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ABSTRACT.

This thesis presents measurements of the lifetimes of 5p1/2 and 5p3/2 of 39K via exciting a

cloud of 39K atoms in a magneto-optical trap by a linearly-polarized pulse of 405 nm light

followed polarization-specific, time-resolved fluorescence detection. We find that τ5p1/2
=

138.8 ± 1.6 ns, which is consistent with past measurements [1], [2] and calculations [3].

The τ5p3/2
measurement is naturally more involved since quantum beats due to hyperfine

and Zeeman effect are present. Our observation of τ5p3/2
= 137.6 ± 3.1 ns and τ5p3/2

=

136.0 ± 2.4 ns, obtained from two slightly different approaches, are compared against past

measurements [2], [4], [5], [6] and theoretical calculations in [3]. We determine that future

work is needed to reduce the uncertainty in our measurement and resolve the discrepancy

in the literature.
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1 Introduction

1.1 Motivation

Non-hydrogenic atomic species such as potassium-39 have electronic structures which can

introduce anomalous physical effects and complicate ab initio calculations of their reduced

matrix elements, which are directly related to many physical properties such as radiative

lifetimes of quantum states, hyperfine constants, and polarizabilities. As a result, lifetime

measurements, among empirical determinations of these atomic properties, are fundamen-

tal for the understanding of atomic structure and provide benchmarks for theorists to im-

prove the robustness of semi-empirical computational methods. A notable example is [13]

in which lifetime measurements were performed on francium-223, a highly radioactive

element with a half-life of only about 22 minutes, to directly extract the absolute values

of certain reduced matrix elements. Due to works such as [14], [13], [2] and others, de-

velopments in high-accuracy ab initio calculations could take place and bring theoretical

observations and experimental data to better agreement. In the context of this thesis, we

consider theoretical results in [3] potassium-39. Table 1 shows the values measured and

calculated for the lifetime of 5p1/2 state of 39K in the literature.

While Table 1 shows good agreement between the most recent theory and measure-

ments, there is a discrepancy of up to 15% on the lifetime of the 5p3/2 state of potassium-39

in the literature. Table 2 shows the timeline of calculated and measured values for this

lifetime. The discrepancy here can be attributed to the fact that the 5p3/2 → 4s1/2 decay

profile has complex time modulations due to hyperfine and Zeeman quantum beats to be

discussed in Section 2 and Appendix 6.1. In addition, the hyperfine splittings ∆νhfs within

the 5p3/2 state are comparable to 1/τ5p3/2
, making experimentally eliminating quantum

beats and statistical analysis particularly challenging. In the case of the 5p1/2 → 4s1/2 de-

cay profile, however, there is little discrepancy in the literature because this decay does not

suffer from quantum beats, resulting in substantially smaller systematic errors and more

straightforward experimental design.
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Author(s) Year Method Lifetime (ns)

Theodosiou [15] 1984 theory 127.06

Safronova et al. [3] 2008 theory 137.2

Berends et al. [2] 1988 experiment (vapor cell) 137 ± 2

Mills et al. [1] 2005 experiment (MOT + ionization) 137.6 ± 1.3

Table 1: Timeline of measurements of the 5p1/2 state lifetime and their meth-

ods.

Author(s) Year Method Lifetime (ns)

Theodosiou [15] 1984 theory 124.02

Safronova et al. [3] 2008 theory 134.0

Schmieder et al. [6] 1968 experiment (level crossing) 140.8 ± 1.0

Ney et al. [5] 1969 experiment (level crossing) 120 ± 4

Svanberg et al. [4] 1971 experiment (level crossing) 133 ± 3

Berends et al. [2] 1988 experiment (vapor cell) 134 ± 2

Table 2: Timeline of measurements of the 5p3/2 state lifetime and their meth-

ods.

1.2 Layout

This work aims to measure the lifetimes of the 5p1/2 and 5p3/2 states of potassium-39 us-

ing a MOT-based time-resolved fluorescence measurement. The upcoming sections are

laid out as follows. Section 2 provides the theoretical background for the experiment. This

includes the formula for lifetimes of hyperfine levels, a discussion of the Zeeman effect,

and finally a rather extensive treatment of quantum beat theory in radiative lifetime mea-

surements, where we cover only quantum beats due to hyperfine splittings in the absence

of external magnetic fields. Section 3.1 describes our experimental procedure and appara-

tus and reviews previous measurements of τ5p1/2
and τ5p3/2

. Section 4 discusses systematic

errors and reports our measurement of τ5p1/2
, as well as covers the technical difficulties

we encountered in the 5p3/2 measurement and suggests methods to overcome these chal-

11



lenges. Finally, the Appendix discusses quantum beat theory in the density matrix formal-

ism and lays out the basics of graphical method for angular momentum algebra, which

was used extensively in the quantum theory calculation.
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2 Theoretical Background

2.1 Lifetime of hyperfine levels

The radiative lifetime of a quantum state can be described by Fermi’s golden rule. In the

dipole approximation, the decay rate vacuum Γfi between levels {|f〉} and {|i〉} is related

to the matrix element between those states by the following expression:

1

τfi
= Γfi =

ω3
0

3πε0~c3
|〈f | er |i〉|2 =

4αω3
0

3c2
|〈f | er |i〉|2,

where τfi is the lifetime, ω0 is the emission frequency, 〈f | er |i〉 is the transition dipole

moment (for dipole moment operator er where e is the elementary charge and r is the

position operator), ~ is the reduced Planck’s constant, c is the speed of light in vacuum,

and α is the fine-structure constant. To be more explicit, we may also write

1

τfi
= Γfi =

∑
q

ω3
0

3πε0~c3

∣∣∣〈f | er(1)
q |i〉

∣∣∣2
where the rq’s are spherical tensor operators.

Since one is often interested in measuring the decay rate between fine- or hyperfine-

structure levels, it is useful to express the transition dipole moment matrix element in

terms of the quantum numbers such as n, J,mJ or n, J, F,mF . The fine-structure splitting

is due to the interaction between the electron’s orbital angular momentum L and its spin

S, giving the quantum number J , where J = L + S, and its associated magnetic sublevels

mJ . For the states {|f〉} = {|nJmJ〉} and {|i〉} = {|n′J ′mJ ′〉}, we can obtain an expression

for AJJ ′ by an application of the Wigner–Eckart theorem

1

τJJ ′
= AJJ ′ =

ω3
0

3πε0~c3

|〈nJ | |er| |n′J ′〉|2

2J + 1
,

where 〈nJ | |er| |n′J ′〉 is the reduced matrix element, which is not dependent on the mag-

netic quantum numbers mJ ’s. Here, the expression is obtained from averaging over the

mJ levels in the upper state and summing over the mJ levels in the lower state.

Hyperfine splittings occur when we take into account the coupling between the elec-

tron spin S and the nuclear spin I of the atom. This gives the quantum number F in
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addition to J , where F = J + I. Following standard theory (or see [11]), we can apply the

Wigner-Eckhart theorem once more to the reduced matrix element 〈nJ | |er| |n′J ′〉 to find

the decay rate AFmF ,F ′mF ′ from |nJFmF 〉 to |n′J ′F ′mF ′〉 in terms of the matrix element in

n, J only:

AFmF ,F ′mF ′ =
ω3

0

3πε0~c3

∑
q

 F 1 F ′

−mF q mF ′

2 ∣∣〈nJF | |er| ∣∣n′J ′F ′〉∣∣2

=
ω3

0

3πε0~c3

∑
q

 F 1 F ′

−mF q mF ′

2

×(2F ′ + 1)(2F + 1)

 J F I

F ′ J ′ 1


2 ∣∣〈nJ | |er| ∣∣n′J ′〉∣∣2,

where () are the Wigner-3j symbols and {} are the Wigner-6j symbols. To obtain the decay

F → F ′, we average over all mF sublevels and summing over all mF ′ . The result is

AFF ′ =
ω3

0

3πε0~c3
(2F ′ + 1)

 J F I

F ′ J ′ 1


2 ∣∣〈nJ | |er| ∣∣n′J ′〉∣∣2

= (2F ′ + 1)(2J + 1)

 J F I

F ′ J ′ 1


2

AJJ ′ .

With this, we see how measuring τJJ ′ allows one to directly obtain all relevant AFF ′ ’s. In

principle, one gets the same lifetime no matter what sublevel is excited (ignoring quantum

beats). Moreover, by summing over all F ′, we see that all excited states have the same

lifetime.

2.2 Zeeman effect

In a static magnetic field, the magnetic sublevels mF of a given (hyper)fine-structure state

are no longer degenerate due to the interaction between electronic spins and the magnetic

field. The splitting depends on the atom and the field strength. The extra term in the

Hamiltonian due to an external magnetic field has the form

HB =
µBgJ
~

(J + I) ·B,

14



where µB = e~/2me is the Bohr magneton and

gJ = gL
J(J + 1)− S(S + 1) + L(L+ 1)

2J(J + 1)
+ gS

J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
,

with gL, gS , the Landé factors, determined experimentally.

In the low-field limit, the Hamiltonian takes the form

HB,weak =
µB
~
gFF ·B,

which implies that F is a good quantum number. As a result, {|FmF 〉} are still the eigen-

states of the system and can be used to diagonalize this Hamiltonian to find the energy

splittings:

∆E = µBgFmF |B|

where gF is a dimensionless strength factor, given by

gF = gJ
F (F + 1)− I(J + 1) + J(I + 1)

2F (F + 1)
+ gI

F (F + 1) + I(I + 1)− J(J + 1)

2F (F + 1)
.

For high fields, F is no longer a good quantum number, and the system has eigenstates

{|JmJ , ImI〉}, where the effects on the orbital electron are much greater than those on the

nucleus, rendering the S − I coupling less important. In this case, the Hamiltonian is

HB,strong =
µB
~

(gJJ + gII) ·B.

Without any assumptions on field strength, we may use {|JmJ , ImI〉} as the basis

states to calculate various hyperfine-structure energy shifts due to the Zeeman effect. The

general Hamiltonian in this case, which takes into account all effects due to the nuclear

spin, is

HB = AhfsI · J +
µB
~

(gJJ + gII) ·B,

where Ahfs is a constant characteristic of the atom that is determined experimentally. In

the electric quadrupole approximation, this Hamiltonian as a function of magnetic field

strength is approximated by

Hhfs = AhfsI · J +Bhfs
3(I · J)2 + 3

2I · J− I2 · J2

2I(2I − 1)J(J − 1)
+
µB
~

(gJmJ + gImI)B,
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Figure 1: Energy level diagram for a P3/2 state in an atom with I = 3/2 and

hyperfine coefficients A,B taken from measurements due to [4].

where Bhfs, along with Ahfs and the g-factors, is also an experimentally determined value.

