore x ∈ Or. Hence, for each 0 < r < 1,
Or is an open subset of S containing F .

We claim that there is at least one r0 ∈ (0, 1) for which

m(Õr0) < m(U) + ǫ/(2µP ). (3.19)

To prove the claim, we shall assume, to reach a contradiction, that

m(Õr) ≥ m(U) + ǫ/(2µP )

for all 0 < r < 1. By virtue of (3.6) of Theorem 3.1.8,

m(U) =

∫ ∞

0

(∫

S
χU (r

Eη)σ(dη)

)
rµP−1 dr.

Upon noting that U ⊆ B \ {0}, it is easy to see that

U =
⋃

0<s<1

sEOs and rEη ∈
⋃

0<s<1

sEOs

if and only if 0 < r < 1 and η ∈ Or. Consequently,

m(U) =

∫ 1

0

(∫

S
χOr(η)σ(dη)

)
rµP−1 dr =

∫ 1

0
σ(Or)r

µP−1 dr =

∫ 1

0
µP ·m(Õr) r

µP−1 dr.

Upon making use of our supposition, we have

∫ 1

0
µP ·m(Õr)r

µP−1 dr ≥
∫ 1

0
µP · (m(U) + ǫ/(2µP ))r

µP−1 dr = m(U) + ǫ/(2µP )

and so
m(U) ≥ m(U) + ǫ/(2µP ),
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which is impossible. Thus, the stated claim is true.
Given any such r0 for which (3.19) holds, set O = Or0 . As previously noted, O is an open

subset of S which contains F . In view of (3.18) and (3.19), we have

m(Õ)−m(F̃ ) < m(U)−m(F̃ ) + ǫ/(2µP ) < ǫ/(2µP ) + ǫ/(2µP ) = ǫ/µP

and therefore
σ(O \ F ) = σ(O)− σ(F ) = µP (m(Õ)−m(F̃ )) < ǫ,

as desired.

3.1.3 The construction is independent of E ∈ ExpP

In this subsection, we show that the measure σP,E is independent of the choice of E ∈ Exp(P ) and
complete the proof of Theorem 3.1.1. We let E1, E2 ∈ Exp(P ) and consider the measure spaces
(S,ΣP,E1

, σP,E1
) and (S,ΣP,E2

, σP,E2
) produced via the construction in Subsection 3.1.1.

Proposition 3.1.16. ΣP,E1
= ΣP,E2

and σP,E1
= σP,E2

.

Proof. Throughout the proof, we will write Σi = ΣP,Ei and σi = σP,Ei for i = 1, 2. In view of the
Proposition 3.1.15, it suffices to show that

σ1(F ) = σ2(F )

for all F ∈ B(S) ⊆ Σ1 ∩ Σ2. To this end, we let F ∈ B(S) be arbitrary but fixed.
Given n ∈ N+, using the regularity of the measures σ1 and σ2, select open sets On,1,On,2 and

compact sets Kn,1,Kn,2 for which

Kn,j ⊆ F ⊆ On,j and σj(On,j \Kn,j) < 1/n

for j = 1, 2. Observe that Kn = Kn,1 ∪Kn,2 is a compact set, On = On,1 ∩ On,2 is an open set, and
Kn ⊆ F ⊆ On. Furthermore,

σj(On \Kn) ≤ σj(On,j \Kn,j) < 1/n

for j = 1, 2. Given that On is open in S, On = S ∪ Un where Un is an open subset of Rd and,
because that S is compact, Kn = Kn ∩ S is a compact subset of Rd. By virtue of Urysohn’s lemma,
let φn : Rd → [0, 1] be a continuous function which is compactly supported in Un and for which
φn(x) = 1 for all x ∈ Kn. Using this sequence of functions {φn}, we establish the following useful
lemma.

Lemma 3.1.17. For j = 1, 2 and n ∈ N, define gn,j : (0,∞) → R by

gn,j(r) =

∫

S
φn(r

Ejη)σj(dη).

for r > 0. Then gn,j is continuous for each n ∈ N and j = 1, 2 and

σj(F ) = lim
n→∞

gn,j(1)

for j = 1, 2.
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Proof. First, we note that, for each r ∈ (0,∞), the above integral makes sense because η 7→
φn(r

Ejη) is Borel measurable (because it’s continuous on S) and non-negative. Let ǫ > 0 and
r0 ∈ (0,∞) be arbitrary but fixed. It is clear that the function (0,∞) × S ∋ (r, η) 7→ φn(r

Ejη) is
continuous on its domain and therefore, in view of the compactness of S, we can find a δ > 0 for
which

|φn(rEjη)− φn(r
Ej

0 η)| ≤ ǫ

2σj(S)
whenever |r − r0| < δ

for all η ∈ S. The triangle inequality guarantees that

|gn,j(r)− gn,j(r0)| ≤
∫

S
|φn(rEjη)− φn(r

Ej

0 η)|σj(dη) ≤ ǫ/2 < ǫ

whenever |r − r0| < δ. Thus, gn,j is continuous.
We observe that

gn,j(1) =

∫

S
φn(η)σj(dη)

because 1Ej = I . By construction, we have χKn(η) ≤ φn(η) ≤ χOn(η) for all η ∈ S and n ∈ N+ and
therefore

σj(Kn) ≤ gn,j(1) ≤ σj(On)

by the monotonicity of the integral. Since

σj(F ) = lim
n→∞

σj(Kn) = lim
n→∞

σj(On)

in view of our choice of On and Kn, the remaining result follows immediately from the preceding
inequality (and the squeeze theorem). //

Let us now complete the proof of Proposition 3.1.16. Given any 0 < s < 1 < t and n ∈ N, consider
the function f = fn,s,t : R

d → [0, 1] given by

f(x) = φn(x)χ[s,t](P (x))

for x ∈ Rd. It is clear that f is Lebesgue measurable on Rd and non-negative. By virtue of Theorem
3.1.8 (applied to the two measures σ1 and σ2), we have

∫ ∞

0

∫

S
f(rE1η)σ1(dη)r

µP−1 dr =

∫

Rd

f(x) dx =

∫ ∞

0

∫

S
f(rE2η)σ2(dη)r

µP−1 dr (3.20)

Upon noting that

f(rEjη) = φn(r
Ejη)χ[s,t]

(
(P (rEjη)

)
= φn(r

Ejη)χ[s,t](rP (η)) = χ[s,t](r)φn(r
Ejη)

for r ∈ (0,∞), η ∈ S, and j = 1, 2, we have
∫ ∞

0

∫

S
f(rEjη)σj(dη)r

µP−1 dr =

∫

[s,t]

∫

S
φn(r

Ejη)σj(dη)r
µP−1 dr =

∫

[s,t]
gn,j(r)r

µP−1 dr

for j = 1, 2. By virtue of the Lemma 3.1.17, r 7→ gn,j(r)r
µP−1 is continuous and necessarily

bounded on [s, t] and so the final integral above can be interpreted as a Riemann integral. In
this interpretation, we have

∫ t

s
gn,j(r)r

µP−1 dr =

∫ ∞

0

∫

S
f(rEjη)σj(dη)r

µP−1 dr (3.21)
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for j = 1, 2 and 0 < s < 1 < t. In view of (3.20) and (3.21), we conclude that
∫ t

s
gn,1(r)r

µP−1 dr =

∫ t

s
gn,2(r)r

µP−1 dr

for all 0 < s < 1 < t. In view of continuity of the integrands, an application of the fundamental
theorem of calculus now guarantees that gn,1(1) = gn,2(1) for each n ∈ N. Therefore

σ1(F ) = lim
n→∞

gn,1(1) = lim
n→∞

gn,2(1) = σ2(F )

by virtue of Lemma 3.1.17.

In view of Proposition 3.1.16, we will denote by ΣP and σP the unique σ-algebra and measure on
S which, respectively, satisfy

ΣP = ΣP,E and σP = σP,E

for all E ∈ Exp(P ). We will henceforth assume this notation.

Lemma 3.1.18. Given any O ∈ SL±(Rd) and Lebesgue measurable F ⊆ Rd,

m(OF ) = m(F ).

Proof. This lemma can be proved using the argument provided in the proof of Lemma 3.1.9.

Proposition 3.1.19. For any O ∈ Sym(P ) and F ∈ ΣP , OF ∈ ΣP and

σP (OF ) = σP (F ).

That is, the measure σP is invariant under the action by Sym(P ).

Proof. Let O ∈ Sym(P ), F ∈ ΣP and, for E ∈ Exp(P ), define E′ = O−1EO. In view of Proposition
2.0.10, we note that E′ ∈ Exp(P ). Observe that

˜(OF )E =
⋃

0<r<1

rE(OF ) =
⋃

0<r<1

O
(
O−1rEOF

)
= O

( ⋃

0<r<1

rE
′

F

)
= OF̃E′ (3.22)

thanks to Proposition 6.1.1. In view of Proposition 3.1.16, we have OF̃E′ ∈ Md because F ∈ ΣP =

ΣP,E′ and O is linear. Using (3.22), we find that ˜(OF )E ∈ Md and therefore OF ∈ ΣP,E = ΣP by
virtue of Proposition 3.1.16. Moreover, we have

σP,E(OF ) = µP ·m
(
˜(OF )E

)
= µP ·m

(
OF̃E′

)
= µP ·m

(
F̃E′

)
= σP,E′(F ),

where the third equality follows from Lemma 3.1.18. A final appeal to Proposition 3.1.16 guaran-
tees that

σP (OF ) = σP,E(OF ) = σP,E′(F ) = σP (F ),

as desired.
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This is the final result required to completely prove Theorem 3.1.1:

Proof of Theorem 3.1.1. Together, the results of Propositions 3.1.15, 3.1.16 and 3.1.19, guarantee that
σP is a Radon measure satisfying Properties 1 and 2. Property 3 follows directly from Proposition
3.1.16 and the definition of σP in terms of σP,E for any E ∈ Exp(P ). Similarly, Properties 1 and 2
follow from Theorem 3.1.8 by virtue of Proposition 3.1.16.

3.2 Using a smooth structure on S to compute σ

In this section, we consider the special case in which a positive homogeneous function P on Rd is
smooth12. Under this additional assumption, we show in Proposition 3.2.1 that ∇P is everywhere
non-vanishing on S and so S is a smooth compact embedded hypersurface in Rd. For a detailed
treatment of smooth manifold theory, the author encourages the reader to refer to [16]. For an
elementary application of theory to be presented here, the reader may refer to Section 4.2.

We first set up some notation: For a smooth manifold M , we denote by A(M) its unique maximal
atlas. Also on M , the collection of smooth vector fields is denoted by X(M) and, for each k =
1, 2, . . . , the set of (smooth) differential k-forms on M will be denoted by Ωk(M). In this section,
we integrate non-smooth differential forms and, for the generality needed here, we shall refer the
reader to [19] for background (Another perspective is given in [1]). To this end, let us denote the
Lebesgue σ-algebra of measurable sets on M by L(M). We note that F ∈ L(M) if and only if,

ϕ(F ∩ U) ∈ Md

for every chart (ϕ,U) ∈ A(M). An n-form ω on M , with n = dim(M), is said to be (Lebesgue)
measurable, if in each coordinate system (ϕ,U), the local representation

ω = hϕ(x)dx
1 ∧ dx2 ∧ · · · ∧ dxn

in the coordinates ϕ = (x1, x2, . . . , xn) has hϕ(x) a Lebesgue measurable function on U = ϕ(U) ⊆
Rn. The collection of measurable n-forms on M is denoted by L(Λd(M)) and, naturally, Ωd(M) ⊆
L(Λd(M)). As standard, we shall use Einstein’s summation convention.

We view Rd as smooth oriented Riemannian manifold with its standard Euclidean metric g, ori-
ented smooth atlas A+(R

d), and Riemannian volume form dVolRd . Given any E ∈ Exp(P ), con-
sider EE ∈ X(Rd) defined, at each x ∈ Rd, by

(EE)x(f) =
d

dt
f(x+ t(Ex))

∣∣
t=0

for f ∈ C∞(Rd). In the standard (global) chart with coordinates x = (x1, x2, . . . , xd), (EE)x ∈
Tx(R

d) is given by

(EE)x = (Ex)α∂xα = Eαβx
β∂xα

1Many of the results in this section remain valid (with appropriate modification) under the weaker assumption that
P ∈ Ck(Rd) for k = 1, 2, . . . . In this setting, S is easily seen to be a Ck manifold. Because working in the smooth
category is sufficient for our purposes, we shall not pursue the greater level of generality but invite the reader to do so.

2To avoid trivialities, we assume that d > 1 throughout.
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where (Eβα) is the standard matrix representation for E and ∂xα = ∂/∂xα. By an abuse of notation,
we shall write ∇P to denote both the function

Rd ∋ x 7→ ∇P (x) =

(
∂P

∂x1
,
∂P

∂x2
, . . . ,

∂P

∂xd

)
∈ Rd,

where ∂P
∂xα = ∂P

∂xα |x for α = 1, 2 . . . , d, and its canonical identification ∇P ∈ X(Rd) given by

∇Px = gαβ
∂P

∂xα
∂xβ = δαβ

∂P

∂xα
∂xβ =

d∑

α=1

∂P

∂xα
∂xα

in standard Euclidean coordinates x = (xα). Of course, for each x ∈ Rd, the Riemannian norm
|∇Px|g of ∇Px ∈ Tx(R

d) coincides with the Euclidean norm |∇P (x)| of ∇P (x) ∈ Rd. These
equivalent quantities (functions) will be henceforth denoted by |∇P |.

Proposition 3.2.1. For each η ∈ S,

g(∇P, E)η = ∇P (η) · (Eη) = 1.

In particular, ∇P 6= 0 on S and so S is a compact embedded hypersurface in Rd.

Proof. Given that E ∈ Exp(P ) and P ∈ C∞(Rd), we differentiate the identity rP (x) = P (rEx) to
find that

P (x) =
d

dr
P (rEx) = ∇P (rEx) ·

((
rE−IE

)
x
)

for r > 0 and x ∈ Rd. In particular, when r = 1 and x = η ∈ S, we have

1 = ∇P (η) · (Eη) = ∂P

∂xα
(Eη)α = gαβ (∇Pη)

α (Eη)β = g(∇P, E)η.

Thus, our (necessarily) compact level set S is a smooth embedded hypersurface of Rd in view of
the regular level set theorem.