As discussed in the preceding paragraphs, this Hamiltonian can be analytically diagonal-

ized in the low- and high-field limits. In general, however, Hhfs must be diagonalized

numerically using {|JmJ , ImI〉} as the basis states. In this basis, the matrix elements of

I · J and of 3(I · J)2 + 3
2I · J− I2 · J2 are known. The reader may refer to [16], particularly

Appendix C, for detailed discussions and calculations. The reader may also refer to [17]

for more information. Note that the calculations in [17] are for 40K (I = 4), so numeri-

cal values and certain level diagrams are different than those for 39K (I = 3/2). Figure 1,

generated using a MATLAB routine (See Appendix 6.4 for the code), shows schematically

the Zeeman splitting within the hyperfine states of PJ=3/2 as a function of magnetic field

strength for an atomic species with I = 3/2, with empirical values for Ahfs and Bhfs taken

from [4].

16



2.3 Quantum beats in radiative lifetime measurements

2.3.1 Introduction

This section details some theory related to quantum beats, which occur in and can affect

radiative lifetime measurements. Most of the mathematical ideas can be found in [10], [17],

and Section 7.2: Quantum Beat Theory in the Density Matrix Formalism in “Quantum

Beats and Time-Resolved Fluorescence Spectroscopy” by S. Haroche in [8]. Appendix 6.1

summarizes some of these ideas.

Figure 2: Excitation-detection geometry using linear polarizers [10].

While the underlying mathematical theory of quantum beats is fairly involved, the

forthcoming “magic angle solution” allows one to eliminate quantum beats in the experi-

mentally setting in a straightforward manner.

2.3.2 The Magic-Angle Solution [7]

Consider an experiment where atoms are excited with linearly polarized light, and the

emitted light passes through a linear polarizer before reaching the detector. The radiation

pattern is spatially anisotropic and the polarization depends on the direction of detection

relative to the source. In this subsection, we argue that if the polarization vector of the
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exciting light forms the “magic angle” θm given by:

θm = arccos
(

1/
√

3
)
≈ 54.74◦

with the axis of the linear polarizer in front of the detector, then the detected signal is in-

sensitive to the anisotropic part of the fluorescence.

Here we present a qualitative magic angle solution due to [7]. A more complete treat-

ment of this problem is outlined in the following sections and appendices. To start, we

assume weak and broadline/broadband excitation so that all hyperfine levels are excited.

Assume further that the ground state is initially unpolarized. This means that the polar-

ization of the excited state is that of a photon, i.e., in addition to population, which is the

rank-zero component of the excited state density matrix, there can also be the orientation

(rank-one) and alignment (rank-two) components. For a physical picture of orientation and

alignment, the reader may refer to [18]. Now, when the excitation light is linearly polar-

ized, the density matrix of the excited state has no orientation (k = 1) component. This

leaves us with the population (k = 0) and alignment (k = 2) terms. As we will see, only

the alignment term contributes to radiation anisotropy. This anisotropy corresponds to

k = 2, q = 0, where k, q correspond to the tensor rank and component, respectively. The

Wigner-Eckart theorem leads to the following expression for the radiation intensity:

I(θ, φ, t) ∝ A+B(t)P2(cos θ) = A+B(t)Y 0
2 (θ, φ)

where θ is the angle between the radiated and detected polarization. Here, A and B(t)

depends on the system and are not necessarily non-zero. This states that the radiation

has no φ-dependence, and that quantum beats arise when P2(cos θ) 6= 0. When θ = θm,

P2(cos θ) vanishes. Discussions of tensor expansions and the details related to this problem

can be found below and in [8], [10], [9].

2.3.3 Some quantum-beat theory

Roughly speaking, quantum beats occur due to “interference” in the decay of a coherent

superposition of closely-spaced atomic states {|e〉} to some collection of the final states
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{|f〉}, where {|e〉} is obtained by an pulsed laser with pulse duration Θ � τ , the mean

lifetime of {|e〉}. The basic scheme is given by Figure 3.

Figure 3: Typical quantum-beat scheme [10].

A short pulse of resonant light of polarization ee excites an ensemble of atoms from

a set of initial states {|i〉} to {|e〉}. The decay {|e〉} → {|f〉} generates fluorescence light

with intensity Itot(t). We are interested in the intensity I(t) of a particular polarization ed

of Itot(t). In general (see Appendix 6.1), we have

I(t) ∝ Tre{ρe(t)D}, (1)

where ρe(t) is the density matrix of the excited state describing the time evolution of the

excited state after the pulse, and D is the detection operator given in terms of the scaled-

electric-dipole operator D as

D =
∑
f

(ed ·D) |f〉 〈f | (e∗d ·D), (2)

where ed is the detection polarization vector. ρe(t) is simple so long as the following con-

ditions are satisfied:

• The excitation is broadline, i.e., the spectral width of the exciting light is much bigger

than the spectral width of the excited state hyperfine and Zeeman structure.

• The excitation is weakly-coupled to the atomic system, i.e., the duration of the pulse

is much less than the average time between two successive photon absorptions by an

atom.
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• The duration of the pulse is shorter than the mean lifetime τ of {|e〉}, and is less than

the inverse Bohr frequencies ωe,e′ corresponding to the excited-state energy differ-

ences.

Under these conditions, the density matrix ρe(t) has the following property:

〈e| ρe(t)
∣∣e′〉 =

∑
ii′

〈e| ee ·D |i〉 〈i| ρi(−T )
∣∣i′〉 〈i′∣∣ e∗e ·D ∣∣e′〉 exp [−(iωee′ + Γe)t] , (3)

where ρi(−T ) is the density matrix of the initial state and ee is the excitation polarization

vector. Here, Γe = τ−1
e . Putting Eq. 3 into Eq. 1 and Eq. 2 we find

I(t) ∝
∑

f,ii′,ee′

〈e| ee ·D |i〉 〈i| ρi(−T )
∣∣i′〉 〈i′∣∣ e∗e ·D ∣∣e′〉

×
〈
e′
∣∣ ed ·D |f〉 〈f | e∗d ·D |e〉 exp [−(iωee′ + Γe)t] . (4)

This corresponds exactly to Eq. 18 in Appendix 6.1. For a detailed derivation of this equa-

tion, the reader may refer to the rest of Appendix 6.1, where the symbol for initial states i

becomes g.

2.3.4 Hyperfine-structure quantum beats

Now we focus on quantum beats due to hyperfine splitting, assuming that no splitting due

to Zeeman effects are present. The atoms are assumed to have a non-zero nuclear spin. In

our case, potassium-39 has I = 3/2. The atomic states will be represented by

|a〉 = |α(JaI)FaMa〉 ≡ |FaMa〉 , a = i, e, f. (5)

Ja denotes the total electronic angular momentum, I the nuclear spin, Fa the total angular

momentum and Ma the quantum number corresponding to its projection on the z-axis. Fi-

nally, α stands for all other labels necessary to identify each state. We assume that initially,

the ground state is unpolarized (or, totally mixed), i.e., that ρi(−T ) ∝ I, the identity matrix.

In this case, the intensity I(t) measured with polarization ed and excited with ee is slightly

simplified:

I(t) ∝
∑

FeMe,F ′
eM

′
e,FiMi,FfMf

〈FeMe| ee ·D |FiMi〉 〈FiMi| e∗e ·D
∣∣F ′eM ′e〉

×
〈
F ′eM

′
e

∣∣ ed ·D |FfMf 〉 〈FfMf | e∗d ·D |FeMe〉 exp
[
−(iωFeF ′

e
+ Γe)t

]
, (6)
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where the constant of proportionality includes fundamental and algebraic constants. The

next step is to eliminate irrelevant quantum numbers in order to make the dependence on

the characteristics of the atom more explicit. To this end, we will eliminate the quantum

numbers MF and sum over all Fi, Ff . Eliminating MF ’s requires reducing the electric-

dipole matrix elements. We do this by making use of the Wigner-Eckart theorem and

known reduction formulas. First, we eliminate the dependence on the MF quantum num-

bers by introducing reduced matrix elements and decomposing e ·D into the tensor com-

ponents p0:

〈FeMe| ee ·D |FiMi〉 =
∑
p0

(ee)p0 〈FeMe|Dp0 |FiMi〉

=
∑
p0

(ee)p0(−1)Fe−Me

 Fe 1 Fi

−Me p0 Mi

 〈Fe| |D| |Fi〉
=
∑
p0

(ee)p0(−1)Fe−Me

 Fe 1 Fi

−Me p0 Mi

 〈(JeI)Fe| |D| |(JiI)Fi〉 .

Similarly,

〈FiMi| e∗e ·D
∣∣F ′eM ′e〉 =

∑
p′0

(e∗e)p′0 〈FiMi|Dp′0

∣∣F ′eM ′e〉

=
∑
p′0

(e∗e)p′0(−1)Fi−Mi

 Fi 1 F ′e

−Mi p′0 M ′e

 〈Fi| |D| ∣∣F ′e〉

=
∑
p′0

(e∗e)p′0(−1)Fi−Mi

 Fi 1 F ′e

−Mi p′0 M ′e

 〈(JiI)Fi| |D|
∣∣(JeI)F ′e

〉
.

〈
F ′eM

′
e

∣∣ ed ·D |FfMf 〉 =
∑
p

(ed)p
〈
F ′eM

′
e

∣∣Dp |FfMf 〉

=
∑
p

(ed)p(−1)F
′
e−M ′

e

 F ′e 1 Ff

−M ′e p Mf

〈F ′e∣∣ |D| |Ff 〉
=
∑
p

(ed)p′0(−1)F
′
e−M ′

e

 F ′e 1 Ff

−M ′e p Mf

〈(JeI)F ′e
∣∣ |D| |(JfI)Ff 〉
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〈FfMf | e∗d ·D |FeMe〉 =
∑
p′

(e∗d)p′ 〈FfMf |Dp′ |FeMe〉

=
∑
p′

(e∗d)p′(−1)Ff−Mf

 Ff 1 Fe

−Mf p′ Me

 〈Ff | |D| |Fe〉
=
∑
p′

(e∗d)p′(−1)Ff−Mf

 Ff 1 Fe

−Mf p′ Me

 〈(JfI)Ff | |D| |(JeI)Fe〉 .

Next, we further reduce the matrix elements 〈(J ′I)F ′| O |(JI)F 〉, introducing the 6j-symbol:

〈(JeI)Fe| |D| |(JiI)Fi〉 = (−1)Je+I+Fi+1
√

(2Fe + 1)(2Fi + 1)

Je Fe I

Fi Ji 1

 〈Je| |D| |Ji〉
= (−1)Je+I+Fi+1

√
(2Fe + 1)(2Fi + 1)

Fe Fi 1

Ji Je I

 〈Je| |D| |Ji〉 ,
where we have used symmetry relations of the 6j-symbol on the last line. Similarly, we

find that

〈(JiI)Fi| |D|
∣∣(JeI)F ′e

〉
= (−1)Ji+I+F

′
e+1
√

(2Fi + 1)(2F ′e + 1)

Fi F ′e 1

Je Ji I

 〈Ji| |D| |Je〉 .

〈
(JeI)F ′e

∣∣ |D| |(JfI)Ff 〉 = (−1)Je+I+Ff+1
√

(2F ′e + 1)(2Ff + 1)

F ′e Ff 1

Jf Je I

 〈Je| |D| |Jf 〉 .

〈(JfI)Ff | |D| |(JeI)Fe〉 = (−1)Jf+I+Fe+1
√

(2Ff + 1)(2Fe + 1)

Ff Fe 1

Je Jf I

 〈Jf | |D| |Je〉 .
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Putting these together, we can write the signal I(t) as

I(t) ∝
∑
Fe,F ′

e
pp′,p0p′0
Fi,Ff

(−1)p0+p′0+p+p′+Fe+F ′
e+Fi+Ff (2Fe + 1)(2F ′e + 1)(2Fi + 1)(2Ff + 1)

× (ee)p0(e∗e)p′0(ed)p(e
∗
d)p′ exp

[
−(iωFeF ′

e
+ Γe)t

]
|〈Je| |D| |Ji〉|2|〈Je| |D| |Jf 〉|2

×

Fe Fi 1

Ji Je I


Fi F ′e 1

Je Ji I


F ′e Ff 1

Jf Je I


Ff Fe 1

Je Jf I


×
∑
MeM ′

e
MiMf

(−1)Fe−Me+F ′
e−M ′

e+Fi−Mi+Ff−Mf

 Fe 1 Fi

−Me p0 Mi

 Fi 1 F ′e

−Mi p′0 M ′e



×

 F ′e 1 Ff

−M ′e p Mf

 Ff 1 Fe

−Mf p′ Me

 . (7)

Let

X(Fe, F
′
e, Fi, Ff ; p0, p

′
0, p, p

′) =
∑
MeM ′

e
MiMf

(−1)Fe−Me+F ′
e−M ′

e+Fi−Mi+Ff−Mf

 Fe 1 Fi

−Me p0 Mi



×

 Fi 1 F ′e

−Mi p′0 M ′e

 F ′e 1 Ff

−M ′e p Mf

 Ff 1 Fe

−Mf p′ Me

 .

We will simplify this expression, using graphical methods for angular-momentum theory

from [9]. Some of the rules used in the following calculation are summarized in Appendix

6.2. From Appendix 6.2.3, we find

X(Fe, F
′
e, Fi, Ff ; p0, p

′
0, p, p

′) =
∑
kq

(2k + 1)(−1)q+2Ff−Fe−F ′
e

 1 1 k

p0 p′0 q

1 1 k

p p′ −q


×

Fi Fe 1

k 1 F ′e


 1 k 1

Fe Ff F ′e

 ,
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where q are the z-projected quantum numbers of k. Plugging this expression into Eq. 7 we

find

I(t) ∝
∑
Fe,F ′

e
pp′,p0p′0
kq

∑
Fi,Ff

(−1)q+2Ff+p0+p′0+p+p′+Fi+Ff (2k + 1)(2Fe + 1)(2F ′e + 1)(2Fi + 1)(2Ff + 1)

× (ee)p0(e∗e)p′0(ed)p(e
∗
d)p′ exp

[
−(iωFeF ′

e
+ Γe)t

]
|〈Je| |D| |Ji〉|2|〈Je| |D| |Jf 〉|2

×

Fe Fi 1

Ji Je I


Fi F ′e 1

Je Ji I


F ′e Ff 1

Jf Je I


Ff Fe 1

Je Jf I


×

Fi Fe 1

k 1 F ′e


 1 k 1

Fe Ff F ′e


 1 1 k

p0 p′0 q

1 1 k

p p′ −q

 .

We can simplify this. Notice that the selection rules on the 3j-symbols require that p0 +

p′0 + q = 0 = p+ p′ − q. This means that

p0 + p′0 + p+ p′ = 0.

Moreover, let

Y (Fe, F
′
e; k)

=
∑
Fi

(2Fi + 1)(−1)2Je+k+Fe+F ′
e+I+Ji+Fi

Fe Fi 1

Ji Je I


F ′e Fi 1

1 k Fe


I Fi Ji

1 Je F ′e

 .

and

Z(Fe, F
′
e; k)

=
∑
Ff

(2Ff + 1)(−1)2Je+k+Fe+F ′
e+I+Jf+Ff

F ′e Ff 1

Jf Je I


Fe Ff 1

1 k F ′e


I Ff Jf

1 Je Fe

 .

To write I(t) in terms of Y,Z, we must perform some permutations within the 6j-symbols.

This brings out some phase factors which we will drop. After multiple simplifications we
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find

I(t) ∝
∑
Fe,F ′

e
pp′,p0p′0
kq

(−1)q−Ji+Jf (2k + 1)|〈Je| |D| |Ji〉|2

× |〈Je| |D| |Jf 〉|2 exp
[
−(iωFeF ′

e
+ Γe)t

]
(2Fe + 1)

× (2F ′e + 1)(ee)p0(e∗e)p′0(ed)p(e
∗
d)p′

 1 1 k

p0 p′0 q

1 1 k

p p′ −q

Y (Fe, F
′
e; k)Z(Fe, F

′
e; k).

(8)

The next step is to calculate Y (Fe, F
′
e; k) and Z(Fe, F

′
e; k), again using graphical methods

(see Appendix 6.2.4). We find

Y (Fe, F
′
e; k) =

k Je Je

I Fe F ′e


k Je Je

Ji 1 1

 =

Fe F ′e k

Je Je I


 1 1 k

Je Je Ji


and

Z(Fe, F
′
e; k) =

k Je Je

I Fe F ′e


 k Je Je

Jf 1 1

 =

F ′e Fe k

Je Je I


 1 1 k

Je Je Jf

 .

Plugging these results back into Eq. 8 we get

I(t) ∝ (−1)Ji−Jf |〈Je| |D| |Ji〉|2|〈Je| |D| |Jf 〉|2

×
∑
kq
FeF ′

e

(−1)qEkqU
k
−qA

k(FeF
′
e)B

k(F ′eFe) exp
[
−(iωFeF ′

e
+ Γe)t

]
(9)

where

Ekq =
√

2k + 1
∑
p0p′0

 1 1 k

p0 p′0 q

 (ee)p0(e∗e)p′0

Uk−q =
√

2k + 1
∑
pp′

1 1 k

p p′ −q

 (ed)p(e
∗
d)p′

Ak(FeF
′
e) =

√
(2Fe + 1)(2F ′e + 1)

Fe F ′e k

Je Je I


 1 1 k

Je Je Ji


Bk(F ′eFe) =

√
(2Fe + 1)(2F ′e + 1)

F ′e Fe k

Je Je I


 1 1 k

Je Je Jf

 .
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Eq. 9 has all irrelevant quantum number eliminated. All of the excitation and detection

polarization characteristics are contained in the terms Ekq and Uk−q. The terms Ak(FeF ′e)

and Bk(F ′eFe) depend on the atomic quantum numbers and are transition-specific. The

exponential term represents quantum beats. We will see that not all transition Ji − Je − Jf
will exhibit quantum beats because Ak(FeF ′e) and/or Bk(F ′eFe) might vanish.

2.3.5 Example: Linearly-polarized excitation and detection

Now we are ready to consider the excitation/detection angle dependence in the exper-

imental geometry given in Figure 4, which is the geometry of our experiment. Let the

Figure 4: Excitation-detection geometry using linear polarizers [10].

z-axis be defined by the polarization of the detection polarization ed. The direction of the

detection polarization ee is defined by the polar angles θ and φ. Since we’re dealing with on

linearly polarized light and a linear polarizer, p = p′ = 0. Thus, the detection-polarization

dependent factor Uk−q takes the form

Uk−q =
√

2k + 1

1 1 k

0 0 0

 δq0.

We see that Uk−q = 0 unless q = 0. So, it suffices to find what Ek0 in the lab frame is. To

do this, we need some understanding of how the spherical tensor Ekq transforms under

rotations. Specifically, we need to first derive Ekq in the reference frame x′′, y′′, z′′ making

the Euler angles (0,−θ,−φ) with the lab frame (this quantity has a similar form as that of
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Uk−q). Once this is done, we need to transform Ekq back into the lab frame. This requires

some understanding of the spherical basis, spherical tensors, and the WignerD-matrix (see

Appendix 6.3).

In any case, since we are only interested in Ek0 in the lab frame, we will only look at an

expression for it. Following the results in Appendix 6.3, we find

[Ek0 ]lab = D(R)Ek0D†(R) =
k∑

q′=−k
Ekq′Dk0q′(R).

Since the excitation pulse is linearly polarized, we only worry about the q′ = 0 term in the

sum. So, from our results in Appendix 6.3,

[Ek0 ]lab = Ek0Dk00(R(0, θ, φ)) = Ek0Pk(cos θ).

Dropping the subscript [·]lab, we have an expression for the amount of light polarized, up

to some extra factors:

Ek0U
k
0 = (2k + 1)

1 1 k

0 0 0

2

Pk(cos θ).

Notice that this term vanishes when k = 1. So, we only have k = 0, 2 and conclude that

1. The population terms (k = 0) are angle-independent. (P0(cos θ) = 1.)

2. No orientation (k = 1) can be induced or detected using linear polarizers.

3. The angular dependence for the alignment (k = 2) is 3 cos2 θ− 1, which means there

exists an angles between the two polarizers (θ = 54.7◦ ≡ θm) for which no alignment

effects will be observed. θm is referred to as the magic angle.
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3 Experiment

3.1 Experimental overview

The goal of this work is to measure the lifetimes of the 5p1/2 and 5p3/2 states in potassium-

39. To this end, we excite a sample of potassium-39 atoms in a magneto-optical trap (MOT)

with a short pulse of 405 nm laser and record the decay fluorescence 5p1/2, 5p3/2 → 4s1/2

as a function of time. An overview of this experiment is given in Figure 5. For a compre-

hensive description of our MOT, the reader may refer to [19].

Figure 5: Optical arrangement for the tunable 405 nm ECDL used to drive the

4p1/2, F = {1, 2} → 5p1,2, 5p3/2 transitions and electronics for the experiment.

The 405 nm laser used in this experiment is an external-cavity diode laser (ECDL).