We shall denote by ι : S →֒ Rd the canonical inclusion map and set d′ = d − 1. As an embedded
submanifold of Rd, S is a Riemannian submanifold of Rd with metric gS given by

gS(X,Y ) = g(ι∗(X), ι∗(Y ))

for X,Y ∈ X(S); here, for each η ∈ S, ι∗ : Tη(S) → Tη(R
d) is the pushforward of ι. In view of the

preceding proposition,N := ∇P/|∇P | ∈ X(Rd) is a smooth unit normal vector field along S and it
determines an orientation on the Riemannian manifold S. Equipped with this orientation, (S, gS)
is an oriented Riemannian manifold and we shall denote by dVolS the Riemannian volume form
and by A+(S) its corresponding (maximal) oriented atlas. By virtue of Proposition 15.21 of [16],
dVolS = (N y dVolRd)|S , i.e.,

dVolS(X1, X2, . . . , Xd′) = dVolRd(N, ι∗(X1), ι∗(X2), . . . , ι∗(Xd′))

=
1

|∇P |dVolRd(∇P, ι∗(X1), ι∗(X2), . . . , ι∗(Xd′))
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for any collection {X1, X2, . . . , Xd′} ∈ X(S). Beyond dVolS ∈ Ωd
′

(S), we consider the following
smooth d′-form(s): Given E ∈ Exp(P ), define dσP,E ∈ Ωd

′

(S) by

dσP,E(X1, X2, . . . , Xd′) = dVolRd(EE , ι∗(X1), ι∗(X2), . . . , ι∗(Xd′))

for X1, X2, . . . , Xd′ ∈ X(S). We have

Proposition 3.2.2. For any E ∈ Exp(P ),

dσP,E =
1

|∇P |dVolS .

In particular, dσP,E is positively oriented and is independent of E ∈ Exp(P ).

Before proving the proposition, we first treat a lemma of a purely linear algebraic nature.

Lemma 3.2.3. Let v1, v2, . . . , vd′ be linearly independent vectors in Rd and suppose that w ∈ Rd \{0}
is such that w ⊥ vi for all i. Then, for any z ∈ Rd for which z · w = 1,

det(z, v1, v2, . . . , vd′) =
1

|w| det(n, v1, v2, . . . , vd′) =
1

|w|2 det(w, v1, v2, . . . , vd′).

where n := w/|w|.

Proof. Given z ∈ Rd such that z · w = 1, it follows that

z =
1

|w|n+ a1v1 + a2v2 + · · · ad′vd′ .

By the multilinearity of the determinant map, we have

det(z, v1, v2, . . . , vd′) = det

(
1

|w|n+ a1v2 + a2v2 + · · · ad′vd′ , v1, v2, . . . , vd′
)

=
1

|w| det(n, v1, v2, . . . , vd′) + det(a1v1 + · · ·+ ad′vd′ , v1, v2, . . . , vd′)

=
1

|w| det(n, v1, v2, . . . , vd′) + 0

where we have used the fact that the columns of the matrix (a1v1 + · · ·+ ad′vd′ , v1, v2, . . . , vd′) are
linearly dependent to conclude that the final determinant is zero.

Proof of Proposition 3.2.2. We fix E ∈ Exp(P ) and note that the assertion at hand is a local one.
Thus, it suffices to verify that, for any η ∈ S and X1, X2, . . . , Xd′ ∈ Tη(S),

dσP,E(X1, X2, . . . , Xd′) =
1

|∇Pη|
dVolRd(Nη, ι∗(X1), ι∗(X2), . . . , ι∗(Xd′)).
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Fix η ∈ S and let (O, ϕ) be a coordinate chart centered at η with local coordinates u = (uα). As
usual, denote by x = (xα) the Euclidean coordinates on Rd. For each i = 1, 2, . . . , d′,

Xi = Xα
i ∂uα and ι∗(Xi) = vβi ∂xβ

where

vβi = Xα
i

∂xβ

∂uα
.

For each i = 1, 2, . . . , d′, we set vi = (v1i , v
2
i , . . . , v

d′
i ) ∈ Rd. Also, let w = ∇P (η) ∈ Rd with

|w| = |∇P (η)| = |∇Pη|, set n = w/|w| ∈ Rd and note that

Nη =
1

|∇Pη|

d∑

k=1

∂P

∂xk
∂xk = nµ∂xµ .

Given that ∇P is normal to S, we have

vi · w = gµ,νv
µ
i w

ν = g(ι∗(Xi),∇P )η = 0

and therefore w ⊥ vi for each i = 1, 2, . . . , d′. Upon recalling that (EE)η = (Eη)α∂xα , set z =
((Eη)1, (Eη)2, . . . , (Eη)d) ∈ Rd and observe that z ·w = 1 by virtue of Proposition 3.2.1. An appeal
to the lemma guarantees that

dσP,E(X1, X2, . . . , Xd′) = dVolRd(EE , ι∗(X1), ι∗(X2), . . . , ι∗(Xd′))

= det(z, v1, v2, . . . , vd′)

=
1

|w| det(n, v1, v2, . . . , vd′)

=
1

|∇Pη|
dVolRd(Nη, ι∗(X1), ι∗(X2), . . . , ι∗(Xd′))

=
1

|∇P |dVolS(X1, X2, . . . , Xd′).

By virtue of the preceding proposition, we shall denote by dσP the unique smooth d′-form on S
which satisfies

dσP = dσP,E =
1

|∇P |dVolS (3.23)

for all E ∈ Exp(P ). In this notation, we have this section’s central result.

Theorem 3.2.4. Let P be a smooth positive homogeneous function and let S = {η ∈ Rd : P (η) = 1}.
Then S is a compact smooth embedded hypersurface of Rd. Viewing Rd as an oriented Riemannian
manifold with its usual orientation and metric g, N = ∇P/|∇P | is a smooth unit normal vector field
along S. As a submanifold of Rd, S is a oriented Riemannian manifold of dimension d′ = d − 1 with
its induced Riemannian metric gS , volume form dVolS ∈ Ωd

′

(S) and orientation determined by N .
The σ-algebras ΣP and L(S) on S coincide and the smooth d′-form dσP ∈ Ωd

′

(S), defined by (3.23),
coincides with the measure σP in the sense that

∫

S
g(η)σP (dη) =

∫

S
g dσP (3.24)
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for all g ∈ L1(S,ΣP , σP ); here, the left hand side represents the Lebesgue integral of g with respect to
σP and the right hand side is the integral of the measurable d′-form g dσP . Furthermore, the measure
σP and the canonical Riemannian volume measure VolS on S are mutually absolutely continuous.

The following two lemmas will take us to the proof of this theorem. The first lemma lets us relate
the smooth d′-form dσP,E = dσP to the Jacobian induced by some parameterization ϕ−1 via the
Riemannian volume form dVolRd and dVolS .

Lemma 3.2.5. Let (U , ϕ) ∈ A(S) and E ∈ Exp(P ). Set U = ϕ(U) ⊆ Rd
′

, V = (0, 1)×U and define
ρE,ϕ : V → Rd and hE,ϕ : U → R, respectively, by

ρE,ϕ(y) = ψE(r, ϕ
−1) = rEϕ−1(u)

for y = (r, u) ∈ V and
hE,ϕ(u) = det

(
Eϕ−1(u)

∣∣Duϕ
−1(u)

)

for u ∈ U ; here, the vertical bar separates the first column of the (necessarily) d × d matrix from the
rightmost d× d′ submatrix and Du denotes the Jacobian in the coordinates u = (u1, u2, . . . , ud

′

) ∈ U .

Then, ρE,ϕ is a diffeomorphism onto its image ρE,ϕ(V ) = ŨE and its Jacobian matrix DρE,ϕ has

det(DρE,ϕ(y)) = rµP−1hE,ϕ(u) (3.25)

for all y = (r, u) ∈ V . Furthermore, hE,ϕ is everywhere non-zero, smooth and

dσP = hE,ϕ(u) du
1 ∧ du2 ∧ · · · ∧ dud′ (3.26)

in the coordinates u = (u1, u2, . . . , ud
′

) ∈ U .

Proof. The map ρE,ϕ is smooth because ϕ is smooth. By virtually the same argument made in the
proof of Proposition 3.1.3, which here uses the fact that P ∈ C∞(Rd), we conclude that ρE,ϕ is a
diffeomorphism onto

ρE,ϕ(V ) =
⋃

0<r<1

rEU = ŨE

with inverse ρ−1
E,ϕ(x) = (P (x), ϕ((P (x))−Ex)). For y = (r, u) ∈ V , observe that

DρE,ϕ(y) =

(
d

dr
(rEϕ−1(u))

∣∣∣∣Du

[
rEϕ−1(u)

])

=
(
rE−IEϕ−1(u)

∣∣ rEDuϕ
−1(u)

)

= rE
(
1

r
Eϕ−1(u)

∣∣∣∣Duϕ
−1(u)

)
.
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Using properties of the determinant, we have

det(DρE(y)) = det(rE) det

(
1

r
Eϕ−1(u)

∣∣∣∣Duϕ
−1(u)

)

= rtrEr−1 det
(
Eϕ−1(u)

∣∣Duϕ
−1(u)

)

= rµP−1hE,ϕ(u)

for all y = (r, u) ∈ V thus proving (3.25). It is clear that hE,ϕ is smooth and, by virtue of the

fact that ρE,ϕ : (0, 1) × U → ŨE is a diffeomorphism, (3.25) guarantees that hE,ϕ is everywhere
non-vanishing. Finally, in view of Proposition 3.2.2 (and (3.23)), we find that

hE,ϕ(u) = det
(
Eϕ−1(u)

∣∣Duϕ
−1(u)

)

= (dVolRd)ϕ−1(u)(EE , ι∗(∂u1), ι∗(∂u2), . . . , ι∗(∂ud′ ))
= (dσP )ϕ−1(u) (∂u1 , ∂u2 , . . . , ∂ud′ )

for u ∈ U and so (3.26) is satisfied. 3

Lemma 3.2.6. Let g ∈ L1(S,ΣP , σP ) be supported on the domain of some chart on S. Then, for
any (U , ϕ) ∈ A+(S) such that Supp(g) ⊆ U , the pushforward (ϕ−1)∗(g) = g ◦ ϕ−1 is Lebesgue
measurable on U = ϕ(U) ⊆ Rd

′

and

∫

S
g(η)σP (dη) =

∫

U
(ϕ−1)∗(g dσP ).

Proof. Let (U , ϕ) be a chart on S for which Supp(g) ⊆ U and assume the notation of Lemma 3.2.5.
Given E ∈ Exp(P ), observe that

f(x) = µP χ(0,1)(P (x))g(P (x)
−Ex),

defined for x ∈ Rd \ {0}, is supported on ŨE = ρE,ϕ(V ). An appeal to Corollary 3.1.2 guarantees
that f is absolutely integrable on ρE,ϕ(V ) and

∫

S
g(η)σP (dη) =

∫

ρE,ϕ(V )
f(x) dx. (3.27)

Given that ρE,ϕ is a diffeomorphism, an appeal to Theorem 15.11 of [2] guarantees that
∫

ρE,ϕ(V )
f(x) dx =

∫

V
f(ρE,ϕ(y))| det(DρE,ϕ(y))| dy; (3.28)

in particular, V ∋ y 7→ f(ρE,ϕ(y))| det(DρE,ϕ(y)) is Lebesgue measurable on Rd. Let us now view
the Lebesgue measure dy on Rd as the completion of the product measure dr × du on the product
space R× Rd

′

. By virtue of Lemma 3.2.5, we have

f(ρE,ϕ(y))| det(DρE,ϕ(y))| = f(rEϕ−1(u)) rµP−1|hE,ϕ(u)|
= µP χ(0,1)(r)g(ϕ

−1(u)) rµP−1|hE,ϕ(u)|
= µP r

µP−1g(ϕ−1(u))|hE,ϕ(u)| (3.29)

3For more details on conventional notation in smooth manifold theory, the reader may reference [16].
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for y = (r, u) ∈ V . By virtue of Fubini’s theorem, dr-almost every r ∈ (0, 1), the r-section

U ∋ u 7→ µP r
µP−1g(ϕ−1(u))|hE,ϕ(u)|

is Lebesgue measurable and, upon recalling that hE,ϕ is smooth and everywhere nonzero, we
conclude that (ϕ−1)∗(g) = g◦ϕ−1 is Lebesgue measurable onU . In view of (3.29), Fubini’s theorem
also guarantees that

∫

V
f(ρE,ϕ(y))| det(DρE,ϕ(y))| dy =

∫

(0,1)

∫

U
µP r

µP−1g(ϕ−1(u))|hE,ϕ(u)| du dr

=

∫ 1

0
µP r

µP−1

(∫

U
g(ϕ−1(u))|hE,ϕ(u)| du

)
dr

=

∫

U
g(ϕ−1(u))|hE,ϕ(u)| du (3.30)

By combining (3.27), (3.28) and (3.30), we have shown that (ϕ−1)∗g = g ◦ϕ−1 is Lebesgue measur-
able on U = ϕ(U) and ∫

S
g(η)σP (dη) =

∫

U
g(ϕ−1(u))|hE,ϕ(u)| du.

Finally, if (U , ϕ) ∈ A+(S), an appeal to Proposition 3.2.2 and (3.26) of Lemma 3.2.5 guarantees that

|hE,ϕ(u)| = hE,ϕ(u) = (dσP )ϕ−1(u)(∂u1 , ∂u2 , . . . , ∂ud′ ) > 0

for all u = (u1, u2, . . . , ud
′

) ∈ U and thus

∫

S
g(η)σP (dη) =

∫

U
g(ϕ−1(u))hE,ϕ(u) du

=

∫

U
g(ϕ−1(u))hE,ϕ(u) du

1 ∧ du2 ∧ · · · ∧ dud′

=

∫

U
(ϕ−1)∗(g · dσP ),

as desired.

Remark 4. In studying the proof of Lemma 3.2.6, we deduce a slightly more general statement: Given any
chart (U , ϕ) ∈ A(S) and g ∈ L1(S,ΣP , σP ) for which Supp(g) ∈ U , (ϕ−1)∗g is Lebesgue measurable on
U = ϕ(U) and

∫

S
g(η)σP (dη) =





∫

U
(ϕ−1)∗(g dσP ) if (U , ϕ) ∈ A+(S)

−
∫

U
(ϕ−1)∗(g dσP ) if (U , ϕ) ∈ A−(S) := A(S) \ A+(S).

Proof of Theorem 3.2.4. In view of Proposition 3.2.1 and the discussion following its proof, it re-
mains to prove the assertions in the last two sentences in the statement of the theorem. Given
any F ∈ ΣP and chart (U , ϕ) ⊆ A(S), we have χϕ(F∩U) = (ϕ−1)∗ (χF∩U ) is Lebesgue mea-
surable on U = ϕ(U) and so it follows (Exercise 4.6.2 of [19]) that F ∈ L(S). Consequently,
B(S) ⊆ ΣP ⊆ L(S).
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Let g ∈ L1(S,ΣP , σP ), which is necessarily Lebesgue measurable on S in view of the results
of the previous paragraph. Now, let {(Uj , ϕj)} ⊆ A+(S) be a countable atlas on S and let {κj}
be a smooth partition of unity subordinate to the cover {Uj}. For each j ∈ N, observe that κjg ∈
L1(S,ΣP , σP ) and has Supp(κjg) ⊆ Uj . By virtue of Lemma 3.2.6, we have (ϕ−1

j )∗(κjg dσP ) is
integrable on Uj = ϕ(Uj) and

∫

S
κj(η)g(η)σP (dη) =

∫

Uj

(ϕ−1
j )∗(κjg dσP ) (3.31)

for each j ∈ N. With the help of Proposition 3.2.2, it is easy to see that g dσP and κjg dσP (for
j ∈ N) are Lebesgue measurable d′-forms on S. In view of (4.4.6) of [19], (3.31) ensures that, for
each j ∈ N, κjg dσP is integrable (in the sense of forms) on S and

∫

S
κj(η)g(η)σP (dη) =

∫

S
κjg dσP .

By the monotone convergence theorem, it follows that

∞∑

j=1

∣∣∣∣
∫

S
κjg dσP

∣∣∣∣ =
∞∑

j=1

∣∣∣∣
∫

S
κj(η)g(η)σ(dη)

∣∣∣∣ ≤
∞∑

j=1

∫

S
κj(η)|g(η)|σP (dη) = ‖g‖L1(S,ΣP ,σP ) <∞.

Therefore, in view of the construction on p. 242 of [19], we conclude that the d′-form g dσP is
integrable and

∫

S
g(η)σP (dη) =

∞∑

j=1

∫

S
κj(η)g(η)σP (dη) =

∞∑

j=1

∫

S
κjg dσP =

∫

S
g dσP

by virtue of the dominated convergence theorem; this is (3.24).
Finally, given that |∇P | is continuous and non-vanishing on the compact set S,

C1 := inf
S

1

|∇P | and C2 := sup
S

1

|∇P |
are both positive real numbers. For each F ∈ ΣP ⊆ L(S), (3.24) guarantees that

σP (F ) =

∫

S
χF (η)σP (dη) =

∫

S
χF dσP

By virtue of Proposition 3.2.2, it follows that

C1VolS(F ) = C1

∫

S
χF dVolS ≤

∫

S

χF
|∇P |dVolS =

∫

S
χF dσP = σP (F )

and

σP (F ) =

∫

S
χFdσP =

∫

S

χF
|∇P | dVolS ≤ C2

∫

S
χF dVolS = C2VolS(F )

where we have used the definition of the Riemannian volume measure on S, c.f., [1]. In short,
there are positive constants C1 and C2 for which

C1VolS(F ) ≤ σP (F ) ≤ C2VolS(F ) (3.32)

for all F ∈ ΣP . In particular, (3.24) holds for all F ∈ B(S) and so it follows that the completions
of the σ-algebra B(S) with respect to σP and VolS coincide. We know, however, that VolS , which
is defined on L(S), is a Radon measure (Proposition 1.5 [1, Chapter XII]) and, by virtue of Propo-
sition 3.1.15, it follows that ΣP = L(S) and (3.32) holds for all F in this common σ-algebra. Thus
σP and VolS are mutually absolutely continuous and the theorem is proved.
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We immediately obtain the following corollary which allows us to compute the Lebesgue integral
with respect to σP in coordinates.

Corollary 3.2.7. Let g ∈ L1(S,L(S), σP ). Then, given any countable (or finite) atlas {(Uj , ϕj)} ⊆
A+(S), smooth partition of unity {κj} subordinate to {Uj}, and E ∈ Exp(P ),

∫

S
g(η)σP (dη) =

∑

j

∫

S
κjg dσP =

∑

j

∫

Uj

κj(ϕ
−1(u))g(ϕ−1(u))hE,ϕj (u) du

where, for each j, Uj = ϕj(Uj) ⊆ Rd
′

and

hE,ϕj (u) = det(Eϕ−1(u)|Duϕ
−1)

for u = (u1, u2, . . . , ud
′

) ∈ Uj .
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Chapter 4

Van der Corput Lemmas and Estimating
Oscillatory Integrals

In this chapter, we are interested in some technical results related to estimating one-dimensional
oscillatory integrals of the form ∫ b

a
eiΦ(x)ψ(x) dx, (4.1)

where Φ, ψ are functions which satisfy certain hypotheses. In particular, Φ is a real-valued func-
tion. Here, Φ(x) is often referred to as the phase function, while ψ(x) the amplitude. Integrals of
this form often appear in Fourier analysis and are treated extensively in this context (see Chapter
8 of [27], for example). In Section 4.1, we present a number of propositions and lemmas and prove
a version of the Van der Corput lemma (Lemma 4.1.6), which is a key ingredient for obtaining
our sup-norm estimate of convolution powers. The main approach we take to prove our prelim-
inary results is fairly standard; however, we also take a more general approach by considering
sub-level set estimates inspired by [20], which then gives the Van der Corput lemma as a special
case. In Section 4.2, we apply our result to obtain decay estimates for the Fourier transform of the
surface measure σP associated with a positive homogeneous polynomial P along the coordinate
axes. These estimates are a partial improvement of the results in [12].

4.1 Estimating Oscillatory Integrals & the Van der Corput lemma

The following result helps us isolate the influences of the amplitude ψ and the phase Φ on the
decay of (4.1); its proof makes use of integration by parts.

Lemma 4.1.1. Let h ∈ L1([a, b]) and g ∈ C1([a, b]) be complex-valued. Then for any M such that

∣∣∣∣
∫ x

a
h(u) du

∣∣∣∣ ≤M

for all x ∈ [a, b] we have ∣∣∣∣
∫ b

a
g(u)h(u) du

∣∣∣∣ ≤M
(∥∥g′

∥∥
1
+ ‖g‖∞

)
.

59
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Proof. Since h ∈ L1([a, b]), the function

f(x) =

∫ x

a
h(u) du

is absolutely continuous and f ′(x) = h(x) almost everywhere. Further, because |f(x)| ≤M for all
x ∈ [a, b], we have, by integration by parts,

∫ b

a
g(u)h(u) du = g(u)f(u)

∣∣b
a
−
∫ b

a
g′(u)f(u) du.

It follows that
∣∣∣∣
∫ b

a
g(u)h(u) du

∣∣∣∣ ≤ |f(b)g(b)|+ 0 +

∫ b

a
|f(u)|

∣∣g′(u)
∣∣ du ≤M

(
‖g‖∞ +

∥∥g′
∥∥
1

)
.

Remark 5. The assumption that g is once continuously differentiable can be weakened slightly to ask that g
belongs to the Sobolev spaceW 1 1([a, b]). For the essential details, we refer the reader to [17] and specifically
Theorem 7.16.

Proposition 4.1.2. Let Φ ∈ C2([a, b]) be a real-valued function for which Φ′ is monotonic and
|Φ′(x)| ≥ δ > 0 for all x ∈ [a, b], then

∣∣∣∣
∫ b

a
eiΦ(x) dx

∣∣∣∣ ≤
4

δ
.

Proof. Observe that

∫ b

a
eiΦ(x) dx =

∫ b

a

1

iΦ′(x)

(
d

dx
eiΦ
)
dx

=
1

iΦ′(x)
eiΦ(x)

∣∣∣∣
b

a

−
∫ b

a
eiΦ(x) d

dx

(
1

iΦ′(x)

)
dx

where we have integrated by parts and used the fact that Φ′ never vanishes. Consequently,

∣∣∣∣
∫ b

a
eiΦ(x) dx

∣∣∣∣ ≤
∣∣∣∣

1

Φ′(b)
− 1

Φ′(a)

∣∣∣∣+
∫ b

a

∣∣∣∣
d

dx

(
1

Φ′(x)

)∣∣∣∣ dx.

Since Φ′ is monotonic, the absolute value in the second term of the right hand side can be brought
outside of the integral. Subsequently, we apply a fundamental theorem of calculus to this term to
obtain the first assertion by taking

C =

∣∣∣∣
1

Φ′(b)
− 1

Φ′(a)

∣∣∣∣+
∫ b

a

∣∣∣∣
d

dx

(
1

Φ′(x)

)∣∣∣∣ dx = 2

∣∣∣∣
1

Φ′(b)
− 1

Φ′(a)

∣∣∣∣ ≤
4

δ
.
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We note that the function Φ in the preceding proposition has no critical points on [a, b]. In what
follows, we will extend the result of Proposition 4.1.2 by obtaining an estimate for

∣∣∣∣
∫ b

a
eiΦ(x) dx

∣∣∣∣

where Φ is a real-valued function on [a, b] such that for some k ≥ 2 and δ > 0 we have Φ ∈
Ck([a, b]) and

∣∣Φ(k)(x)
∣∣ ≥ δ for all x ∈ [a, b]. To this end, we require the help from the forthcoming

results (Proposition 4.1.3 and Lemma 4.1.4) to count and bound the (Lebesgue) measures of sub-
level sets of Φ, which have the form

Eα = {t ∈ [a, b] : |Φ(t)| ≤ α}

for each α > 0. Proposition 4.1.3 is inspired by Proposition 1.2 of [20]. The proof of Proposition
4.1.3 is fairly involved and makes use of the Lagrange interpolation polynomials, while the proof
of Lemma 4.1.4 is a straightforward induction argument on the number of critical points of f .

Proposition 4.1.3. For an integer k ≥ 1, suppose that Φ ∈ Ck([a, b]) is real-valued and, for some
δ > 0,

∣∣Φ(k)(t)
∣∣ ≥ δ for all t ∈ [a, b]. Then, for each α > 0, the sub-level set Eα := {t ∈ [a, b] :

|Φ(t)| ≤ α} has

m(Eα) ≤ 2k
(α
δ

)1/k
,

where m denotes the Lebesgue measure on R.

Proof. Since Φ is continuous, there is an integer N for which Eα = ∪Ni=1Ei where Ei for i =
1, 2, . . . , N are disjoint compact intervals for which

maxE1 ≤ minE2 ≤ maxE2 ≤ · · · ≤ maxEN−1 ≤ minEN .

Slide each Ei along R such that maxEi = minEi+1 for i = 1, 2, . . . k − 1 to create a single closed
interval I with m(I) = m(Eα). Pick k + 1 equally spaced points x′0, x

′
1, . . . , x

′
k in I and move the

intervals Ei back to their original positions. The selected points are now x0, x1, . . . , xk and satisfy

|xj − xl| ≥ m(Eα)
|j − l|
k

, for j, l = 0, 1, . . . , k (4.2)

Let us now consider the Lagrange interpolation polynomial

h(x) =
k∑

j=0

Φ(xj)pj(x)

where

pj(x) =
k∏

l=0
l 6=j

(x− xj)

(xl − xj)

for j = 0, 1, . . . , k. As designed, each pj is a kth-order polynomial and h interpolates Φ at the
points x0, x1, . . . , xk. In particular, F (x) := h(x)−Φ(x) vanishes at x0, x1, . . . , xk and is necessarily
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k-times continuously differentiable on [a, b]. It follows that there are k points y1 < y2 < · · · < yk
such that x0 < y1 < x1 < y2 < x2 < · · · < yk < xk and

F ′(y1) = F ′(y2) = · · · = F ′(yk) = 0.

Upon repeating this argument an additional k−1 times, we find that F (k)(ξ) = 0 at some ξ ∈ (a, b)
and here,

Φ(k)(ξ) = h(k)(ξ) =
k∑

j=0

Φ(xj)p
(k)
j (ξ).

By virtue of (4.2), for each j = 0, 1, 2, . . . k,

|p(k)j (ξ)| = k!
k∏

l=0
l 6=j

1

|xl − xj |
≤ k!




kk

m(Eα)k

k∏

l=0
l 6=j

1

|j − l|


 =

kk

m(Eα)k
k!

j!(k − j)!
=

kk

m(Eα)k

(
k

j

)
.

Because δ ≤
∣∣Φ(k)(ξ)

∣∣ and |Φ(xj)| ≤ α for each j = 0, 1, 2, . . . , k, it follows that

δ ≤

∣∣∣∣∣∣

k∑

j=0

Φ(xj)p
(k)
j (ξ)

∣∣∣∣∣∣
≤

k∑

j=0

α|p(k)j (ξ)| ≤ αkk

m(Eα)k

k∑

j=0

(
k

j

)
=

α(2k)k

m(Eα)k

where we have made use of the binomial theorem. Consequently,

m(Eα) ≤ 2k
(α
δ

)1/k
.

Lemma 4.1.4. Given an integer k ≥ 1, suppose that f ∈ Ck([a, b]) is a real-valued function for which∣∣f (k)(t)
∣∣ > 0 for all t ∈ [a, b]. Then [a, b] has a minimal cover of compact subintervals I1, I2, . . . , Il

with l ≤ k, for which the restriction of f to each subinterval is strictly monotonic.

Proof. We will prove this lemma by induction on k. When k = 1, the hypothesis ensures that f
is strictly monotonic on [a, b], as asserted. We now suppose that, for k ≥ 1, f ∈ C(k+1)([a, b]) and
f (k)(t) > 0 for all t ∈ [a, b]; the case in which f (k)(t) < 0 is similar. Our inductive hypothesis
guarantees a minimal cover I1, I2, . . . , Il of [a, b] where l ≤ k and each Ij is a compact interval
on which f ′ is strictly monotonic. Given that a strictly monotonic function can intersect 0 at most
once on its domain, f must have, at most, l critical points in the interval (a, b), one for each interval
I1, I2, . . . , Il. If there are no critical points, then f is necessarily strictly monotonic on [a, b] and the
desired result holds. Otherwise, denote by x1, x2, . . . , xm the critical points of f where, necessarily,
m ≤ l ≤ k, and we have arranged these points so that a < x1 < x2 < · · · < xm < b. In this case,
f is strictly monotonic on the m + 1 compact intervals [a, x1], [x1, x2], . . . , [xm−1, xm], [xm, b]. Of
course, m+ 1 ≤ l + 1 ≤ k + 1 and so the assertion holds for k + 1.

Now we are ready to prove the following extension of Proposition 4.1.2 to deal with cases where
Φ(x) has critical points. From here, Lemma 4.1.1 gives us an estimate for more general oscillatory
integrals where Φ(x) is not necessarily the constantly 1 functions. A special case of this (where
k = 2) is a version of the Van der Corput lemma which we will state as Lemma 4.1.6 and prove.
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Proposition 4.1.5. Let Φ be a real-valued function on [a, b] and suppose that, for some k ≥ 2, Φ ∈
Ck([a, b]) and

∣∣Φ(k)(x)
∣∣ ≥ δ for all x ∈ [a, b] where δ > 0. Then

∣∣∣∣
∫ b

a
eiΦ(x) dx

∣∣∣∣ ≤
2k · (2(k − 1))

1

k

δ
1

k

.

Proof. Define, for α > 0,

I(α) =

∫

{x∈[a,b]:|Φ′(x)|≥α}
eiΦ(x) dx

and observe that
∣∣∣∣
∫ b

a
eiΦ(x) dx

∣∣∣∣ ≤
∣∣∣∣∣

∫

{x∈[a,b]:|Φ′(x)|≥α}
eiΦ(x) dx

∣∣∣∣∣+
∣∣∣∣∣

∫

{x∈[a,b]:|Φ′(x)|<α}
eiΦ(x) dx

∣∣∣∣∣
≤ |I(α)|+m(Eα)

≤ |I(α)|+ 2(k − 1)
(α
δ

) 1

k−1

for all α > 0 by virtue of Proposition 4.1.3.
Let’s estimate I(α). In view of Lemma 4.1.4, there is a minimal cover of [a, b] containing at

most (k − 1) compact intervals on which Φ′ is strictly monotonic. For any α > 0, by removing the
set Eα from [a, b], we obtain at most 2(k − 1) compact intervals I1, I2, . . . , Il covering {x ∈ [a, b] :
|Φ′| ≥ α} = [a, b] \ Eα and on each of which Φ′ is strictly monotonic. Applying Proposition 4.1.2
to each such interval and using the triangle inequality we find

|I(α)| ≤ l
2

α
≤ 2(k − 1)

2

α
=

4(k − 1)

α

which holds for all α > 0. Consequently,
∣∣∣∣
∫ b

a
eiΦ(x) dx

∣∣∣∣ ≤
4(k − 1)

α
+ 2(k − 1)

(α
δ

)1/(k−1)
= 2(k − 1)

(
2

α
+
(α
δ

)1/(k−1)
)

for all α > 0 and therefore
∣∣∣∣
∫ b

a
eiΦ(x) dx

∣∣∣∣ ≤ 2(k − 1) inf
α>0

(
2

α
+
(α
δ

)1/(k−1)
)
.