An adjustable diffraction grating allows for tuning the laser wavelength to excite either

the 5p1/2 ↔ 4s1/2 or 5p3/2 ↔ 4s1/2 transition. As shown in Figure 5, the 405 nm laser is

frequency-stabilized via Doppler-free saturated absorption spectroscopy, ensuring stable

operation of up to several hours. The 405 nm laser is locked to the crossover point, so

that a frequency shift of ± 230 MHz due to the acoustic-optic modulator (AOM) allows

us to select to either excite from the 4s1/2, F = 1 or 4s1/2, F = 2 to the 5p states. The
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wavelength corresponding to each transition is shown in Figure 6, which also shows the

4s1/2 ↔ 4p3/2 transition used for trapping. During the course of the lifetime measurement,

the 770 nm trap beams remain in continuous operation. While this introduces (a small)

ac-Stark splittings in the 4s1/2 and 4p3/2 state, the effect does not impact the fluorescence

profile or the resulting lifetime.

Figure 6: 4s1/2, 5p1/2, and 5p3/2 energy levels in potassium-39.

As is often the case with diode lasers, the beam directly out of the 405 nm ECDL is

elliptical and thus requires passing through an anamorphic prism pair to obtain a more

circular profile. The light then passes through an optical isolator to prevent reflection of

the beam from other optical components back into the laser diode cavity. A combination

of a half-wave plate and a polarizing beamsplitter regulate and direct the 405 nm light to

two branches. On one branch, the light is sent to a vapor cell for frequency-stabilizing

the ECDL. On the other, the beam is reduced in size and collimated by a factor of ap-

proximately 3.3 by a telescope comprised of a Thorlabs plano-convex lens with f1 = 100

mm and a Thorlabs plano-concave lens with f2 = −30 mm. This optical system enables
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fast switching by the AOM (whose speed is limited by the beam diameter). The rise/fall

time of the modulation is approximately 40 ns, which is sufficiently fast for the expected

lifetimes (≈ 30% of τ5p1/2
, τ5p3/2

)). Without this optical arrangement, the switching time is

about 80-100 ns. The ability to produce and switch short pulses is crucial in our lifetime

measurement, since it allows for generating broadband excitation pulses to resolve quan-

tum beats and reduce systematic errors in analyzing the decay profile. With a modulation

efficiency of 25%, our AOM allows us to send via a polarization-maintaining single-mode

optical fiber (with ∼ 40-50% efficiency) roughly 0.4 mW of the 405 nm light to the MOT

cloud. Since the trap lasers cause a majority of the atoms in the MOT to be in the 4s1/2,

F = 1 state at any given time, we select the up-shifted beam (+230 MHz) from the AOM

output to drive the 4s1/2, F = 1 to 5px/2 transitions. By selection rules, exciting from the

F = 1 sublevel of the ground state 4s1/2 with a sufficiently broadband 405 nm source lets

us reach both the F = {1, 2} sublevels of the 5p1/2 and the F = {0, 1, 2} sublevels of the

5p3/2. A detailed but not-to-scale energy diagram for these hyperfine levels is shown in

Figure 7. In the absence of magnetic fields, Section 2 tells us that only coherent excitation

of the hyperfine-level manifold F = {0, 1, 2} of the 5p3/2 state can result in quantum beats

in the decay profile.

The light exiting the AOM is coupled to a polarization-maintaining fiber and sent

through the MOT as shown in Figure 8. The MOT cloud is approximately 1 mm in di-

ameter, with number density 108-109 atoms/cm3. The MOT coils generate a magnetic field

gradient of 1 G/mm. The vacuum chamber containing the MOT is equipped with shim

coils, which allow us to adjust the position of the MOT cloud inside the vacuum chamber.

Based on previous experiments, we expect the center of the MOT cloud to experience a

magnetic field strength of 0.3-0.5 G. This variation in magnetic field strength across the

MOT cloud is expected to result in Zeeman beats whose frequencies are on the order of the

lifetimes of 5p1/2 and 5p3/2 states.

Due to various physical constraints, the 405 nm beam and the optical components for

fluorescence detection, which must be perpendicular to the k-vector of the excitation beam,
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Figure 7: Hyperfine energy levels of the 4s1/2, 5p1/2, and 5p3/2 states in

potassium-39, from [11] and [12].

are off-axis with respect to the MOT beams, as illustrated in Figure 9. The detection system

consists of linear polarizer making an angle θ relative to the (linear) polarization of the 405

nm beam, followed by a 405 nm bandpass filter and a plano-convex lens with f3 = +50

mm for imaging the MOT cloud (which has a diameter of ∼ 1 mm) at a distance of 12 cm

onto an optical fiber tip with a diameter of roughly 100 µm. The linear polarizer has a

transmission efficiency of roughly 70% at 405 nm.

The Hamamatsu PMT has quantum efficiency of roughly 30% at 405 nm. The fiber

transmits the collected fluorescence to the PMT, which is connected to the TimeHarp 260

time-correlated single-photon counting module (TCSPCM) for data acquisition. The Time-
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Figure 8: The MOT-based excitation and detection scheme.

Harp 260 can acquire data with a maximum timing resolution of 0.25 ns per bin. However,

in all of our experiments, we take data at 2 ns per bin (approximately 1% of the lifetimes

in consideration), to achieve higher counts per bin. Other capabilities of the TimeHarp

260 can be found on its data sheet, which is available for download on PicoQuant’s web-

site [20]. In Section 4.1.1, we will discuss its timing uncertainty, differential non-linearity,

among other limitations, and how they could contribute to the uncertainty of our mea-

surement.

A single DG535 pulse generator is used to control the entire experimental timing se-

quence. The repetition rate is set to 250 kHz; this corresponds to a duty cycle of 4 µs. At

time T = 0, the DG535 sends out a pulse AB which is mixed with a continuous-wave 230

MHz RF signal to create a 230 MHz pulse of width of width tAB . This signal then gets

amplified and subsequently sent to the AOM, setting the width of the 405 nm pulse to
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tAB . The typical range of tAB is 70 ns to 1 µs. 1.25 µs after T , the DG535 also sends out

a pulse CD with tCD = 100 ns, which triggers the TimeHarp 260 to start the acquisition.

The TimeHarp260 has to be triggered 1.25 µs after the pulse-switching trigger signal due

mainly to the speed of sound inside the AOM crystal; if the TimeHarp 260 and AOM are

triggered simultaneously, the TimeHarp260 will be recording data for roughly 1.25 µs be-

fore the acoustic wave inside the AOM crystal deflects the 405 nm beam into the MOT, and

no fluorescence signal will be detected.

Figure 9: Excitation-detection geometry. The k-vector of the 405 nm beam is

perpendicular to the axis of the detection system. The linear polarizer on the

detection system makes an (adjustable) angle θ with the linear polarization of

the 405 nm beam, which is fixed.
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3.2 Review of previous measurements

3.2.1 The 5p1/2 measurement

The measurement of the 5p1/2 lifetime is rather straightforward since there are no quan-

tum beats present in the decay profile, even with small magnetic fields as [1] and this work

will show. Here, we review two previous measurements of τ5p1/2 by Berends [2] and Mills

et al. [1]. The reader may refer back to Table 1 for the timeline of this measurement.

In [2], the lifetimes of the fine-structure components of the 5p, 6p, and 7p states in

potassium-39 were determined using techniques of laser-induced fluorescence. Potassium

vapor in a Pyrex cell was irradiated with broadband pulses of dye laser light which se-

lectively excited each fine-structure state. The fluorescence resulting from the decay to

the 4s ground state was monitored at right angles to the direction of excitation and reg-

istered with a monochromator and photomultiplier whose signal was amplified and ana-

lyzed with a transient digitizer interfaced to a computer, which produced a time-evolution

histogram of the fluorescence. The glass cell was temperature-controlled and placed at the

center of Helmholtz coils whose purpose was to eliminate Zeeman quantum beats (to± 2×

10−3 G) from the fluorescence decay spectrum. To completely remove hyperfine quantum

beats, a linear polarizer was placed between the cell and the monochromator at the magic

angle relative to the polarization axis. However, since the polarizer significantly reduced

the signal-to-noise ratio, the polarizer was removed, and the Helmholtz coils were used to

produce a magnetic field of 25 G in the cell. This shifted the frequency of quantum beats

due to Zeeman effects (about 5 MHz) beyond the detection range of the transient digitizer,

but still kept the Zeeman splitting small enough to ensure broadband excitation of the

fine-structure state. This method gave higher signal-to-noise ratio and was the technique

ultimately used by [2]. The report lifetime of the 5p1/2 state was 137 ± 2 ns at temperature

T = 372 K.

The approach used in [1] is more similar to this work’s in the sense that the sample is

a cloud of 3× 106-3×107 potassium-39 atoms trapped in a MOT. Rather than collecting the
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fluorescence as in [2], Mills et al. monitored the state population by pulsed excitation fol-

lowed by nonresonant photoionization. The pulsed excitation is a frequency-stabilized (by

Doppler-free saturation absorption spectroscopy) 405 nm diode laser drives the 4s1/2, F =

1 to 5p1/2, F = 2 transition. The photoionization beam, which co-propagates with the 405

nm beam and is left on at all times, is 763 nm laser light, which has enough energy to ion-

ize the 5p state but not the lower-lying states but also sufficiently low power to prevent

two-photon ionization from lower-lying states. For each 5 µs cycle, the MOT 766.5 nm

beams are turned on to confine the atoms and then turned off. Roughly 100 ns after the

405 nm beam is completely off, photoions are counted for the remainder of the cycle. An

electric field accelerates the ions towards a micro-channel plate detector, and measure the

resulting count rate as a function of time. This work reports τ5p1/2
= 137.6 ± 1.3 ns. Mills

also reported that they observed no measurable quantum beats due to Zeeman effects.

3.2.2 The 5p3/2 measurement

There are, in general, two approaches to measuring the lifetime of the 5p3/2 state in the

literature. One approach was presented in Berends et al. [2] using pulsed excitation and

fluorescence detection, as discussed in the preceding subsection. On the other hand, the

level-crossing technique was used in [4], [5], and [6] by Svanberg et al., Ney, and Schmieder

et al. Roughly speaking, level-crossing technique which uses the spatial interference in

the scattering of resonance radiation that can occurs when a Zeeman level of one of the

hyperfine structure levels is brought into coincidence (which explains the terminology

“crossed”) with a Zeeman level of a neighboring hyperfine structure level by the appli-

cation of an external magnetic field. The light spectrum must be board enough to excite

all states in the manifold equally. From these experiments, one can extract the coefficients

Ahfs and Bhfs as well as the lifetime τ by fitting a theoretical curve (which comes from the

Breit-Wigner formula) to the curve of scattered light intensity as a function of magnetic

field. When the signal resolution is low, which is typical of experiments of this kind, the

derivative of the scatter intensity curve can be studied since it enhances the features of the

original curve. This is the approach used in [4], [5], and [6]; however, significantly different

results were reported (see Table 2). Only the more recent measurements by [2] and [4] ap-
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pear to have better agreement. It is clear that more measurements are necessary to resolve

this discrepancy in the literature.
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4 Results and Discussion

4.1 The 5p1/2 measurement

In this subsection, we report the measurement of τ5p1/2
. Our approach is as follows. While

we did not expect quantum beats due to the hyperfine structure of 5p1/2 to occur, we still

tested for quantum beats by driving the 4s1/2 → 5p1/2 with short pulses (60-70 ns) to co-

herently excite both the F = 1 and F = 2 hyperfine levels and set the angle θ between the

excitation and detection vectors at 0 and 90 degrees. Figure 10 shows one data set from

this test. It is clear that were no detectable quantum beats. We also ran similar experiments

without the polarizer on the detector at different pulse widths (see Figures 11 and 12), and

observed the same decay profile with no oscillations in time. As a result, we concluded

that there were no quantum beats due to magnetic effects. This allowed us to remove the

polarizer on the detector to increase our signal-to-noise ratio (by a factor of approximately

2) and use a longer pulse to excite more atoms into the 5p1/2 state. In the rest of the exper-

iments for the 5p1/2 measurement, we held this configuration and considered systematic

errors. These include errors due to the electronics (time calibration, pulse pile-up, etc.) and

radiation trapping. Once all the systematic errors were accounted for, we took the average

of our measurements and combined it with the estimated uncertainty to obtain our final

result (see Table 3). We note that unlike in [1] where photoionizaton was used to record

the decay profile, our approach (fluorescence detection) does not require an estimate for

uncertainties due to quantum beats.

4.1.1 Systematic Errors

Timing uncertainty and Differential nonlinearity in time-to-digital converter. The tim-

ing uncertainty from the trigger, according to the TimeHarp 260 data sheet, is 250 ps +

10-8∆t where ∆t is how long after the trigger that the pulse comes in. Here, ∆t ≈ 106 s, so

the time uncertainty is effective 250 ps. We thus see that this uncertainty is negligibly small

and can be combined with the uncertainty due to the nonlinearity between the channels

(i.e., that, giving a uniform light source, some channels might systematically acquire more

counts than others). According to the data sheet of the TimeHarp 260, the differential non-

37



Source of error Value

Timing uncertainty + Nonlinearity ± 0.1%

Truncation uncertainty ± 0.4%

Pulse pile-up correction − 0.1%

Radiation trapping ± 0.2%

Other statistical errors ± 0.2%

Result 138.8 ± 1.6 ns

Table 3: List of systematic and statistical errors and how they were estimated.

The errors shown are from independent physical processes and so are added

in quadrature.

linearity is less than 0.2% rms. This means that, given a uniform light source, the standard

deviation in the counts across all bins is within 0.2% of the mean count. Equivalently, we

can think of the the 0.2% rms as the fractional standard deviation in the bin size, which

in our case is 0.2% of 2 ns. The data sheet also specifies a 2% peak-to-peak nonlinearity.

To convert this nonlinearity into an uncertainty in our measurement, we produced a pure

exponential plus Gaussian noise to represent the nonlinearity. In IGOR, we create a his-

togram with bin size of 2 ns per bin for a pure exponentialAe−t/100 multiplied by Gaussian

noise, plus background noise. Our simulation leads to an estimate of ± 0.1% uncertainty

in the lifetime.

Pulse pile-up. The pulse pile-up effect occurs when photons are lost at high photon

count rates due to the dead time of the detector and/or electronic counting module. The

dead time of a device the time the device needs to process the detected photon and get

ready for the next. If the repetition rate or count rate is too high compared to the dead time

of the device, the photon loss creates two undesirable effects:

• The measured lifetimes become shorter

• A single exponential decay may becomes double exponential with an additional
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Figure 10: No quantum beats observed in the decay from the 5p1/2 state. The

excitation pulse width is 70 ns. The relative angle between the detection and

excitation polarization vectors is 90 degrees. An exponential (black) was fitted

to the data, giving a lifetime of approximately 138.6 ns with a fit uncertainty of

0.2 ns. The normalized fit residual shows no resolvable quantum beats.

shorter component.

Pulse pile-up can distort histograms and render parts of the data poor for fitting. While it

is possible to correct for pulse pile-up using the following formula, due to [21]

N ′i =
Ni

1− 1
NE

∑
j<iNj

where NE is the number of excitation cycles, Ni is the observed number of counts in chan-

nel i, and N ′i is the true number of counts in the ith channel, in practice it is best to avoid

having a count rate that is comparable to the repetition rate. In our experiment, the dead

time of the TimeHarp 260 is 2 ns, the dead time of the Hamamatsu PMT is 18 ns, the

repetition rate is between 200-250 kHz, and the typical count-rate is approximately 1-2

kHz. Since the count rate is much less (only approximately 1%) of the repetition rate, the
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Figure 11: No quantum beats observed in the decay (red) from the 5p1/2 state.

The excitation pulse width is 70 ns. The detector had no polarizer attached.

An exponential (black) was fitted to the data, giving a fitted lifetime of approx-

imately 137.8 ns with a fit uncertainty of 0.2 ns. The normalized fit residual

shows no resolvable quantum beats.

correction due to pulse-pile up is small. To see this, we consider the following back-of-the-

envelope calculation. For a typical experiment, we take data for about 10 minutes. This

gives NE ≈ 108, while
∑

j<iNj is at most 2× 106. As a result, the denominator in the cor-

rection formula above is at least 0.97. However, this calculation assumes that the pulse-pile

up at bin i comes from all bins j < i. In reality, this is not the case due to the small dead

time of our detector (≈ 20 ns), which removes the need to sum over all j < i channels. At

20 ns dead time and 2 ns per bin resolution, we only sum over 10 bins. The denominator,

in this case, is approximately 0.997-0.998 at most, and the pulse pile-up is even smaller.

Applying this correction to our data, we find a correction of at most 0.1% to the counts

per bin, which happens at high-count bins. Re-fitting the corrected data, we find that the

variation in the fitted lifetime there is a correction of roughly − 0.1% to the lifetime. We

choose to call this a ± 0.1% uncertainty in the lifetime rather than refit.
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Figure 12: No quantum beats observed in the decay (red) from the 5p1/2 state.

The excitation pulse width is 200 ns. The detector had no polarizer attached.

An exponential (black) was fitted to the data, giving a fitted lifetime of approx-

imately 138.5 ns with a fit uncertainty of 0.1 ns. The normalized fit residual

shows no resolvable quantum beats.

Truncation uncertainty. There is a variation in the lifetime for fits over different ranges

of the data. We typically begin our fit at 80-90% the falling edge and end when the signal

has sufficiently decayed. To quantify uncertainty due to data truncation when fitting, we

select one set of data and perform fits for various start and ends points. As expected, the

fitted lifetimes vary over these fits. We then calculate the (fractional) standard deviation in

the fitted lifetimes. We then repeated the process for a few additional datasets and found

that an uncertainty of roughly ± 0.4% accounts for the variation in the lifetimes from the

truncation when fitting. It turns out that the truncation error is the dominant source of

uncertainty in our measurement of τ5p1/2
.
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Figure 13: Fitted lifetimes (ns), with fit uncertainties, versus the getter current

(A), which controls the density of the MOT cloud. The plot shows no signifi-

cant trend in the lifetime.

Radiation trapping. Radiation trapping comes from the re-absorption of the emitted

photon by the sample itself. This effect depends on the length and density of the sam-

ple and could increase the measured lifetime substantially when there are many atoms.

Since the MOT has small size, radiation trapping is a much smaller effect here than in an

experiment with a vapor cell. If we denote the length and density of the sample as l and n

and the atomic absorption coefficient as α, the change in the measured lifetime due to this

effect is given by [22]:
τ ′

τ
= 1 +

(
C

λ

)2

where

C = lαn = λ tan(λ),

where

α =
λ3

2π

Γ5p→4s

Γtotal
≈ 4× 10−11 cm2
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In the limit of small length, this equation becomes

τ ′ − τ = τC = τ lαn,

where the change of lifetime depends linearly on density. With path length l ≈ 0.5 mm

and density n ≈ 109 cm−3, we estimate a correction of (τ ′ − τ)/τ ≈ 0.2% to the lifetime.

To test for radiation trapping experimentally, we looked for trends in the measured life-

time as a function of the getter current, which controls the density of our sample. Figure 13

shows no detectable trend in lifetime above statistical variations between measurements.

We conclude that the error due to this effect is approximately± 0.2%, which is roughly the

size of the fit uncertainty and is consistent with we estimate in the preceding paragraph.

4.1.2 Statistical Errors

We let the computer-generated fit uncertainty be the statistical error in our measurement.

A typical fit uncertainty is approximately ± 0.3 ns, which corresponds to about ± 0.2% of

the lifetime.

4.2 The 5p3/2 measurement

The presence of quantum beats in the 5p3/2 decay makes the measurement much more

technically challenging. As discussed in the preceding sections, there are two sources of

quantum beats: the hyperfine structure of the 5p3/2 state, and Zeeman splittings within the

hyperfine sublevels. In order to create and observe quantum beats, we first excite the atom

cloud with a 70 ns pulse of linearly-polarized 405 nm light to coherently excite the ground

state 4s1/2 F = 1 to the 5p3/2, F = {0, 1, 2} manifold, then detect the fluorescence through

a linear polarizer making an angle θ with the excitation polarization. Figure 14 shows the

observed quantum beats for various values of θ. We note that it is possible to excite from

the F = 2 hyperfine state to the 5p3/2 F states and still observe higher-frequency quantum

beats. However, even though we could find quantum beats, the signal-to-noise ratio was

poorer than the excitation from the 4s1/2 F = 1 due to the trap repumping mechanism.
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Figure 14: Observed quantum beats in the 5p3/2 decay fluorescence for various

values of θ. The quantum beats are due to the spacings between hyperfine

sublevels in the 5p3/2 state as well as Zeeman effects.

In order to reliably extract the (dominant) oscillation frequency within the decay pro-

file, we fit this decay curve with the following theoretical curve of the form

f(t) = Ae−t/τ (1 +B cos(ωt+ ϕ)), (10)

where A,B represent the amplitudes of the decay curve and the fraction of the oscillation,

respectively, ω is the dominant oscillation frequency, ϕ is the phase, and τ is the lifetime.

While it is theoretically possible to fit this curve to the decay profile and extract both the

beat frequency and lifetime of 5p3/2, in practice we find that due to the uncertainty in the

phase of the oscillation, the fitted lifetime can be highly unstable, varying up to a few ns

across various fit-start and end points (This is further confounded by truncation error).

The fitted oscillation frequency, however, is more stable and is approximately 5-6 MHz.

While this is on the same order of magnitude as the hyperfine splittings between the F

states of 5p3/2, this value for the beat frequency does not agree with the splittings, which
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suggests that magnetic effects are present.