It is easily shown that this infimum is attained at

α0 = δ
1

k [2(k − 1)]
k−1

k

and so it follows that,
∣∣∣∣
∫ b

a
eiΦ(x) dx

∣∣∣∣ ≤ 2(k − 1)

(
2

α0
+
(α0

δ

) 1

k−1

)
=

2k · (2(k − 1))
1

k

(δ)
1

k

,

as desired. It follows that for any choice of α > 0,
∣∣∣∣
∫ b

a
eiΦ(x) dx

∣∣∣∣ ≤
4(k − 1)

α
+ 2(k − 1)

(α
δ

) 1

k−1

= 2(k − 1)

[
2

α
+
(α
δ

) 1

k−1

]
=: f(α),
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Now,

f ′(α) =
2

α2

[
α

k
k−1 δ

−1

k−1 − 2(k − 1)
]
= 0 ⇐⇒ α = δ

1

k [2(k − 1)]
k−1

k .

With this choice of α, we have that f(α) attains a minimum:

f ′′(α) =
2(k − 1)

α3

[
4− k − 2

(k − 1)2
α

k
k−1 δ

−1

k−1

]

=
2(k − 1)

α3

[
4− k − 2

(k − 1)2
2(k − 1)δ

1

k−1 δ
−1

k−1

]

=
4(k − 1)

α3

(
2− k − 2

k − 1

)

≥ 0

and that

∣∣∣∣
∫ b

a
eiΦ(x) dx

∣∣∣∣ ≤ 2(k − 1)

[
2

α
+
(α
δ

) 1

k−1

]

= 2(k − 1)

[
2δ

−1

k [2(k − 1)]
1−k
k +

{
δ

1

k
−1 [2(k − 1)]

k−1

k

} 1

k−1

]

= 2

[
2(k − 1)

δ

] 1

k

+ 2(k − 1)

[
2(k − 1)

δ

] 1

k

=
2k · [2(k − 1)]

1

k

δ
1

k

as desired.

Finally, the following lemma is a version of the Van der Corput lemma which we will use to obtain
sup-norm estimates for convolution powers in the next chapter.

Lemma 4.1.6. Let g ∈ C1([a, b]) be complex-valued and let Φ ∈ C2([a, b]) be real-valued such that
Φ′′(x) 6= 0 for all x ∈ [a, b]. Then

∣∣∣∣
∫ b

a
g(u)eiΦ(u) du

∣∣∣∣ ≤ min

{
4

δ
,
8√
ρ

}(∥∥g′
∥∥
1
+ ‖g‖∞

)
,

where δ = infx∈[a,b] |Φ′(x)| and ρ = infx∈[a,b] |Φ′′(x)|.

Proof. Since Φ′′ never changes sign on [a, b], Φ′ must be monotonic on [a, b]. As a result, we can
combine Proposition 4.1.2 and Proposition 4.1.5 (with k = 2) to find

∣∣∣∣
∫ x

a
eiΦ(u) du

∣∣∣∣ ≤ min

{
4

δ
,
8√
ρ

}

for any x ∈ [a, b]. Setting h(u) = eiΦ(u) we note that the functions g and h are those in Lemma
4.1.1, from which the desired result follows immediately.
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4.2 An application

An important application of the facts regarding oscillatory integrals in the preceding section is in
the study of averaging operators and the decay of the Fourier transform of surface-carried mea-
sures. Here, we will follow the beginning of Chapter 8 of [27] to give some motivational context.

In Rd, the averaging operatorA that gives for each function f its average over the unit hypersphere
centered at x is defined by

A(f)(x) =
1

Θ(S)

∫

S

f(x− y)Θ(dy)

where Θ is the induced measure on the unit hypersphere Sd−1. A smooths f in several senses, the
simplest one is given by Proposition 1.1 of [27], which states that the mapping f → A(f) from
L2(Rd) to the Sobolev space W k,2(Rd) = H2(Rd) with k = (d − 1)/2 is bounded.1 The proof of
this statement relies on a crucial fact, which is that the Fourier transform of the canonical spherical

measure Θ, denoted by Θ̂, can be written as

Θ̂(ξ) = 2π|ξ|−d/2+1Jd/2(2π|ξ|),

from which and the known asymptotic behavior of the Bessel functions Jm of order m one finds
∣∣∣Θ̂(ξ)

∣∣∣ ≤ O(|ξ|−(d−1)/2) (4.3)

as |ξ| → ∞. We thus see that the knowledge of how the Fourier transform of the spherical mea-
sure decays allows us to learn something about the averaging operator A. The natural next step
is to generalize the estimate in (4.3). Chapter 8.3 of [27] provides an excellent summary of results
relating the curvature of hypersurfaces and the associated decay estimates. While this is inter-
esting in its own right, for the remainder of this section, we shall turn our attention to directly
obtaining decay estimates of the Fourier transform of a measure σ associated with a positive ho-
mogeneous polynomial P along the coordinate axes, using only the facts about oscillatory inte-
grals provided in the preceding section. We will then compare our results to [12], which studies
various mathematical objects derived from estimates on Fourier transforms of hypersurface mea-
sures, and demonstrate that when restricted to only finding decay estimates along the coordinate
axes, our result is slightly more optimal.

To start, let us consider the polynomial P of the form

P (x1, x2) = x21 + x42.

An appeal to Corollary 3.2.7 gives us an expression for the Fourier transform of the measure
σ̂P (ξ) = σ̂P (ξ1, ξ2):

2πσ̂P (ξ) =

∫

S
e−iξ·ησP (dη)

where of course
S = {η ∈ Rd : P (η) = 1}.

From Theorem 1.1 of [12], we have that for any ξ ∈ Rd with sufficiently large |ξ|, there is a constant
C for which

|σ̂P (ξ)| ≤
C

|ξ|1/4
. (4.4)

1For definitions of these mathematical objects, the reader may refer to Chapter 1 of [27].
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With this result in mind, we shall restrict ourselves to only the coordinate axes, i.e., we now study
how |σ̂P (ξ1, 0)| and |σ̂P (0, ξ2)| decay. Given S, we consider a finite atlas of charts {(Uα, ϕ−1

α )} with
α = 1, 2, 3, 4 given by





ϕ1 : (−a, a) → S ϕ1(u) = (
√

1− u4, u)

ϕ2 : (−a, a) → S ϕ2(u) = −ϕ1(u)

ϕ3 : (−b, b) → S ϕ3(u) = (u,−(1− u2)1/4)

ϕ4 : (−b, b) → S ϕ4(u) = −ϕ3(u).

where 0 < a < 1 and (1− a2)1/4 = b. Further, set Sα = ϕα((−a, a)) for α = 1, 2 and Sα =
ϕα((−b, b)) for α = 3, 4. Figure 4.1 shows the parameterization associated with this atlas.
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Figure 4.1: S

Note that the atlas {(Uα, ϕ−1
α )} is defined so that it is positively oriented. We find the P -adapted

surface area scaling factor to be

hE,ϕ1
(u) = hE,ϕ2

(u) = det

(
1
2

√
1− u4 − 2u3√

1−u4
1
4u 1

)
=

1

2
√
1− u4

for u ∈ (−a, a) and

hE,ϕ3
(u) = hE,ϕ4

(u) = det

(
1
2u 1

−1
4(1− u2)1/4 u

2(1−u2)3/4

)
=

1

4(1− u2)3/4

for u ∈ (−b, b). We want to break this integral up into a sum over the Sα’s. To this end, putting
A = (−a, a), B = (−b, b), we let a partition of unity {ρα}α where α = 1, 2, 3, 4 subordinate to the
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cover {ϕ1(A), ϕ2(A), ϕ3(B), ϕ4(B)} associated with the atlas above. With this, we have

2πσ̂P (ξ) =

∫

S
e−iξ·ησP (dη)

=
4∑

α=1

∫

S
ραe

−iξ·ησP (dη)

=
4∑

α=1

∫

Sα

e−iξ·ησP (dη)

=

∫ a

−a
e−iξ·ϕ1(u)hE,ϕ1

(u) du+

∫ a

−a
e−iξ·ϕ2(u)hE,ϕ2

(u) du

+

∫ b

−b
e−iξ·ϕ3(u)hE,ϕ3

(u) du+

∫ b

−b
e−iξ·ϕ4(u)hE,ϕ4

(u) du.

4.2.1 Decay along the ξ2-axis

When ξ = (0, ξ2) with ξ2 6= 0 we have:

2πσ̂P (ξ) =

∫ a

−a
e−iξ2u

1

2
√
1− u4

du+

∫ a

−a
e+iξ2u

1

2
√
1− u4

du

+

∫ b

−b
e+iξ2(1−u

2)1/4 1

4(1− u2)3/4
du+

∫ b

−b
e−iξ2(1−u

2)1/4 1

4(1− u2)3/4
du

:= I1(ξ2) + I2(ξ2) + I3(ξ2) + I4(ξ2).

For each of I1 and I2, the phase function is real-valued, twice-differentiable and has monotonic
first derivative whose absolute value is greater than or equal to |ξ2| > 0 on (−a, a). Moreover,
the amplitude function is once-differentiable on (−a, a). Thus, we can appeal to Lemma 4.1.1 and
Proposition 4.1.2 to find a positive constant C for which

|I1(ξ2)| ≤
C

|ξ2|
and |I2(ξ2)| ≤

C

|ξ2|
.

To estimate |I3(ξ2)| and |I4(ξ2)|, we first let Φ(u) = (1− u2)1/4. We have that Φ′(u) = 0 if and only
if u = 0, and that the smallest integer k for which Φ(k)(u) 6= 0 for all u ∈ [−a, a] is k = 2. Another
appeal to Lemma 4.1.6 yields

|I3(ξ2)| ≤
C

|ξ2|1/2
and |I4(ξ2)| ≤

C

|ξ2|1/2
.

It follows that there is a positive constant C for which

|σ̂P (ξ)| = |σ̂P (0, ξ2)| ≤
C

|ξ2|1/2
.

for all ξ = (0, ξ2) where ξ2 ∈ R \ {0}. In the case that ξ2 = 0, we can evaluate the integrals, and no
estimates are needed. We see that this estimate is sharper than in estimate in (4.4).
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4.2.2 Decay along the ξ1-axis

When ξ = (ξ1, 0) we have

2πσ̂P (ξ) =

∫ a

−a
e−iξ1

√
1−u4 1

2
√
1− u4

du+

∫ a

−a
e+iξ1

√
1−u4 1

2
√
1− u4

du

+

∫ b

−b
e−iξ1u

1

4(1− u2)3/4
du+

∫ b

−b
e+iξ1u

1

4(1− u2)3/4
du

:= I1(ξ1) + I2(ξ1) + I3(ξ1) + I4(ξ1).

In view of Lemma 4.1.6, we have

|I3(ξ1)| ≤
C

|ξ1|
and |I4(ξ1)| ≤

C

|ξ1|
.

for some positive constant C. To estimate |I1(ξ2)| and |I2(ξ2)|, we first let Φ(u) =
√
1− u4. We

have that Φ′(u) = 0 if and only if u = 0, and that the smallest integer k for which Φ(k)(u) 6= 0 for
all u ∈ [−b, b] is k = 4. Another appeal to Lemma 4.1.6 yields

|I1(ξ1)| ≤
C

|ξ1|1/4
and |I2(ξ1)| ≤

C

|ξ1|1/4
.

It follows that there is a positive constant C for which

|σ̂P (ξ)| = |σ̂P (ξ1, 0)| ≤
C

|ξ1|1/4
.

for all ξ = (ξ1, 0) where ξ1 ∈ R. This estimate is consistent with (4.4).



Chapter 5

Application: Estimating convolution
powers of complex-valued functions on
Zd

In this chapter, we utilize our generalized polar-coordinate integration formula and the Van der
Corput lemmas from the preceding chapter to obtain sup-norm-type estimates for convolution
powers of “sufficient nice” complex-valued functions φ defined on the d-dimensional integer lat-
tice. Section 5.1 covers the necessary theory and includes the main theorem (Theorem 5.1.2). Sec-
tion 5.2 shows how this theory is applied through some examples. This chapter is essentially as it
appears in Section 3 of [5].

5.1 An application: Estimates for convolution powers

This section can be summarized as follows. We first give some historical context related to the
study of convolution powers and define the class of aforementioned “sufficiently nice” functions,
denoted by Sd, whose convolution power estimates we wish to obtain. This class of functions, a
subspace of ℓ1(Zd), is a discrete analogue of the Schwartz class. Since our approach relies heavily
on the relationship between the Fourier transform and the convolution product, we define both
operations for all functions in ℓ1(Zd). From here, with the assumption that φ ∈ Sd, we can consider

the Taylor expansions Γξ0 of the Fourier transform of φ, denoted by φ̂, around the points ξ0 where

φ̂ is maximized. As we will see, the leading polynomials in Γξ0 are related to the positive homoge-
neous functions in Chapter 2 and its subtypes (subhomogeneous and strongly subhomogeneous
of order k) and give rise to a homogeneous order µξ0 depending on the “type” of ξ0. We then show
that the smallest homogeneous order over all admissible ξ0’s dictates the power-law decay of the
sup-norm of the convolution powers φ(n).

We denote by ℓ1(Zd) the set of absolutely summable functions, i.e., φ : Zd → C for which

‖φ‖1 :=
∑

x∈Zd

|φ(x)| <∞.

69
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Given ψ, φ ∈ ℓ1(Zd), the convolution product ψ ∗ φ ∈ ℓ1(Zd) is defined by

(ψ ∗ φ) (x) =
∑

y∈Zd

ψ(x− y)φ(y)

for x ∈ Zd. For a given φ ∈ ℓ1(Zd), we are interested in the asymptotic behavior of its convolution
powers φ(n) ∈ ℓ1(Zd) defined iteratively by φ(n) = φ(n−1) ∗ φ for n ≥ 1 where φ(0) = φ.

There are known theories for special cases of φ. When φ is non-negative (and satisfies mild
summability conditions), the asymptotic behavior of φ(n) is well understood and is the subject of
the local (central) limit theorem. For accounts of this history and its connection to probability and
random walk theory, the reader may refer to [15] and [25] (see also Section 7.6 of [22]). When φ is
generally complex-valued (or simply a real-valued function taking on both positive and negative
values), its convolution powers can exhibit exotic behaviors not seen in the probabilistic setting.
For example, Figure 5.1 shows the real part and the modulus of φ(n) for n = 400 and n = 1500
where φ : Zd → C is given by

φ(x, y) =
1

192
×





144− 64i (x, y) = (0, 0)

16 + 16i (x, y) = (±1, 0) or (0,±1)

−4 (x, y) = (±2, 0) or (0,±2)

i (x, y) = ±(1, 1)

−i (x, y) = ±(1,−1)

0 otherwise.