To completely eliminate quantum beats using the magic-angle setup, there must be

zero magnetic field in the region of space which the atom cloud occupies. This is not

possible to achieve in a MOT setup, since the MOT cloud has finite size and requires a

non-zero magnetic field gradient to form. As pointed out in the 3.1, the MOT cloud has

diameter of 1 mm, the magnetic field gradient is 1 G/mm, and the center of the MOT cloud

may experience a magnetic field strength of about 0.3-0.5 G. As a result, by narrowly focus-

ing the 405 nm beam and setting the excitation-detection relative polarization angle to the

magic angle θm = 54.7◦, it is possible selectively excite different regions within the MOT

cloud and find where the quantum beats are minimized. Figures 15, 16, and 17, show how

the amplitudes of quantum beats change as different portions of the MOT cloud is excited.

In Figures 15 and 16, the beat amplitudes are large. By adjusting the aim of the 405 nm

laser to excite a different portion of the cloud in lower magnetic field, we can reduce the

beat amplitudes, as evident in Figure 17. The fit (10) performs quite well for the small-beat

case, as there are no oscillations in the normalized residual. The fit is quite poor for the

case where the quantum beat amplitudes are large – there are clear oscillations in the nor-

malized residuals in Figures 15 and 16.

With this method, we find that the lifetime of the 5p3/2 state is approximately 136.0 ±

2.4 ns. Here, we assume that the systematic errors and their values are the same before, ex-

cept for the truncation error, which is much larger now because the fitted lifetime is highly

dependent on the starting location of the fit (even though we have the “phase” parameter

in our fit function). We see fitted lifetimes as small as roughly 134 ns, which is the value

obtained experimentally by [4] and [2] and theoretically by [3], to as high as roughly 140

ns, which is what [6] found. The error budget and the value for the lifetime of 5p3/2 using

the short-pulse approach are given in Table 4.

There are a number of possible solutions to this quantum beats problem in our MOT-

based approach. The most natural solution is to switch off the magnetic fields before
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Figure 15: Large quantum beat amplitudes in the 5p3/2 when a portion of the

MOT cloud in high magnetic field is excited. The fit function (10) performs

quite poorly, as evident in the oscillations in the normalized residuals.

[Short pulse] Source of error Value

Timing uncertainty + Nonlinearity ± 0.1%

Truncation uncertainty ± 1.8%

Pulse pile-up correction − 0.1%

Radiation trapping ± 0.2%

Other statistical errors ± 0.2%

Result (short-pulse approach) 136.0 ± 2.4 ns

Table 4: List of systematic and statistical errors, their values, and the value

for τ5p3/2
using the short-pulse approach. The errors are added in quadrature.

Again, the dominant error is truncation error, but it is 4-5 times larger than that

in the τ5p1/2
measurement.
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Figure 16: Large quantum beat amplitudes in the 5p3/2 when a portion of the

MOT cloud in high magnetic field is excited. Quantum beats are slightly sup-

pressed compared to Figure 15. However, the fit function (10) still performs

quite poorly. Oscillations in the normalized residuals are still present.

driving the 4s1/2 → 5p3/2 transition with the 405 nm pulses. However, this approach

comes with a number of disadvantages of which the most significant is repetition rate.

Due to the non-zero inductance of the metallic parts in the MOT chamber and the MOT

Helmholtz coils, the magnetic field (gradient) takes roughly a few ms to sufficiently de-

cay away. Within this time, the MOT cloud also expands and disintegrates. As a result,

the count rate, even if the repetition rate is 250 kHz, would be much lower compared to

having the magnetic field on continuously. Overall, we estimate that with the magnetic-

field-switching approach, we will need to take data for at least 10 times longer to get the

same statistics as we have with the current approach.

An alternative approach is to drive the 4s1/2 → 5p3/2 transition using longer 405 nm

pulses. The idea behind this approach is the following: by using the longer pulse, we

expect that the quantum superpositions of the hyperfine sublevels will decohere, and so
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Figure 17: Smaller quantum beat amplitudes in the 5p3/2 when a portion of

the MOT cloud in low magnetic field is excited. Quantum beats are largely

suppressed. The oscillations in the normalized residual are minimal.

quantum beats will “average out,” resulting in a beatless decay. One advantage of this

approach is that we can remove the linear polarizer in front of the detector, since the spa-

tially anisotropic fluorescence will also be averaged out. In our experiment, we used 1 µs

instead of the 70 ns 405 nm pulses to excite to the 5p3/2 states.

Figures 18 and 19 show the decay profiles in these cases, fitted to the function in (10).

We notice that even with a much longer pulse quantum beats are still present despite being

quite minimal compared to using a short pulse (The beats can be seen most clearly in the

normalized residuals in Figure 18). By exciting parts of the MOT cloud in low magnetic

fields, these quantum beats can be further suppressed (see Figure 19). With this method,

we find that the lifetime of the 5p3/2 state is approximately 137.6 ± 3.7 ns. Once again, we

assume that all systematic/statistical errors are the same as before except for the truncation

error. Table 5 gives the values for the error and τ5p3/2
for the long-pulse approach. The only

differences between 5 and 4 are the truncation error and the mean observed τ5p3/2
.
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Figure 18: 5p3/2 → 4s1/2 decay profile. Quantum beats are still present (as one

can see in the normalized residual), even with a long excitation pulse. Using

the fit function (10), we find a lifetime of approximately τ5p3/2
≈ 139.6 ± 0.2 ns,

where± 0.2 ns is the fit uncertainty. The fractional amplitude of quantum beats

is 0.03, which is not as big an improvement as we might expect, is possibly due

to the short turn-off time of the 405 nm pulse.

[Long pulse] Source of error Value

Timing uncertainty + Nonlinearity ± 0.1%

Truncation uncertainty ± 2.2%

Pulse pile-up correction − 0.1%

Radiation trapping ± 0.2%

Other statistical errors ± 0.2%

Result (long-pulse approach) 137.6 ± 3.1 ns

Table 5: List of systematic and statistical errors, their values, and the value for

τ5p3/2
using the long-pulse approach. The errors are added in quadrature.
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Figure 19: 5p3/2 → 4s1/2 decay profile. By selecting a portion of the cloud in

low magnetic fields, quantum beats can be suppressed further.

5 Conclusions

We measured the lifetimes of 5p1/2 and 5p3/2 of 39K by exciting a cloud of 39K atoms in a

magneto-optical trap by a linearly-polarized pulse of 405 nm light followed polarization-

specific, time-resolved fluorescence detection. We find τ5p1/2
= 138.8 ± 1.6 ns, which is

consistent with past measurements [1], [2] and calculations [3]. using two slightly different

approaches, we obtained two measurements for the 5p3/2 lifetime: 137.6 ± 3.1 ns and

136.0 ± 2.4 ns, obtained from two slightly different approaches. These measurements are

consistent with past measurements [2], [4], [5], [6] and theoretical calculations in [3]. It is

clear that future work is needed to reduce the uncertainty in our measurement and resolve

the discrepancy in the literature.
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6 Appendices

6.1 Quantum beat theory in the density matrix formalism [8]

The density matrix formulation greatly simplifies many quantum-beat calculations. This

is because the optical signals in a fluorescence experiment turn out to be proportional to

the mean value of some atomic observable in the excited state e, which can be very easily

expressed as a combination of components of the density matrix ρe(t) of this state. The evo-

lution of ρe(t) due to the light excitation process, to the precession of the coherences in the

atomic excited state and to spontaneous emission is adequately described by a set of linear

differential equations, whose solution yields ρe(t) and allows the explicit calculation of the

atomic fluorescence signal as a function of time. Furthermore, the atomic density matrix

ρe(t) may be represented as an expansion over a set of spherical tensor operators among

which only the scalar, dipolar and quadrupolar terms affect the fluorescence light.

Let us begin from the QED derivation of the quantum beat signal for a single-atom

system. At t = 0, we assume that the system is prepared by the light pulse in the state

|ψ(0)〉 =
∑
i

αi |ei, 0〉 , i = 1, 2,

where |ei, 0〉 represents the atom in substate |ei〉 with no photon present. αi are of course

the amplitudes, which depend on the characteristics of the pulse. At time t, we have

|ψ(t)〉 =
∑
i

αie
−iEt/~e−Γt/2 |ei, 0〉+

∑
f,kε

Cf,kε(t) |f,kε〉 ,

where kε denotes the photon states. This says that the initial states |ei, 0〉 have been

damped at the rate Γ = 1/τ of spontaneous emission (τ is a common decay rate for all

of the ei substates). Cf,kε(t) is the probability amplitude to find at time t the atom in the fi-

nal state f with a photon of wave vector k and polarization ε. From the Wigner-Weisskopf

theory of spontaneous emission, one finds

Cf,kε =
∑
i

C
(i)
f,kε(t)

where

C
(i)
f,kε(t) = αiEk 〈f | ε ·D |ei〉 e−ik·R

e−i(Ef+~ck)t/~ − e−iEit/~e−Γt/2

~ck − (Ei − Ef ) + i~Γ/2
. (11)
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This is obtained by plugging |ψ(t)〉 into the Schrödinger equation and solving for Cf,kε in a

system of coupled differential equations. In any case, Ek is the electric field of a photon at

frequency ~ck and D is the electric dipole operator of the atom. When i = {1, 2}, we find

that Cf,kε is a sum of two terms, each corresponding to the emission from a given excited

state |ei〉. Each of these terms exhibits a resonance center around ~ck = Ei − Ej with a

width ~Γ. At resonance, each amplitude C(i)
f,kε(t) is modulated at the Bohr frequency Ei/~

if the corresponding excited state.

The average photon counting rate of the detector located at point r is equal to the

expectation value at that point of the operator E−d (r)E+
d (r), which is the product of the

positive and negative frequency parts of the electric field component along the direction

ed. So, this quantity is given by

S(ed, r, t) = 〈ψ(t)|E−d (r)E+
d (r) |ψ(t)〉 .

Now, writing E±d (r) in terms of the normal modes of the electromagnetic field (this is

where QED comes in)

E+
d (r) =

∑
kε

Ekεdakεe
ik·r.

E−d (r) =
∑
k′ε′

Ek′ε′da
†
k′ε′e

−ik′·r

where of course akε and a†kε are annihilation and creation operators in mode kε. With this,

we find an expression for the signal:

S(ed, r, t) =
∑

k,k′,ε,ε′

∑
f

∑
i,j

EkEk′C
(i)
f,kε(t)C

(j)∗
f,k′ε′(t)εdε

′
de
i(k−k′)·r.
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Finally, plugging Eq. 11 into this expression yields

S(ed, r, t) =
∑

k,k′,ε,ε′

∑
f

∑
i,j

EkEk′αiEk 〈f | ε ·D |ei〉 e−ik·R
e−i(Ef+~ck)t/~ − e−iEit/~e−Γt/2

~ck − (Ei − Ef ) + i~Γ/2

×

[
αjEk′ 〈f | ε′ ·D |ej〉 e−ik

′·R e
−i(Ef+~ck′)t/~ − e−iEjt/~e−Γt/2

~ck′ − (Ej − Ef ) + i~Γ/2

]∗
εdε
′
de
i(k−k′)·r

=
∑

k,k′,ε,ε′

∑
f

∑
i,j

E2
kE

2
k′ 〈f | ε ·D |ei〉αiα∗j 〈ej | ε′ ·D |f〉 εdε′dei(k−k

′)·(r−R)

× e−i(Ef+~ck)t/~ − e−iEit/~e−Γt/2

~ck − (Ei − Ef ) + i~Γ/2

ei(Ef+~ck′)t/~ − eiEjt/~e−Γt/2

~ck′ − (Ej − Ef )− i~Γ/2
.