The problem of describing these behaviors dates back to Erastus L. De Forest in his study of data
smoothing in the nineteenth century and was further pursued by Isaac J. Schoenberg and Thomas
N. E. Greville. In the 1960’s, spurred by advancements in scientific computing, the study was rein-
vigorated by its application to numerical solutions to partial differential equations. [7] provides a
full account of this history and references to the literature. Regarding recent developments, mostly
in the context of one spatial dimension, we encourage the reader to see the articles [6,7,21,22]. Con-
cerning global space-time estimates, [7] establishes Gaussian and sub-Gaussian estimates for the
convolution powers of finitely-supported complex-valued functions on Z whose Fourier trans-
form (characteristic function) satisfies certain hypotheses and the article [6] focuses on Gaussian
estimates and extends results of [7] and [22]. The articles [7] and [21] treat local limit theorems
and sup norm estimates for the convolution powers of complex-valued functions on Z; the latter
provides a complete description of local limit theorems and sup norm estimates for the class of
finitely-supported complex-valued functions on Z, essentially resolving De Forest’s problem. In the
general context of Zd, [22] treats local limit theorems, global space-time estimates and sup norm
estimates for the convolution powers of complex-valued functions whose Fourier transform satis-
fies certain assumption discussed below.

In this section, we focus on sup-norm-type estimates for convolution powers of complex-valued
functions on Zd. Our main result, Theorem 5.1.2, partially extends results of [21] and [22], and
its proof makes use of Theorem 3.1.1 and the Van der Corput lemma. A forthcoming article will
present a theory of local limit theorems for complex-valued functions on Zd satisfying the hy-
potheses of Theorem 5.1.2. The Fourier transform is essential to our analysis and is defined as
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Figure 5.1: The real part and modulus of φ(n) for n = 400 and n = 1500.

follows: Given φ ∈ ℓ1(Zd), the Fourier transform of φ is the function φ̂ : Rd → C defined by

φ̂(ξ) =
∑

x∈Zd

φ(x)eix·ξ

for ξ ∈ Rd. As in [22], we shall focus on the subspace Sd of ℓ1(Zd) consisting of those φ : Zd → C

for which

‖xβφ(x)‖1 =
∑

x∈Zd

∣∣∣xβφ(x)
∣∣∣ =

∑

x∈Zd

∣∣∣(x1)β1(x2)β2 · · · (xd)βdφ(x1, x2, . . . , xd)
∣∣∣ <∞

for each multi-index β = (β1, β2, . . . , βd) ∈ Nd. Sd is a discrete analogue of the Schwartz class
of functions and contains all finitely supported complex-valued functions on Zd. It is easy to see

that φ̂ ∈ C∞(Rd) whenever φ ∈ Sd. As discussed in [7, 21, 22, 28], the asymptotic behavior of the

iterative convolution powers φ(n) of φ ∈ Sd is characterized by the local behavior of φ̂ near points

at which φ̂ is maximized in absolute value. For simplicity of our analysis, we shall focus on those

φ ∈ Sd which have been suitably normalized so that supξ |φ̂(ξ)| = 1 and, in this case, we define

Ω(φ) =
{
ξ ∈ Td :

∣∣∣φ̂(ξ)
∣∣∣ = 1

}
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where Td = (−π, π]d. For each ξ0 ∈ Ω(φ), consider Γξ0 : U → C defined by

Γξ0(ξ) = log

(
φ̂(ξ + ξ0)

φ̂(ξ0)

)

for ξ ∈ U where U ⊆ Rd is a convex open neighborhood of 0 which is small enough to ensure that

z 7→ log(z), the principal branch of the logarithm, is defined and continuous on {φ̂(ξ + ξ0)/φ̂(ξ0) :

ξ ∈ U}. Because φ̂ is smooth, Γξ0 ∈ C∞(U) and so we can use Taylor’s theorem to approximate
Γξ0 near 0. More precisely, we can write

Γξ0(ξ) = iαξ0 · ξ − i
(
Qξ0(ξ) + Q̃ξ0(ξ)

)
−
(
Rξ0(ξ) + R̃ξ0(ξ)

)
(5.1)

where αξ0 ∈ Rd, Qξ0 and Rξ0 are real-valued polynomials which vanish at 0 and contain no linear

terms, and Q̃ξ0 and R̃ξ0 are real-valued smooth functions on U which vanish at 0. The fact that this

expansion contains no real linear part is seen necessary because ξ0 is a local maximum for |φ̂|. The
vector αξ0 ∈ Rd is said to be the drift1 associated to ξ0. Motivated by Thomée [28], we introduce
the following definition for the “types” of ξ0.

Definition 5.1.1. Let φ ∈ Sd with supξ |φ̂(ξ)| = 1 and, given ξ0 ∈ Ω(φ), consider the expansion (5.1)
above.

1. We say that ξ0 is of positive homogeneous type for φ̂ if Rξ0 is positive homogeneous and, there

exists E ∈ Exp(Rξ0) for which Qξ0 is homogeneous with respect to E and both R̃ξ0 and Q̃ξ0 are
subhomogeneous with respect to E. In this case, we will write µξ0 = µRξ0

.

2. We say that ξ0 is of imaginary homogeneous type for φ̂ if |Qξ0 | and Rξ0 are both positive
homogeneous and, there exists E ∈ Exp(|Qξ0 |) and k > 1 for which Rξ0 is homogeneous with

respect to E/k, Q̃ξ0 is strongly subhomogeneous with respect to E of order 2, and R̃ξ0 is strongly
subhomogeneous with respect to E/k of order 1. In this case, we write µξ0 = µ|Qξ0

|.

In either case, µξ0 is said to be the homogeneous order associated to ξ0.

In Definition 1.3 of [22], a point ξ0 ∈ Ω(φ) is said to be of positive homogeneous type for φ̂ provided
that the expansion for Γξ0 is of the form

Γξ0(ξ) = iαξ0 · ξ − Pξ0(ξ)− P̃ξ0(ξ) (5.2)

for ξ ∈ U where Pξ0 is a positive homogeneous polynomial in the sense of Example 5 and P̃ξ0(ξ) =
o(Rξ0(ξ)) as ξ → 0 where Rξ0 = RePξ0 . To put this into context with our definition above, let’s

write Pξ0(ξ) = Rξ0(ξ) + iQξ0(ξ) and P̃ξ0(ξ) = R̃ξ0(ξ) + iQ̃ξ0(ξ) in which case (5.1) coincides with

(5.2). If ξ0 is of positive homogeneous type for φ̂ in the sense of the definition above, it follows that
Pξ0 is a complex-valued polynomial which is homogeneous with respect to E (and so Exp(Pξ0)
contains E ∈ End(Rd) for which {rE} is contracting) and Rξ0 = RePξ0 is positive definite. In

1In the case that φ defines a probability measure and a Zd-valued random vector X has this measure as its distribu-
tion, then αξ0 is X’s mean. For a precise statement and details, see Proposition 7.4 of [22].
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view of Remark 1, this is consistent with (and perhaps generalizes) the assumption in which Pξ0
is a positive homogeneous polynomial. Further, the assumption that Q̃ξ0 and R̃ξ0 are subhomoge-

neous with respect to E guarantees that P̃ξ0(ξ) = o(Rξ0(ξ)) as ξ → 0 by virtue of Proposition 2.1.3.
With these two observations, we see that our definition, which is stated in terms of subhomogene-
ity, is consistent with that of [22].

The essential difference between the cases in Definition 5.1.1 concerns the nature of the dominant
(low order) term in the expansion. When ξ0 is of positive homogeneous type for φ̂, the domi-
nant term Pξ0 contains the real-valued positive definite polynomial Rξ0 . In this case, local limit
theorems for φ(n)(x) contains attractors/approximants of the form

Hn
Pξ0

(x) =
1

(2π)d

∫

Rd

e−nPξ0
(ξ)−ix·ξ dξ

which can be seen, for example, in Theorem 1.5 of [22]. These are necessarily Schwartz func-
tions and appear as fundamental solutions to the higher-order partial differential equations dis-

cussed in [23]. On the other hand, when ξ0 is of imaginary homogeneous type for φ̂, the dominant
term in the expansion is the purely imaginary polynomial iQξ0(ξ) and its existence (without a
real counterpart) profoundly affects the asymptotic behavior of φ(n)(x) (e.g., see [21]). In fact,
as will be shown in a forthcoming article, local limit theorems for φ(n)(x) will contain approxi-
mants/attractors which are (formally) given by the oscillatory integral

Hn
iQξ0

(x) =
1

(2π)d

∫

Rd

e−inQξ0
(ξ)−ix·ξ dξ

whose convergence is a delicate matter.

Our theorem will be stated under the assumption that, for φ ∈ Sd with supξ |φ̂(ξ)| = 1, each

ξ0 ∈ Ω(φ) is either of positive homogeneous type or of imaginary homogeneous type for φ̂. In
both cases, the positive definiteness of Rξ0 guarantees that each ξ0 ∈ Ω(φ) is an isolated point of
Td. Consequently, if each ξ0 ∈ Ω(φ) is of positive homogeneous or imaginary homogeneous type

for φ̂, the set Ω(φ) is finite and we set

µφ = min
ξ∈Ω(φ)

µξ.

Theorem 5.1.2. Let φ ∈ Sd be such that sup |φ̂| = 1 and suppose that each ξ0 ∈ Ω(φ) is of positive

homogeneous or imaginary homogeneous type for φ̂. If αξ0 = 0 and µξ0 < 1 for each ξ0 ∈ Ω(φ) which

is of imaginary homogeneous type for φ̂, then, for any compact set K, there is a constant CK > 0 for
which ∣∣∣φ(n)(x)

∣∣∣ ≤ CK
nµφ

for all x ∈ K and n ∈ N+.

This partially extends the analogous one-dimensional results of [21] into the d-dimensional setting.

Specifically, Theorem 3.6 of [21] guarantees that, for each φ : Z → C for which supξ∈T |φ̂(ξ)| = 1
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and whose support is finite and contains more than one point, there is a constant C and a positive
integer m for which ∣∣∣φ(n)(x)

∣∣∣ ≤ Cn−1/m

for all x ∈ Z and n ∈ N+. Under these hypotheses concerning φ’s support, it follows from a basic
result of complex analysis that every point ξ of Ω(φ) is necessarily2 of positive homogeneous type

or imaginary homogeneous type for φ̂ with µξ ≤ 1/2 < 1. In this way, we see that Theorem 5.1.2
partially extends Theorem 3.6 of [21] in the sense that it guarantees a spatially uniform estimate
over compact sets and is stated under the additional hypotheses that the drift is zero for each point

of imaginary homogeneous type for φ̂. Though we expect that this is not the final result on the
matter, the more limited scope of Theorem 5.1.2 is not surprising in light of the natural complexity
of Rd (and Zd).

Concerning the existing theory in Zd, Theorem 5.1.2 is stated under weaker hypotheses than is
the analogous result in [22]. Specifically, Theorem 1.4 of [22] is stated under the assumption that,

given φ ∈ Sd with supξ |φ̂(ξ)| = 1, every point ξ0 ∈ Ω(φ) is of positive homogeneous type for φ̂
and, in this case, the theorem gives positive constants C and C ′, for which

C ′n−µφ ≤
∣∣∣φ(n)(x)

∣∣∣ ≤ Cn−µφ (5.3)

for all x ∈ Zd and n ∈ N. Though we have not stated it this way, our proof of Theorem 5.1.2 (see
Lemma 5.1.3), guarantees the upper estimate in (5.3) (with K = Zd) in the case that there are no

points ξ0 ∈ Ω(φ) of imaginary homogeneous type for φ̂. It is the presence of points ξ0 ∈ Ω(φ)
of imaginary homogeneous type that make the analysis significantly more difficult (even in one
dimension) and lead to the slightly weaker conclusion. It is our belief that a uniform estimate of
the type (5.3) is valid when all points are either of positive homogeneous or imaginary homoge-

neous type for φ̂ (perhaps still with some restriction on homogeneous order) but a resolution of
such a conjecture will require further analysis and a thorough study of local limits. In Section 5.2,
we give several examples illustrating the conclusion of Theorem 5.1.2, none of which satisfy the
hypotheses of Theorem 1.4 of [22].

Our proof of Theorem 5.1.2 will make use of the Fourier inversion formula

φ(n)(x) =
1

(2π)d

∫

Td
φ

φ̂n(ξ)e−ix·ξ dξ (5.4)

which is valid for all n ∈ N+ and x ∈ Rd; here Tdφ = Td + ξφ ⊆ Rd is a representation of the

d-dimensional torus chosen so that Ω(φ) ⊆ Int(Tdφ); this can always be arranged, i.e., some ξφ ∈
Rd can be selected, because Ω(φ) is a finite set (see Remark 3 of [22]). As discussed in [22], the
asymptotic behavior of φ(n) is characterized by the contributions to the above integral produced
by integration over neighborhoods of points ξ0 ∈ Ω(φ). Specifically, we shall study integrals of the
form

1

(2π)d

∫

Oξ0

φ̂n(ξ)e−ix·ξ dξ (5.5)

where Oξ0 is some (small and to be determined) neighborhood of ξ0 ∈ Ω(φ). When ξ0 is of pos-

itive homogeneous type for φ̂, such integrals are very well behaved (the integrand is dominated

2This is Proposition 2.2 of [21]. It is easy to see that the assertion fails when d > 1.
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uniformly by e−nRξ0
(ξ)/2, a member of the Schwartz class). When ξ0 is of imaginary homogeneous

type, such integrals are oscillatory in nature and therefore much more difficult to handle. Our

first lemma below handles the “easy” case in which ξ0 is of positive homogeneous type for φ̂.
This lemma appears, essentially, as Lemma 4.3 of [22]. For illustrative purposes, we have decided
to present a distinct proof here which makes use of the polar coordinate integration formula in
Theorem 3.1.1.

Lemma 5.1.3. Let ξ0 ∈ Ω(φ) be of positive homogeneous type for φ̂ with homogeneous order µξ0 .
Then, there exists an open neighborhood Oξ0 ⊆ Int(Tdφ) of ξ0, which can be taken as small as desired,
and a constant C = Cξ0 for which

∣∣∣∣∣
1

(2π)d

∫

Oξ0

φ̂n(ξ)e−ix·ξ dξ

∣∣∣∣∣ ≤ Cξ0n
−µξ0

for all n ∈ N+ and x ∈ Rd.