For simplicity, let r0 = |R− r| denote the distance between the atom and the detector,

k0 = (Ee − Ef )/~c is the average wavenumber of the detected optical transition, and

ωij = (Ei − Ej)/~ is the Bohr frequency corresponding to the splitting between the states

ei and ej , and θ(t − r0/c) is the ordinary Heaviside function, equal to 1 if t < ro/c and to

0 otherwise, which allows for the propagation between the emitter and the detector. After

non-trivial summing over all angular and energy parts, we find

S(ed, r, t) =
1

(4πε0)2

k4
0

r2
0

∑
f

∑
i,j

〈f | edD |ei〉αiα∗j 〈ej | edD |f〉

θ
(
t− r0

c

)
e−iωij(t−

r0
c )e−Γ(t− r0

c ). (12)

Notice the inverse square law that arises. Now, the product of the amplitudes αiα∗j are the

matrix elements between the states |ei〉 and |ej〉 of the excited state density matrix ρe(t)

evaluated at time t = 0, i.e.,

αiα
∗
j = 〈ei| ρe(0) |ej〉 .

So, assuming that r is fixed and that the retardation r0/c ≈ 0, we find that Eq. 12 becomes

S(ed, t) = C
∑
i,j

(
e−iωijt 〈ei| ρe(0) |ej〉 e−Γt

)∑
f

〈ej | edD |f〉 〈f | ed∗D |ei〉 (13)

where

C =
1

(4πε0)2

k4
0

r2
0

.

Notice further that the first term in the expression above for S is just the density matrix

element of ρe at time t, i.e.,

e−iωijt 〈ei| ρe(0) |ej〉 e−Γt = 〈ei| ρe(t) |ej〉 . (14)
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As a result, we find

S(ed, t) =
∑
i,j

〈ei| ρe(t) |ej〉 〈ej | L(ed) |ei〉 =
∑
i

〈ei| ρe(t)L(ed) |ei〉 = Tr[ρe(t)L(ed)] (15)

where

L(ed) = C
∑
f

edD |f〉 〈f | ed∗D.

So, we see that the fluorescence signal is the expectation value in the atomic excited states

of a “detection” operator L(ed), which is proportional to the component corresponding to

the e− f transition of the square of the atomic dipole projected along the detection polar-

ization ed. Finally, to calculate explicitly the quantum beat signal, one has to know ρe(t),

which implies that one must know ρe(0) since these are related by Eq. 14.

Three distinct time parameters are important for the description of the pulse: duration

T (the pulse is assumed to interact with the atoms between time t = −T and t = 0), its

correlation time τ = 1/∆, and its pumping time Tp(t), which is inversely proportional to

the instantaneous spectral density u(ω0, t) of the pulse at the frequency ω0 of the optical

transition, and to the oscillation strength of the transition. It is defined as

1

Tp(t)
=

π

ε0~2
u(ω0, t)|〈e| |D| |g〉|2

where 〈e| |D| |g〉 is the radial part of the electric dipole matrix element between the states

|e〉 and |g〉. Tp(t) is the instantaneous average time between two successive photon absorp-

tions from the pulse.

To derive rate equations for the evolution of the atomic system, we assume the broadline/short-

pulse condition and the weak pumping condition given by

∆� 1

Tp(t)
.

We further assume that the following three conditions are satisfied:

1

T
� Γ,

1

T
� ωij , ∆� ωij ,
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where ωij denotes the excited state frequency spacings. The first says that we can ignore

spontaneous emission during the pulse itself. The second says that the pulse is short

enough so that the atomic coherences do not have the time to precess during the pulse

excitation. The last says that the pulse bandwidth is large enough to entirely cover the

structure of the studied excited state.

In addition, we assume the Weak Pumping Limit, i.e., T � Tp(t). This says that the

pulse used to excited the atoms is weak enough so that it interacts linearly with the atomic

system. In terms of photon processes, this means that at most one photon from the pulse

is absorbed during time T . In this case, the evolution of the excited state density matrix is

given by
d

dt
ρe(t) =

1

Tp(t)

1

Gg
Pee0DPge

∗
0DPe,

where e0 is the polarization of the pulse. Pe =
∑

e |e〉 〈e| ,Pg =
∑

g |g〉 〈g| are the projectors

into the excited and ground states, respectively. Gg is the degeneracy of the ground state.

Integrating this equation gives

ρe(0) =
K0

Gg
Pee0DPge

∗
0DPe (16)

where

K0 =

∫ 0

−T

dt

Tp(t)
,

is the time-integrated pumping rate. Eq. 16 is valid when the atomic ground state is not ori-

ented prior to the pulse excitation. It says that the atomic density matrix components in the

excited states are obtained as products of two amplitudes proportional to the atomic dipole

matrix elements between the ground state and the relevant excited substates. Putting the

expression for ρe(0) in Eq. 16 into Eq. 13, we get

S(ed, t) =
CK0

Gg

∑
f

∑
i,j

∑
g

〈ei| e0D |g〉 〈g| e∗0D |ej〉 〈ej | edD |f〉 〈f | e∗dD |ei〉 e−Γte−iωijt.

More generally, it is possible that the ground state has some anisotropy before the pulse

excitation. This requires us to modify Eq. 16 to account for te anisotropy of the atom in the

state g:

ρe(0) = K0Pee0DPgρg(−T )Pge
∗
0DPe, (17)
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where ρg(−T ) is the density matrix in state g at time −T before the pulse. To derive this,

we can assume that the ground state has no time to evolve between the times−T and 0, so

that ρg(−T ) can be replaced by ρg(0). In this case, the density matrix of the excited states

ρe(t) satisfies

〈ei| ρe(t) |ej〉 = e−iωijte−Γt 〈ei| ρe(0) |ej〉

= e−iωijte−Γt 〈ei|K0Pee0DPgρg(−T )Pge
∗
0DPe |ej〉

= e−iωijte−ΓtK0

∑
jj′,gg′

〈ei|ej〉 〈ej | e0D |g〉 〈g| ρg(−T )
∣∣g′〉 〈g′∣∣ e∗0D ∣∣ej′〉 〈ej′∣∣ej〉

= e−iωijte−ΓtK0

∑
gg′

〈ei| e0D |g〉 〈g| ρg(−T )
∣∣g′〉 〈g′∣∣ e∗0D |ej〉 .

Plugging this into Eq. 15 we find

S(ed, t) =
∑
i,j

〈ei| ρe(t) |ej〉 〈ej | L(ed) |ei〉

∝
∑
i,j

e−iωijte−Γt
∑
gg′

〈ei| e0D |g〉 〈g| ρg(−T )
∣∣g′〉 〈g′∣∣ e∗0D |ej〉 〈ej | L(ed) |ei〉

∝
∑

i,j,f,g,g′

e−iωijte−Γt 〈ei| e0D |g〉 〈g| ρg(−T )
∣∣g′〉 〈g′∣∣ e∗0D |ej〉 〈ej | edD |f〉 〈f | ed∗D |ei〉 .

(18)

This corresponds exactly to Eq. 4 in Section 2.3.3.

6.2 Graphical methods for angular momentum calculations [9]

This is a very quick guide to the graphic methods for solving angular-momentum prob-

lems. As a result, most of the mathematics behind these rules will be neglected. For more

details, please refer to [9].

6.2.1 The basics

First, the 3j-symbol can be represented by Figure 20

The symmetry relationa b c

α β γ

 = (−1)a+b+c

a c b

α γ β
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Figure 20: The graphical Wigner 3j-symbol [9]

Figure 21: Symmetry relation for the graphical Wigner 3j-symbol [9]

implies Figure 21

The sign +/− at the node denotes the counterclockwise/clockwise orientation. The

associated 3j-symbol does not change under deformations of a diagram so long as such

deformations do not alter the diagram’s orientation. Next, sometimes we see various phase

factors of the form (−1)x+y+z+.... These are represented by arrows. In particular, we have

Figure 22

Figure 22: Phase factor as an arrow [9]

More complicated diagrams maybe constructed by putting these ingredients together.

Two lines representing the same total angular momentum can be joined. Joining two

lines implies that the z-components of the two angular momenta should be set equal and

summed over. We will usually omit the z-components of angular momenta from diagrams.

With these rules we should be able to write down any Clebsch-Gordan coefficient in

terms of 3j-symbols. What we’ll focus on next is the Wigner 6j-symbol, which is given by

Figure 23, where the sum is taken over all magnetic quantum numbers.
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Figure 23: The graphical Wigner 6j-symbol [9]

6.2.2 Rules for transforming graphs

Often in calculations, we start with an algebraic expression and translate it into a rather

complicated graphical representation. To continue with the calculation, we often must

transform the complicated graph into products of more elementary ones before this sim-

pler graph is converted back into a simplified algebraic expression. Here are some rules to

perform the transformations.

First, we must know how to add/remove arrows or change their directions. There are

five rules. The first four rules are best shown in diagrams (see Figures 24, 25, 26, 27). The

Figure 24: Two opposite arrows “cancel” [9]

Figure 25: Two arrows in the same direction “cancel” and give a phase [9]

fifth rule says that the direction of all arrows and the signs of all nodes may be changed

simultaneously in a closed diagram without altering the value of the diagram. The proof

for this rule is once again in [9].
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Figure 26: Changing the direction of an arrow gives a phase [9]

Figure 27: 3 arrows (all away from or towards the node) might be added to the

diagram [9]

Second, we must know how to “factor” a complicated diagram into smaller, more rec-

ognizable ones. This brings us to the the Three Theorems for Block Diagrams in [9], but

we’ll just learn the rules by looking at some model diagrams. One important result is that

if we denote a block F with n external lines by Figure 28, then Figure 29 follows.

Figure 28: A block Fn with n external lines, from [9].

Figure 29: A block Fn with n = 2 external lines, from [9].

We focus on the cases where there are two (Figure 30) and three (Figure 31) connecting
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lines between two blocks.