Proof. For simplicity, we write R = Rξ0 , R̃ = R̃ξ0 and µ = µξ0 . Given that ξ0 is of positive

homogeneous type for φ̂, there is an open neighborhood U of 0 for which
∣∣∣φ̂(ξ + ξ0)

∣∣∣ =
∣∣∣φ̂(ξ0)eΓξ0

(ξ)
∣∣∣ = e−(R(ξ)+R̃(ξ))

for ξ ∈ U . Using the fact that R̃(ξ) = o(R(ξ)) as ξ → 0 in view of Proposition 2.1.3, we can further
restrict U so that ∣∣∣φ̂(ξ + ξ0)

∣∣∣ ≤ e−R(ξ)/2

for all ξ ∈ U . Take E ∈ Exp(R) and let σR be the surface measure on S = {η ∈ Rd : R(η) = 1}
guaranteed by Theorem 3.1.1. We fix an open neighborhood Oξ0 of ξ0 which is as small as desired
and has the property that

O := Oξ0 − ξ0 ⊆ U .
With this, we observe that

∫

Oξ0

φ̂n(ξ)e−ix·ξ dξ =
∫

O
φ̂n(ξ + ξ0)e

−ix·(ξ+ξ0) dξ (5.6)

and therefore
∣∣∣∣∣

1

(2π)d

∫

Oξ0

φ̂n(ξ)e−ix·ξ dξ

∣∣∣∣∣ ≤ 1

(2π)d

∫

O

∣∣∣φ̂n(ξ + ξ0)e
−ix·(ξ+ξ0)

∣∣∣ dξ

≤ 1

(2π)d

∫

U
e−nR(ξ)/2 dξ

≤ 1

(2π)d

∫

Rd

e−(n/2)R(ξ) dξ

for all x ∈ Rd and n ∈ N+. By virtue of Theorem 3.1.1, we have
∫

Rd

e−(n/2)R(ξ) dξ =

∫

S

∫ ∞

0
e−(n/2)rrµ−1 dr σR(dη) =

∫

S

2µΓ(µ)

nµ
σR(dη) = 2µΓ(µ)σR(S)n

−µ
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where Γ denotes the Gamma function. Consequently,

∣∣∣∣∣
1

(2π)d

∫

Oξ0

φ̂n(ξ)e−ix·ξ dξ

∣∣∣∣∣ ≤ Cn−µ

for all x ∈ Rd and n ∈ N+ where C = 2µΓ(µ)σR(S)/(2π)
d.

We shall now focus on the case in which ξ0 ∈ Ω(φ) is of imaginary homogeneous type for φ̂. As
discussed above, (5.5) is oscillatory in nature; this is due to the fact that the “principal” behavior of
Γξ0(ξ), for small ξ, is characterized by the purely imaginary polynomial iQξ0 . Our main estimate
is presented in Lemma 5.1.6 and its proof makes use of (3.1) and a version of the Van der Corput
lemma stated as Lemma 4.1.6.
Before estimating (5.5) in the case that ξ0 is of imaginary homogeneous type using the result of
Lemma 4.1.6, we first treat two preliminary lemmas. The first lemma (Lemma 5.1.4) deals with
the first and second derivative of the phase function that will appear in Eq. (5.5) following the use
of the polar-coordinate integration formula. The second lemma (Lemma 5.1.5) deals with the L1

and L∞ norm of the amplitude function.

Lemma 5.1.4. Let Q : Rd → R be a continuous function for which |Q| is positive homogeneous with
µ := µ|Q| < 1. Given a compact subset S of Rd for which 0 /∈ S, set

ρ = inf
η∈S

|Q(η)|/3 > 0.

For an open neighborhood O of 0 in Rd, suppose that Q̃ : O → R is a twice continuously differentiable
function which is strongly subhomogeneous with respect to E of order 2, set F = E/µ, and define

fn,η,x(θ) = −nQ(θF η)− nQ̃(θF η)− x · θF η
= −nθ1/µQ(η)− nQ̃(θF η)− x · θF η

for n ∈ N+, η ∈ S, x ∈ Rd and θ > 0 sufficiently small so that θF η ∈ O. Then, given any compact set
K, there is a δ > 0 for which ∂2θfn,x,η(θ) 6= 0 and

|∂θfn,x,η(θ)| ≥
ρ

µ
nµ

for all n ∈ N+, η ∈ S, x ∈ K, and θ > 0 for which n−µ ≤ θ ≤ δµ.

Proof. Let E and S be as in the statement of the lemma and write f = fn,η,x. Because θF is
contracting, let δ1 > 0 be such that

∣∣x · θFFη
∣∣ ≤ ρ

µ
and

∣∣x · θF (F − I)Fx
∣∣ ≤ ρ

µ

(
1

µ
− 1

)
(5.7)

for all 0 < θ < δµ1 , x ∈ K and η ∈ S. By virtue of Proposition 2.1.4, there exists δ2 > 0 such that

∣∣∣θ∂θQ̃(θF η)
∣∣∣ ≤ ρ

µ
θ1/µ and

∣∣∣θ2∂2θ Q̃(θF η)
∣∣∣ ≤ ρ

µ

(
1

µ
− 1

)
θ1/µ (5.8)
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for all 0 < θ < δµ2 and η ∈ S. Set δ = min{δ1, δ2}. By virtue (5.7) and (5.8), we have

∣∣θ2∂2θf(θ)
∣∣ = θ2

∣∣∣n∂2θ
(
θ1/µQ(η) + Q̃(θF η)

)
+ ∂2θ

(
x · θF η

)∣∣∣

=

∣∣∣∣
n

µ

(
1

µ
− 1

)
θ1/µQ(η) + nθ2∂2θ Q̃(θF η) +

(
x · θF (F − I)Fη

)∣∣∣∣

≥ n

µ

(
1

µ
− 1

)
θ1/µ|Q(η)| − n

∣∣∣θ2∂2θ Q̃(θF η)
∣∣∣−
∣∣x · θF (F − I)Fη

∣∣

≥ 3ρn

µ

(
1

µ
− 1

)
θ1/µ − ρn

µ

(
1

µ
− 1

)
θ1/µ − ρ

µ

(
1

µ
− 1

)

≥ ρ

µ

(
1

µ
− 1

)(
2nθ1/µ − 1

)

for all n ∈ N+, η ∈ S, x ∈ K and 0 < θ < δµ. Given that θ 7→ θ1/µ is increasing, it follows that

∣∣θ2∂2θf(θ)
∣∣ ≥ ρ

µ

(
1

µ
− 1

)
(2nθ1/µ − 1) ≥ ρ

µ

(
1

µ
− 1

)
(2n(n−µ)1/µ − 1) =

ρ

µ

(
1

µ
− 1

)
> 0

and, in particular, ∂2θf(θ) 6= 0 for all n ∈ N+, η ∈ S, x ∈ K and θ > 0 for which n−µ ≤ θ ≤ δµ. By
another appeal to (5.7) and (5.8), we find

|∂θf(θ)| =
∣∣∣n∂θ

(
θ1/µQ(η) + Q̃(θF η)

)
+ ∂θ

(
x · θF η

)∣∣∣

=

∣∣∣∣
n

µ
θ1/µ−1Q(η) + n∂θQ̃(θF η) + θ−1

(
x · θFFη

)∣∣∣∣

≥ 3ρn

µ
θ1/µ−1 − nθ−1

∣∣∣θ∂θQ̃(θF η)
∣∣∣− θ−1

∣∣x · θFFη
∣∣

≥ 3ρn

µ
θ1/µ−1 − ρn

µ
θ1/µ−1 − ρ

µ
θ−1

≥ ρ

µ

(
2nθ1/µ−1 − θ−1

)

for all n ∈ N+, η ∈ S, x ∈ K and 0 < θ < δµ. Given our supposition that µ < 1, θ 7→(
2nθ1/µ−1 − θ−1

)
is increasing for θ > 0 and therefore

|∂θf(θ)| ≥
ρ

µ

(
2nθ1/µ−1 − θ−1

)
≥ ρ

µ

(
2n(n−µ)1/µ−1 − (n−µ)−1

)
=
ρ

µ
nµ

for all for all n ∈ N+, η ∈ S, x ∈ K and θ > 0 for which n−µ ≤ θ ≤ δµ, as we asserted.

Lemma 5.1.5. Let R be a positive homogeneous function with G ∈ Exp(R), R̃ : O → R be once con-

tinuously differentiable on a neighborhood O of 0 which has R̃(0) = 0 and is strongly subhomogeneous
with respect to G of order 1, and let k and µ be positive real numbers. Set F = (k/µ)G and, for each
η ∈ S = {η : R(η) = 1} and n ∈ N+, set

gn,η(θ) = e−n(R(θ
F η)+R̃(θF η))

for θ > 0 which is sufficiently small so that θF η ∈ O. Then, for each β > 1, there is δ > 0 for which

‖gn,η‖L∞[θ1,θ2] ≤ 1
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and
‖∂θgn,η‖L1[θ1,θ2] ≤ β

uniformly for η ∈ S, n ∈ N and 0 < θ1 ≤ θ2 ≤ δµ.

Proof. By virtue of the strong subhomogeneity of R̃, Proposition 2.1.2, and the fact that rG is a
contracting group, we may choose δ > 0 for which

R(rGη) + R̃
(
rGη

)
= r + R̃

(
rGη

)
≥ (1− ǫ)r > 0 (5.9)

and ∣∣∣∂r
(
R(rGη) + R̃(rGη)

)∣∣∣ ≤ 1 + ǫ (5.10)

for all 0 < r < δk and η ∈ S where

ǫ =
β − 1

β + 1
∈ (0, 1).

In view of (5.9), for any 0 < θ1 ≤ θ2 < δµ, η ∈ S and n ∈ N+,

‖gn,η‖L∞[θ1,θ2] ≤ sup
0<θ≤δµ

|gn,η(θ)| = sup
0<r≤δk

∣∣∣gn,η(rµ/k)
∣∣∣ ≤ sup

0<r≤δk
e−nr(1−ǫ) = 1

where we have used the fact that (rµ/k)F = r(µ/k)F = rG for r > 0. By virtue of (5.9) and (5.10),
we find that

‖∂θgn,η‖L1[θ1,θ2] =

∫ θ2

θ1

|∂θgn,η(θ)| dθ

=

∫ θ
k/µ
2

θ
k/µ
1

∣∣∣∂r
(
gn,η(r

µ/k)
)∣∣∣ dr

=

∫ θ
k/µ
2

θ
k/µ
1

∣∣∣∂r
(
e−n(R(rGη)+R̃(rGη))

)∣∣∣ dr

=

∫ θ
k/µ
2

θ
k/µ
1

n
∣∣∣∂r
(
R(rGη) + R̃(rGη)

)∣∣∣
∣∣∣e−nR(rGη)+R̃(rGη)

∣∣∣ dr

≤
∫ θ

k/µ
2

θ
k/µ
1

n(1 + ǫ)e−n(1−ǫ)r dr

≤ 1 + ǫ

1− ǫ

∫ ∞

0
e−r dr = β

for all n ∈ N+, η ∈ S and 0 < θ1 ≤ θ2 ≤ δµ, as desired.

Lemma 5.1.6. Suppose that ξ0 is of imaginary homogeneous type for φ̂ with associated drift αξ0 and
homogeneous order µξ0 . If αξ0 = 0 and µξ0 < 1, then, for each compact set K, there is an open
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neighborhood Oξ0 ⊆ Int(Tdφ) of ξ0, which can be taken as small as desired, and a constant Cξ0 for
which ∣∣∣∣∣

1

(2π)d

∫

Oξ0

φ̂n(ξ)e−ix·ξ dξ

∣∣∣∣∣ ≤ Cξ0n
−µξ0

for all x ∈ K and n ∈ N+.

Proof. For simplicity of notation, we will write Q = Qξ0 , Q̃ = Q̃ξ0 , R = Rξ0 , R̃ = R̃ξ0 and µ = µξ0 .
We fix a compact set K ⊆ Rd and let E and k as given in Definition 5.1.1. In studying the proof of

Lemma 5.1.3 and (5.6), in particular, it is evident that we may assume ξ0 = 0 and φ̂(0) = 1 without
loss of generality. Given that G := E/k ∈ Exp(R), set

F = (k/µ)G = E/µ.

Using the positive homogeneous structure of R, let σR be the measure on S = {η ∈ Rd : R(η) = 1}
as guaranteed by Theorem 3.1.1. By setting

ρ = inf
η∈S

|Q(η)|/3,

an appeal to Lemma 5.1.4 guarantees a δ1 > 0 for which

|∂θfn,η,x(θ)| ≥
ρ

µ
nµ and ∂2θfn,η,x(θ) 6= 0 (5.11)

for all n ∈ N+, η ∈ S, x ∈ K and θ > 0 for which n−µ ≤ θ ≤ δµ1 . An appeal to Lemma 5.1.5
guarantees δ2 > 0 for which

‖gn,η‖L∞[θ1,θ2] + ‖∂θgn,η‖L1[θ1,θ2] ≤ 3 (5.12)

for all n ∈ N+, η ∈ S and 0 < θ1 ≤ θ2 ≤ δµ2 . We set O = {η ∈ Rd : R(η) < δk} where
0 < δ ≤ min{δ1, δ2} is as small as desired; this is necessarily an open neighborhood of 0. We have

∫

O
φ̂n(ξ)e−ix·ξ dξ =

∫

S

∫ δk

0
φ̂n(rGη)e−ix·r

Gηrµ/k−1 drσR(dη)

=
k

µ

∫

S

∫ δµ

0
φ̂n(θF η)e−ix·θ

F η dθ σR(dη)

=
k

µ

∫

S
In,x(η)σR(dη)

where we have made the change of variables θ = rµ/k and set

In,x(η) =

∫ δµ

0
φ̂n(θF η)e−ix·θ

F η dθ.

For each n ∈ N+, η ∈ S, and x ∈ Rd, we have

|In,x(η)| ≤
∣∣∣∣
∫ δµ

n−µ

φ̂n(θF η)e−ix·θ
F η dθ

∣∣∣∣+
∫ n−µ

0

∣∣∣φ̂n(θF η)
∣∣∣ dθ

≤
∣∣∣∣
∫ δµ

n−µ

e−i(nQ(θ
F η)+nQ̃(θF η)+x·θF η)e−n(R(θ

F η)+R̃(θF η)) dθ

∣∣∣∣+ n−µ

=

∣∣∣∣
∫ δµ

n−µ

eifn,η,x(θ)gn,η(θ) dθ

∣∣∣∣+ n−µ.
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In view of (5.11) and (5.12), an appeal to Lemma 4.1.6 guarantees that, for any n ∈ N+, η ∈ S and
x ∈ K,

∣∣∣∣
∫ δµ

n−µ

eifn,η,x(θ)gn,η(θ) dθ

∣∣∣∣ ≤ 4
‖gn,η‖L∞[n−µ,δµ] + ‖∂θgn,η‖L1[n−µ,δµ]

infn−µ≤θ≤δδ |∂θfn,x,η(θ)|

≤ 4
3

(ρ/µ)nµ
=

12µ

ρ
n−µ

and so

|In,x(η)| ≤
(
12µ

ρ

)
n−µ + n−µ ≤

(
12µ

ρ
+ 1

)
n−µ.

Thus, for all n ∈ N+ and x ∈ K,
∣∣∣∣

1

(2π)d

∫

O
φ̂n(ξ)e−iξ·x dξ

∣∣∣∣ =
1

(2π)d
k

µ

∣∣∣∣
∫

S
In,x(η)σR(dη)

∣∣∣∣

≤ 1

(2π)d
k

µ

∫

S
|In,x(η)|σR(dη)

≤ Cn−µ

where

C =
1

(2π)d
k

µ

(
12µ

ρ
+ 1

)
σR(S).

Proof of Theorem 5.1.2. Let K ⊆ Rd be a compact set. As we discussed in the paragraph preceding
the theorem, the set Ω(φ) is finite and so we may write

Ω(φ) = {ξ1, ξ2, . . . , ξN , ξN+1, ξN+2, . . . , ξM}

where our labeling assumes that the points ξ1, ξ2, . . . , ξN are of imaginary homogeneous type for

φ̂ and the points ξN+1, ξN+2, . . . , ξM are of positive homogeneous type for φ̂. In view of the theo-
rem’s hypotheses, for each j = 1, 2, . . . , N , the point ξj , which is of imaginary homogeneous type

for φ̂, has drift αξj = 0 and homogeneous order µj := µξj < 1. Thus, for each j = 1, 2, . . . , N , an

appeal to Lemma 5.1.6 guarantees an open neighborhood Oj = Oξj ⊆ Int(Tdφ) of ξj and a constant
Cj = Cξj for which ∣∣∣∣∣

1

(2π)d

∫

Oj

φ̂n(ξ)e−ix·ξ dξ

∣∣∣∣∣ ≤ Cjn
−µj (5.13)

for all n ∈ N+ and x ∈ K. For each j = N + 1, N + 2, . . .M , an appeal to Lemma 5.1.3 guarantees
an open neighborhood Oj = Oξj ⊆ Int(Tdφ) of ξj and a constant Cj = Cξj for which

∣∣∣∣∣
1

(2π)d

∫

Oj

φ̂n(ξ)e−ix·ξ dξ

∣∣∣∣∣ ≤ Cjn
−µj (5.14)

for all n ∈ N+ and x ∈ Rd where µj := µξj is the homogeneous order associated to ξj . As

guaranteed by the lemmas, let us take this collection of open sets O1,O2, . . . ,OM ⊆ Tdφ to be
mutually disjoint and define

G = Tdφ \




M⋃

j=1

Oj


 . (5.15)
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Given that G is a closed set which contains no elements of Ω(φ),

s := sup
ξ∈G

∣∣∣φ̂(ξ)
∣∣∣ < 1.

By virtue of (5.4), (5.13), (5.14), and the disjointness of the collection O1,O2, . . . ,OM , we have

∣∣∣φ(n)(x)
∣∣∣ =

∣∣∣∣∣∣



M∑

j=1

1

(2π)d

∫

Oj

φ̂n(ξ)e−x·ξ dξ


+

1

(2π)d

∫

G
φ̂n(ξ)e−x·ξ dξ

∣∣∣∣∣∣

≤
M∑

j=1

∣∣∣∣∣
1

(2π)d

∫

Oj

φ̂n(ξ)e−x·ξ dξ

∣∣∣∣∣+
∣∣∣∣

1

(2π)d

∫

G
φ̂n(ξ)e−x·ξ dξ

∣∣∣∣

≤
M∑

j=1

Cjn
−µj + sn (5.16)

for all n ∈ N+ and x ∈ K. Upon noting that µφ = min{µ1, µ2, . . . , µM}, we have

n−µj = O(n−µφ)

as n → ∞ for each j = 1, 2, . . .M . Also, because s < 1, sn = o(n−µφ) as n → ∞. With these two
observations, the theorem follows immediately from (5.16).

5.2 Examples

In this section, we give a number of examples illustrating the results of Theorem 5.1.2, all of which
are beyond the scope of validity of the results of [22]. First, we treat a useful proposition which
gives sufficient conditions for a point ξ0 ∈ Ω(φ) to be of positive homogeneous or imaginary
homogeneous type for φ̂ in terms of the Taylor expansion for Γξ0 .

Proposition 5.2.1. Let φ ∈ Sd with supξ |φ̂(ξ)| = 1 and let ξ0 ∈ Ω(φ). Suppose that there exists

m ∈ Nd+ and some k ≥ 1 such that the Taylor expansion of Γξ0 : U → C centered at 0 is a series of the
form

Γξ0(ξ) = iαξ0 · ξ − i


 ∑

|β:2m|≥1

Aβξ
β


−

∑

|β:2m|≥k
Bβξ

β

= iαξ0 · ξ − i


 ∑

|β:2m|=1

Aβξ
β +

∑

|β:2m|>1

Aβξ
β


−


 ∑

|β:2m|=k
Bβξ

β +
∑

|β:2m|>k
Bβξ

β




= iαξ0 · ξ − i
(
Qξ0(ξ) + Q̃ξ0(ξ)

)
−
(
Rξ0(ξ) + R̃ξ0(ξ)

)
, (5.17)

where αξ0 ∈ Rd; Qξ0 and Rξ0 are real-valued polynomials for which Rξ0 is positive definite; and Q̃ξ0 ,

and R̃ξ0 are real multivariate power series which are absolutely and uniformly convergent on U . If
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k = 1, then ξ0 is of positive homogeneous type for φ̂. If k > 1 and |Qξ0 | is positive definite, then ξ0 is

of imaginary homogeneous type for φ̂. In either case, ξ0 has drift αξ0 and homogeneous order

µξ0 = |1 : 2m| =
d∑

j=1

1

2mj
.

Before proving the proposition, we shall first take care of the following useful lemma.

Lemma 5.2.2. Given an open neighborhood U of 0 in Rd, suppose that Q : U → C is real-analytic on
U with absolutely and uniformly convergent series expansion

Q(ξ) =
∑

|β:n|>1

Aβξ
β

for some n ∈ Nd+. Consider E ∈ End(Rd) with standard representation diag(1/n1, 1/n2, . . . , 1/nd).
Then, for each k ∈ N+, Q is strongly subhomogeneous with respect to E of order k.

Proof. It suffices to show that, for each, j ∈ N+, ǫ > 0 and compact set K ⊆ Rd, there is a δ > 0 for
which ∣∣rj∂jrQ(rEη)

∣∣ ≤ ǫr

for all 0 < r < δ and η ∈ K. To this end, we fix j, ǫ, and K as above and write Q = Q1 +Q2 where

Q1(ξ) =
∑

1+ρ≤|β:n|≤2j+2

Aβξ
β and Q2(ξ) =

∑

|β:n|>2j+2

Aβξ
β

where ρ := min{|β : n| : Aβ 6= 0} − 1 > 0. For each q ≥ 1 and l ∈ N+, define

P(q, l) = q(q − 1)(q − 2) · · · (q − (l − 1)).

In this notation, we observe that

∂jr(r
Eξ)β = ∂jr

(
r|β:n|ξβ

)
= P(|β : n|, j)r|β:n|−jξβ

for ξ ∈ Rd, r > 0 and β ∈ Nd. Because Q1 is a polynomial and K is compact, we have

M1 := sup
η∈K


 ∑

1+ρ≤|β:n|≤2j+2

∣∣∣AβP(|β : n|, j)ηβ
∣∣∣


 <∞.

Given that Q is absolutely and uniformly convergent on U , let O ⊆ O ⊆ U be an open neighbor-
hood of 0 for which

M2 := sup
ξ∈O


 ∑

|β:n|>2j+2

∣∣∣Aβξβ
∣∣∣


 <∞.
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We now specify δ. First, given that {rE} and {rE/4} are contracting and the set K is compact, we
may find a 0 < δ1 ≤ 1 for which rEη and rE/4η belong to O whenever 0 < r < δ1 and η ∈ K. Also,
there exists δ2 > 0 for which

|P(q, j)|rq/4 ≤ 1 (5.18)

for all q > j and 0 < r ≤ δ2; it is sufficient to take δ2 = e−4j . Finally, given that ρ > 0, let δ3 > 0 be
such that

M1r
ρ +M2r < ǫ

for all 0 < r < δ3. Set δ = min{δ1, δ2, δ3} and observe that for all η ∈ K and 0 < r < δ, we have

∣∣rj∂jrQ1(r
Eη)
∣∣ = rj

∣∣∣∣∣∣
∑

1+ρ≤|β:n|≤2j+2

Aβ∂
j
r

(
rEη

)β
∣∣∣∣∣∣

≤ rj
∑

1+ρ≤|β:n|≤2j+2

∣∣∣AβP(|β : n|, j)r|β:n|−jηβ
∣∣∣

≤ r1+ρ
∑

1+ρ≤|β:n|≤2j+2

∣∣∣AβP(|β : n|, j)ηβ
∣∣∣

≤ rM1r
ρ.

By virtue of (5.18), for each q = |β : n| > 2j + 2, we have

∣∣∣∂jr
(
Aβ(r

Eη)β
)∣∣∣ = |Aβ ||P(|β : n|, j)|r|β:n|−j

∣∣∣ηβ
∣∣∣

= r|β:n|/2−j |Aβ |
∣∣∣P(|β : n|, j)r|β:n|/4

∣∣∣
∣∣∣(rE/4η)β

∣∣∣

≤ r
∣∣∣Aβ(rE/4η)β

∣∣∣

for all 0 < r < δ ≤ δ2 and η ∈ K. It follows that

∣∣∂jrQ2(r
Eη)
∣∣ =

∣∣∣∣∣∣
∑

|β:n|>2j+2

∂jr

(
Aβ(r

Eη)β
)
∣∣∣∣∣∣

≤
∑

|β:n|>2j+2

∣∣∣∂jr
(
Aβ(r

Eη)β
)∣∣∣

≤
∑

|β:n|>2j+2

r
∣∣∣Aβ(rE/4η)β

∣∣∣

≤ rM2

for all 0 < r < δ and η ∈ K. Therefore, for each 0 < r < δ and η ∈ K, we have

∣∣rj∂jrQ(rEη)
∣∣ ≤

∣∣rj∂jrQ1(r
Eη)
∣∣+
∣∣rj∂jrQ2(r

Eη)
∣∣

≤ rrρM1 + rj+1M2

≤ r(M1r
ρ +M2r)

< rǫ.
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Proof of Proposition 5.2.1. It is easy to see that E ∈ Exp(Qξ0) ∩ Exp(|Qξ0 |) and E/k ∈ Exp(Rξ0) for
E ∈ End(Rd) with standard matrix representation

diag((2m1)
−1, (2m2)

−1, . . . , (2md)
−1).

If k = 1, Rξ0 is positive homogeneous with E ∈ Exp(Rξ0) ∩ Exp(Qξ0). By virtue of the preceding

lemma (with n = 2m), Q̃ξ0 and R̃ξ0 are strongly subhomogeneous with respect to E of order 1 and
so, in view of Proposition 2.1.2, both are subhomogeneous with respect to E. In this case, we may

conclude that ξ0 is of positive homogeneous type for φ̂ with drift αξ0 and homogeneous order

µξ0 = trE = |1 : 2m| =
d∑

j=1

1

2mj
.

If k > 1, our supposition guarantees that |Qξ0 | is positive homogeneous with respect to E and Rξ0
is positive homogeneous with respect to E/k. By virtue of the preceding lemma, Q̃ξ0 is strongly

subhomogeneous with respect to E of order 2 and R̃ξ0 is strongly subhomogeneous with respect

to E/k of order 1. Consequently, ξ0 is of imaginary homogeneous type for φ̂ with drift αξ0 and
homogeneous order µξ0 = trE as in the previous case.

Example 8. Consider the function φ : Z2 → C defined by

φ(x, y) =
1

512
×





372− 96i (x, y) = (0, 0)

56 + 32i (x, y) = (±1, 0) or (0,±1)

−28− 8i (x, y) = (±2, 0) or (0,±2)

8 (x, y) = (±3, 0) or (0,±3)

−1 (x, y) = (±4, 0) or (0,±4)

0 otherwise.

It is easily verified that supξ |φ̂| = 1 and Ω(φ) = {ξ0} where ξ0 = (0, 0). Since φ is finitely sup-
ported, Γ0 = Γξ0 is C2 analytic on its domain and so its Taylor series converges absolutely and
uniformly on an open neighborhood U ⊆ R2 of 0. By a straightforward computation, we find

Γ0(ξ) = −i
(
τ4

64
+
ζ4

64

)
− i

∑

|β:(4,4)|≥2

Aβξ
β

−
(
15τ8

8192
− τ4ζ4

4096
+

15ζ8

8192

)
−

∑

|β:(4,4)|≥6

Bβξ
β

= −i
(
Q0(ξ) + Q̃0(ξ)

)
−
(
R0(ξ) + R̃0(ξ)

)

where

Q0(ξ) =
∑

|β:(4,4)|=1

Aβξ
β =

τ4

64
+
ζ4

64
,

R0(ξ) =
∑

|β:(4,4)|=2

Bβξ
β =

15τ8

8192
− τ4ζ4

4096
+

15ζ8

8192
,
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Q̃0(ξ) =
∑

|β:(4,4)|≥3/2

Aβξ
β = −τ

6 + ζ6

384
+
τ8 + ζ8

5120
+

7(τ4ζ8 + τ8ζ4)

262144
+ · · · ,

and

R̃0(ξ) =
∑

|β:(4,4)|≥5/2

Bβξ
β =

(τ4ζ6 + τ6ζ4)

24576
− τ6ζ6

147456
− (τ4ζ8 + τ8ζ4)

327680
· · · ,

for ξ = (τ, ζ) ∈ U . Observe that this expansion is of the form (5.17) with α0 = (0, 0), m = (2, 2),
and k = 2. It is readily verified that |Q0| = Q0 and R0 are positive definite and, by virtue of

Proposition 5.2.1, we conclude that ξ0 = 0 is of imaginary homogeneous type for φ̂ with drift
α0 = 0 and homogeneous order

µφ = µ0 = |1 : 2m| = 1

4
+

1

4
=

1

2
.

By an appeal to Theorem 5.1.2 we obtain, to each compact set K ⊆ R2, a positive constant C for
which

|φ(n)(x, y)| ≤ C

nµφ
=

C

n1/2
(5.19)

for all n ∈ N+ and (x, y) ∈ K. To illustrate this result, we consider the compact set K =
[−700, 700] × [−700, 700] and define f(n) = fφ,K(n) = max(x,y)∈K

∣∣φ(n)(x, y)
∣∣. Figure 5.2 illus-

trates this result by capturing the decay of f(n) = fφ,K(n) = max(x,y)∈K
∣∣φ(n)(x, y)

∣∣ relative to

that of n−µφ . Also, Figure 5.3 illustrates the graph of Reφ(n)(x, y) for (x, y) ∈ K and n = 200 and
n = 1000.
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Figure 5.2: Behavior of f(n) = fφ,K(n) = max(x,y)∈K
∣∣φ(n)(x, y)

∣∣

△
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(a) n = 100. (b) n = 1000.

Figure 5.3: Reφ(n)(x, y) for n = 200 and 1000

Example 9. Consider the function φ : Z2 → C defined by

φ(x, y) =
1

768
×





602− 112i (x, y) = (0, 0)

56 + 32i (x, y) = (0,±1) or (−1, 0)

72 + 32i (x, y) = (1, 0)

−28− 8i (x, y) = (0,±2)

−16 (x, y) = (±2, 0)

56 (x, y) = (0,±3)

−1 (x, y) = (0,±4)

4 (x, y) = (−1,±1)

−4 (x, y) = (1,±1)

0 otherwise.

As with the preceding examples, it is easy to see that supξ |φ̂(ξ)| = 1, Ω(φ) = {ξ0} = {(0, 0)} and
Γ0 = Γξ0 has the absolutely and uniformly convergent Taylor expansion

Γ0(ξ) = −i
(
Q0(ξ) + Q̃0(ξ)

)
−
(
R0(ξ) + R̃0(ξ)

)

where

Q0(ξ) =
∑

|β:(2,4)|=1

Aβξ
β =

τ2

24
− τζ2

96
+
ζ4

96
,

R0(ξ) =
∑

|β:(2,4)|=2

Bβξ
β =

23τ4

1152
+
τ3ζ2

2304
− τ2ζ4

2048
+

τζ6

9216
+

23ζ8

18432
,

Q̃0(ξ) =
∑

|β:(2,4)|≥3/2

Aβξ
β = − τ4

288
+

τζ4

1152
+
τ3ζ2

576
− τ3ζ4

6912
+ · · · ,
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and

R̃0(ξ) =
∑

|β:(2,4)|≥5/2

Bβξ
β = − τ3ζ4

27648
+

τ4ζ4

18432
+

τ4ζ4

18432
+ · · ·

for ξ = (τ, ζ) ∈ U where U ⊆ R2 is a neighborhood of 0. In this case, the above expansion is
of the form (5.17) with α0 = (0, 0), m = (1, 2) and k = 2. Here, as with the previous examples,
it is readily verified that |Q0| = Q0 and R0 are positive definite and so an appeal to Proposition

5.2.1 guarantees that ξ0 = (0, 0) is of imaginary homogeneous type for φ̂ with drift α0 = (0, 0) and
homogeneous order

µφ = µ0 = |1 : 2m| = 1

2
+

1

4
=

3

4
.

By an appeal to Theorem 5.1.2, we obtain, to each compact set K, a positive constant C for which

∣∣∣φ(n)(x, y)
∣∣∣ ≤ C

nµφ
=

C

n3/4
(5.20)

for all n ∈ N and (x, y) ∈ K. Figure 5.4 illustrates this result by capturing the decay of f(n) =
fφ,K(n) = max(x,y)∈K

∣∣φ(n)(x, y)
∣∣ where K = [−300, 300] × [−300, 300] relative to that of n−µφ .

Also, Figure 5.5 illustrates the graph of Reφ(n)(x, y) for (x, y) ∈ K and n = 300 and n = 600.
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Figure 5.4: Behavior of f(n) = fφ,K(n) = max(x,y)∈K
∣∣φ(n)(x, y)

∣∣.

△

Example 10. This example illustrates a complex-valued function φ on Z2 whose Fourier transform
is maximized in absolute value at two distinct points in T2, one of which is a point of imaginary

homogeneous type for φ̂ with homogeneous order 2/3 and the other is a point of positive homo-

geneous type φ̂ of homogeneous order 1. We define φ : Z2 → C by φ = 2−7φ1 − i2−11φ2 + 2−21φ3
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(a) n = 300. (b) n = 600.

Figure 5.5: Reφ(n) for n = 300 and n = 600

where

φ1(x, y) =





15 + 15i (x, y) = (±1, 0)

16 + 16i (x, y) = (0,±1)

1 + 1i (x, y) = (±3, 0)

0 otherwise

, φ2(x, y) =





682 (x, y) = (0, 0)

152 (x, y) = (±2, 0)

−28 (x, y) = (±4, 0)

8 (x, y) = (±6, 0)

−1 (x, y) = (±8, 0)

60 (x, y) = (0,±2)

−24 (x, y) = (0,±4)

4 (x, y) = (0,±6)

0 otherwise

,

and

φ3(x, y) =





1387004 (x, y) = (0, 0)

−106722 (x, y) = (±2, 0)

3960 (x, y) = (±4, 0)

−1045 (x, y) = (±6, 0)

138 (x, y) = (±8, 0)

−9 (x, y) = (±10, 0)

−131072 (x, y) = (0,±2)

0 otherwise

for (x, y) ∈ Z2. Though this example is slightly more complicated than the previous ones consid-

ered, it is straightforward to verify that supξ |φ̂(ξ)| = 1 and, in this case, the supremum is attained
at two points in T2. Specifically, Ω(φ) = {ξ1, ξ2} where ξ1 = (0, 0) and ξ2 = (π, π). For ξ1, Γ1 = Γξ1
has an absolutely and uniformly convergent Taylor series of the form

Γ1(ξ) = −i
(
Q1(ξ)− Q̃1(ξ)

)
−
(
R1(ξ) + R̃1(ξ)

)
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for ξ = (τ, ζ) ∈ U1 where U1 ⊆ R2 is an open neighborhood of (0, 0) and

Q1(ξ) =
∑

|β:(6,2)|=1

Aβξ
β =

τ6

128
+
ζ2

8
,

R1(ξ) =
∑

|β:(6,2)|=2

Bβξ
β =

111τ12

32768
− τ6ζ2

1024
+

3ζ4

128
,

Q̃1(ξ) =
∑

|β:(6,2)|≥4/3

Aβξ
β = −65τ8

512
− ζ4

96
+
τ6ζ4

8192
+ · · · ,

and

R̃1(ξ) =
∑

|β:(6,2)|≥7/3

Bβξ
β =

65τ8ζ2

4096
+

τ6ζ4

12288
+ · · ·

for ξ = (τ, ζ) ∈ U1. It is straightforward to verify that Q1 = |Q1| and R1 are positive definite

and so Proposition 5.2.1 guarantees that ξ1 = (0, 0) is of imaginary homogeneous type for φ̂ with
m1 = (3, 1), k1 = 2, drift αξ1 = (0, 0) and homogeneous order

µξ1 = |1 : 2m1| =
1

6
+

1

2
=

2

3
.

For ξ2 = (π, π), Γ2 = Γξ2 has an absolutely and uniformly convergent Taylor series of the form

Γ2(ξ) = −i
(
Q2(ξ) + Q̃2(ξ)

)
−
(
R2(ξ) + R̃2(ξ)

)

for ξ = (τ, ζ) ∈ U2 where U2 ⊆ R2 is an open neighborhood of (0, 0) and

Q2(ξ) =
∑

|β:(2,2)|=1

Aβξ
β = −

(
3τ2

8
+
ζ2

4

)
,

R2(ξ) =
∑

|β:(2,2)|=1

Bβξ
β =

τ2

8
+

3ζ2

8
,

Q̃2(ξ) =
∑

|β:(2,2)|≥2

Aβξ
β =

τ4

64
− 9τ2ζ2

64
+
ζ4

48
+ · · · ,

and

R̃2(ξ) =
∑

|β:(2,2)|≥2

Bβξ
β = −τ

4

8
− 3τ2ζ2

64
− 13ζ4

384
+ · · · ,

for ξ = (τ, ζ) ∈ U2. Thus, the expansion is of the form (5.17) with m2 = (1, 1) and k2 = 1. Since R2

is clearly positive definite, Proposition 5.2.1 guarantees that ξ2 = (π, π) is of positive homogeneous

type for φ̂ with drift αξ2 = (0, 0) and homogeneous order

µξ2 = |1 : 2m2| =
1

2
+

1

2
= 1.

Upon noting that µφ = min{µξ1 , µξ2} = 2/3, an appeal to Theorem 5.1.2 guarantees, to each
compact set K, a constant C for which

∣∣∣φ(n)(x, y)
∣∣∣ ≤ C

nµφ
=

C

n2/3
(5.21)
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for all n ∈ N and (x, y) ∈ K. Figure 5.6 illustrates this result by capturing the decay of f(n) =
fφ,K(n) = max(x,y)∈K

∣∣φ(n)(x, y)
∣∣ where K = [−500, 500] × [−500, 500] relative to that of n−µφ .

Also, Figure 5.7 illustrates the graph of Reφ(n)(x, y) for (x, y) ∈ K and n = 200 and n = 700.
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(a) n = 200. (b) n = 700.

Figure 5.7: Reφ(n) for n = 200 and n = 700.
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Appendix

6.1 Continuous one-parameter subgroups of Gl(Rd)

Proposition 6.1.1 (See Section 8 of [22]). Let E,G ∈ End(Rd) and A ∈ Gl(Rd). Also, let E∗ denote the
adjoint of E. Then, for all t, s > 0, the following statements hold:

• 1E = I • tE∗

= (tE)
∗ • (tE)−1 = t−E

• AtEA−1 = tAEA
−1 • det

(
tE
)
= ttrE • (st)E = sEtE

• If EG = GE, then tEtG = tE+G

Definition 6.1.2. A continuous one-parameter group Tt = tE is said to be contracting if

lim
t→0

‖Tt‖ = 0.

Proposition 6.1.3. Let {Tt} be a continuous one-parameter group. Then {Tt} is contracting if and only if

lim
t→0

|Ttx| = 0 (6.1)

for all x ∈ Rd.

Proof. It is clear that (6.1) is a necessary condition for {Tt} to be contracting. We must therefore
prove (6.1) also sufficient. To this end, we assume that the continuous one-parameter group {Tt}
satisfies (6.1). By virtue of the continuity of {Tt} and (6.1), we have

sup
0<t≤1

|Ttx| <∞

for each x ∈ Rd. From the Banach-Steinhaus theorem, it follows that ‖Tt‖ ≤ C for all 0 < t ≤ 1.
Now, suppose that {Tt} is not contracting. In this case, one can find a sequence {ηn} ⊆ S and a
sequence tn → 0 for which lim infn |Ttnηn| > 0. But because the unit sphere is compact, {ηn} has a
convergent subsequence ηnk

→ η, with |η| = 1 . Observe that, for all n,

|Ttn(η − ηn)| ≤ C|η − ηn|

and so it follows that
lim
k→∞

|Ttnk
η| = lim

k→∞
|Ttnk

ηnk
| > 0,

a contradiction.
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Lemma 6.1.4. Let {Tt} ⊆ Gld(R) be a continuous one-parameter group and let E ∈ End(Rd) be its
generator, i.e., Tt = tE for all t > 0. If {Tt} is contracting, then E ∈ Gl(Rd) and there is a positive
constant C for which

‖Tt‖ ≤ C + t‖E‖

for all t > 0.

Proof. If for some non-zero vector η, Eη = 0, then tEη = η for all t > 0 and this would contradict
our assumption that {Tt} is contracting. Hence E ∈ Gl(Rd) and, in particular, ‖E‖ > 0. From
the representation Tt = tE , it follows immediately that ‖Tt‖ ≤ t‖E‖ for all t ≥ 1 and so it remains
to estimate ‖Tt‖ for t < 1. Given that {Tt} is continuous and contracting, the map t 7→ ‖Tt‖ is
continuous and approaches 0 as t→ 0 and so it is necessarily bounded for 0 < t ≤ 1.

Lemma 6.1.5. Let E ∈ Gld(R) be diagonalizable with strictly positive spectrum. Then {tE} is a continu-
ous one-parameter contracting group. Moreover, there is a positive constant C such that

‖tE‖ ≤ Ctλmax

for all t ≥ 1 and
‖tE‖ ≤ Ctλmin

for all 0 < t < 1, where λmax = max(Spec(E)) and λmin = min(Spec(E)).

Proof. LetA ∈ Gld(R) be such thatA−1EA = D = diag(λ1, λ2, . . . , λd) where necessarily Spec(E) =
Spec(D) = {λ1, λ2, . . . , λd} ⊆ (0,∞). It follows from the spectral mapping theorem that Spec(tD) =
{tλ1 , tλ2 , . . . , tλd} for all t > 0 and moreover, because tD is symmetric,

‖tD‖ = max({tλ1 , tλ2 , . . . , tλd}) =
{
tλmax if t ≥ 1

tλmin if t < 1.

We have

‖tE‖ = ‖AtDA−1‖ ≤ ‖A‖‖tD‖‖A−1‖ ≤ C‖tD‖ = C ×
{
tλmax if t ≥ 1

tλmin if t < 1

for t > 0 where C = ‖A‖‖A−1‖; in particular, {tE} is contracting because λmin > 0.

Proposition 6.1.6. Let {Tt}t>0 ⊆ Gl(Rd) be a continuous one-parameter contracting group. Then, for all
non-zero x ∈ Rd,

lim
t→0

|Ttx| = 0 and lim
t→∞

|Ttx| = ∞.

Proof. The validity of the first limit is clear. Upon noting that |x| = |T1/tTtx| ≤ ‖T1/t‖|Ttx| for all
t > 0, the second limit follows at once.

Proposition 6.1.7. Let {Tt}t>0 ⊆ Gl(Rd) be a continuous one-parameter contracting group. There holds
the following:

(a) For each non-zero x ∈ Rd, there exists t > 0 and η ∈ S for which Ttη = x. Equivalently,

Rd \ {0} = {Ttη : t > 0 and η ∈ S}.

(b) For each sequence {xn} ⊆ Rd\{0} such that limn |xn| = ∞, xn = Ttnηn for each n, where {ηn} ⊆ S

and tn → ∞ as n→ ∞.
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(c) For each sequence {xn} ⊆ Rd \ {0} such that limn |xn| = 0, xn = Ttnηn for each n, where {ηn} ⊆ S

and tn → 0 as n→ ∞.

Proof. In view of Proposition 6.1.6, the assertion (a) is a straightforward application of the inter-
mediate value theorem to |T1/t(x)|. For (b), suppose that {xn} ⊆ Rd is such that |xn| → ∞ as
n → ∞. In view of (a), take {ηn} ⊆ S and {tn} ⊆ (0,∞) for which xn = Ttnηn for each n. In view
of Lemma 6.1.4,

∞ = lim inf
n

|xn| ≤ lim inf
n

(
C + tMn

)
|ηn| ≤ C + lim inf

n
tMn ,

where C,M > 0 and therefore tn → ∞. If instead limn xn = 0,

∞ = lim
n→∞

|ηn|
|xn|

= lim
n→∞

|T1/tnxn|
|xn|

≤ lim sup
n

‖T1/tn‖ ≤ lim sup
n

(C + (1/tn)
M )

from which we see that tn → 0, thus proving (c).

Proposition 6.1.8. Let {Tt} be a continuous contracting one-parameter group. Then for any open neigh-
borhood O ⊆ Rd of the origin and any compact set K ⊆ Rd, K ⊆ Tt(O) for sufficiently large t.

Proof. Assume, to reach a contradiction, that there are sequences {xn} ⊆ K and tn → ∞ for which
xn /∈ Ttn(O) for all n. Because K is compact, {xn} has a subsequential limit and so by relabeling,
let us take sequences {ζk} ⊆ K and {rk} ⊆ (0,∞) for which ζk → ζ, rk → ∞ and ζk /∈ Trk(O) for
all k. Setting sk = 1/rk and using the fact that {Tt} is a one-parameter group, we have Tskζk /∈ O
for all k and so lim infk |Tskζk| > 0, where sk → 0. This is however impossible because {Tt} is
contracting and so

lim
k→∞

|Tskζk| ≤ lim
k→∞

|Tsk(ζk − ζ)|+ lim
k→∞

|Tskζ| ≤ C lim
k→∞

|ζk − ζ|+ 0 = 0

in view of Lemma 6.1.4.
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