Figure 30: Two blocks with two connecting lines [9]

Figure 31: Two blocks with three connecting lines [9]

In the case where we have a single block with 2 or 3 external lines, we can simply call

this block F and let the block G be blank. By doing so, we can treat the external lines of

block F as connecting lines and apply the rules. For example, we can prove the relation

∑
δεφ

 d e c

−δ ε γ

 e f a

−ε φ α

 f d b

−φ δ β

 (−1)d+e+f−δ−ε−φ =

a b c

d e f


a b c

α β γ


graphically in Figure 32.

Another interesting example is calculating the block in Figure 33, which can be trans-

formed into Figure 34. Here, we have used the sequence of transformation shown in

Figure 35.
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Figure 32: An example of using the block-diagram theorems [9]

Figure 33: This block for D can be transformed into Figure 34, from [9]

Figure 34: The block from Figure 33 can be simplified into a product of two

known 6j blocks using the transformation rule from Figure 35, from [9]
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Figure 35: The transformation rule used in Figure 34, from [9]

6.2.3 Calculating X(Fe, F
′
e, Fi, Ff ; p0, p

′
0, p, p

′)

We’re now ready to calculate X(Fe, F
′
e, Fi, Ff ; p0, p

′
0, p, p

′) in Section 2.3.3. Recall that:

X(Fe, F
′
e, Fi, Ff ; p0.p

′
o, p, p

′) =
∑
MeM ′

e
MiMf

(−1)Fe−Me+F ′
e−M ′

e+Fi−Mi+Ff−Mf

 Fe 1 Fi

−Me p0 Mi



×

 Fi 1 F ′e

−Mi p′0 M ′e

 F ′e 1 Ff

−M ′e p Mf

 Ff 1 Fe

−Mf p′ Me

 .

By using the graphical representations for the 3j-symbol and an arrow, the term

(−1)Fe−Me

 Fe 1 Fi

−Me p0 Mi


is represented by the graph in Figure 36.

Figure 36: 3j-symbol and arrow

Putting the four terms in X together by joining lines we get to Figure 37. We can treat

Figure 37 as a two-block diagram with two connecting lines. Applying the block-diagram
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theorem, we obtain Figure 38. To simplify Figure 38 further, we add three diverging arrows

to the node k − Fe − F ′e and invoke the “external line rule” used in Figure 32. This gives

Figure 39. Next, to the left-most term, add diverging arrows to the Fi − Fe − 1 node and

Figure 37: X as a diagram.

Figure 38: Applying the block-diagram theorem to Figure 37, we can rewrite

X as a sum of simpler blocks.

Figure 39: Applying the external line rule to Figure 38, write the summands as

a product of known diagrams.

converging arrows to the 1− F ′e − Fi node. This has no effect on the Fi line. However, the

arrows on the Fe and F ′e lines get canceled, and we gain new arrows on the “outer” 1-lines.

Repeat this process for the right-most term so that its “inner arrows” also get canceled.
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Notice further that switching arrow directions on the 1-line doesn’t do anything to the

graph because the phase (−1)2×1 = 1. Using this fact, we can also change the orientations

of the nodes with the − sign so that they become +. After some extra careful changing

of signs and arrow directions, we will find the “triangular terms” in the correct form for

the 6j-symbol. We also recognize that the term in the middle is just the product of two

3j-symbols. So, in the end, we write

X(Fe, F
′
e, Fi, Ff ; p0.p

′
o, p, p

′) =
∑
kq

(2k + 1)(−1)q+2Ff−Fe−F ′
e

 1 1 k

p0 p′0 q

1 1 k

p p′ −q


×

Fi Fe 1

k 1 F ′e


 1 k 1

Fe Ff F ′e

 .

6.2.4 Calculating Y (Fe, F
′
e; k) and Z(Fe, F

′
e; k)

Recall their formulas from Section 2.3.3:

Y (Fe, F
′
e; k) =

∑
Fi

(2Fi+1)(−1)2Je+k+Fe+F ′
e+I+Ji+Fi

Fe Fi 1

Ji Je I


F ′e Fi 1

1 k Fe


I Fi Ji

1 Je F ′e

 .

and

Z(Fe, F
′
e; k) =

∑
Ff

(2Ff+1)(−1)2Je+k+Fe+F ′
e+I+Jf+Ff

F ′e Ff 1

Jf Je I


Fe Ff 1

1 k F ′e


I Ff Jf

1 Je Fe

 .

We will perform these calculations based on Example 7 of Chapter VII: Graphical Methods

in Angular Momentum in [9]. It suffices to just do the Y calculation. The result for Z can

be obtained by a simple change of variables. To start, we look at Example 7, which says

that

∑
x

(2x+1)(−1)a+b+c+d+e+f+g+h+i+x

e f x

b a i


a b x

c d h


d c x

f e g

 =

g h i

a e d


g h i

b f c

 .
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We want to do some permutations to the 6j-symbols in Y so that it matches the expression

above. We first recognize that Fi plays the role of x.

Y (Fe, F
′
e; k) =

∑
Fi

(2Fi + 1)(−1)2Je+k+Fe+F ′
e+I+Ji+Fi

Fe 1 Fi

Ji I Je


I Ji Fi

1 F ′e Je


F ′e 1 Fi

1 Fe k


=

k Je Je

I Fe F ′e


 k Je Je

Ji 1 1

 .

For Z, we observe that Fe and F ′e are exchanged, Ji is replaced by Jf , and that Ff plays the

role of x. But since the 6j-symbol is invariant under permutations of columns, the Fe − F ′e
exchange in fact has no effect. So,

Z(Fe, F
′
e; k) =

k Je Je

I F ′e Fe


 k Je Je

Jf 1 1

 =

k Je Je

I Fe F ′e


 k Je Je

Jf 1 1

 .

To see how one might do this graphically, we observe that

∑
x

(2x+ 1)(−1)a+b+c+d+e+f+g+h+i+x

e f x

b a i


a b x

c d h


d c x

f e g


can be written as Figure 40 [9]. To obtain this result, we just write out the 6j-symbols as the

Figure 40: Diagram representation of the term above, from [9]

“triangular” graphs as before. Next, the phase factors will change some of the orientations,

which convert from + nodes to − and move the “inner node” outside of the triangle,

turning it into a square. Next, the graph in Figure 40 [9] can be “contracted” into the graph

in Figure 42. To go from Figure 40 to Figure 42, we use the Block-Diagram Theorems and

join the three graphs into the form in Figure 41 [9], which can then be separated on the
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lines (ghi) to give Figure 42. After some change of orientations at the nodes of Figure 42

we get the desired result: g h i

a e d


g h i

b f c

 .

Figure 41: Result after joining the three graphs, from [9]

Figure 42: The graph after separating the lines from Figure 41, from [9]

6.3 Spherical Basis and the Wigner D-matrix

A spherical basis is the basis used to express spherical tensors. Spherical bases are ubiq-

uitous in angular-momentum problems in quantum mechanics. While spherical polar co-

ordinates are one orthogonal coordinate system for expressing vectors and tensors using

polar and azimuthal angles and radial distance, the spherical basis are constructed from

the standard basis and use complex numbers. In three dimensions, a vector A in the stan-

dard basis can be written as

A = Axex +Ayey +Azez.
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where the coordinates Ai can be complex. In the spherical basis denoted e+, e−, e0,

A = A+e+ +A−e− +A0e0

where

e± = ∓ 1√
2

(ex ± iey)

and

e0 = ez.

This change of basis can be captured by
e+

e−

e0

 = U


ex

ey

ez

 =


−1/
√

2 −i/
√

2 0

+1/
√

2 −i/
√

2 0

0 0 1



ex

ey

ez

 .

The corresponding change of coordinates is
A+

A−

A0

 = U∗


Ax

Ay

Az

 .

We notice that U is unitary, i.e., U † = U−1.

A general spherical tensor transforms under a rotation the same way spherical har-

monics transform. It turns out that if T kq is a spherical tensor, then

D(R)T kq D†(R) =
k∑

q′=−k
T kq′Dkqq′(R) (19)

where R is a 3-dimensional rotation operator and D is the Wigner D-matrix associated

with the rotation matrix D. With corresponding Euler angles α, β, γ, R can be written as

R(α, β, γ) = e−iασze−iβσye−iγσz .

The Euler angles are characterized by the keywords: z − y − z convention, right-handed

frame, right-hand screw rule, active interpretation. Here σi are the Pauli matrices, which

are also generators of the Lie algebra of SO(3). Let’s unpack the right-hand side of Eq.
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19. D is a unitary square matrix of dimension 2k + 1 in this spherical basis with elements

Dkqq′(R), defined by

Dkqq′(α, β, γ) ≡ 〈kq|R(α, β, γ)
∣∣kq′〉 = e−iqα 〈kq| e−iβσy

∣∣kq′〉 e−iq′γ = e−iqαDjqq′(0, β, 0)e−iq
′γ .

Here Djqq′(0, β, 0) is referred to as the Wigner’s (small) d-matrix:

dkqq′(β) = Djqq′(0, β, 0).

Elements of dkqq′(β) can be readily found. In the case where k = 2 and q = q′ = 0, we have

d2
00(β) =

1

2
(3 cos2 β − 1) = P2(cosβ).

It turns out that

Dk00(ϕ, θ, φ) = Pk(cos θ)

where Pk(x) are Legendre polynomials. In general,

Dlm0(α, β, γ) =

√
(l −m)!

(l +m)!
Pml (cosβ)e−imα,

which implies that

dlm0(β) =

√
(l −m)!

(l +m)!
Pml (cosβ).

Here, Pml (x) are the associated Legendre polynomials.

6.4 Zeeman hyperfine splitting MATLAB code

% looking at 5P3/2 in K39

clear

J = 3/2;

I = 3/2;

L = 1;

S = 1/2;

B = 0:0.01:1.5; % units is Gauss

Ahf = 1.973e6; % Ahf coef in Hz

Bhf = 0.870e6; % Bhf coef in Hz

68



mJ = J:-1:-J;

mI = I:-1:-I;

size = length(mJ)*length(mI);

H = zeros(size, size);

% creat a basis for the Hamiltonian

basis = [];

for mj = mJ

for mi = mI

basis = [basis; [mj mi]];

end

end

zeeman = figure(1);

for b = B % loop over field strengths

% create the Hamiltonian, element-by-element

% I’m not imposing the symmetric condition on H to make it easy to code

% The formulas for the matrix elements take care of H’s self-adjointness

for r = 1:size

mj = basis(r,1);

mi = basis(r,2);

for c = 1:size

mjj = basis(c,1);

mii = basis(c,2);

H(r,c) = Ahf*A_hfs(J, I, mj, mi, mjj, mii)...

+ Bhf*B_hfs(J, I, mj, mi, mjj, mii)...

+ mag(b, J, L, S, mj, mi, mjj, mii);

end

end

% diagonalize and plot eigenvalues associated with field strength b

energies = eig(H)/1e6; % fix units to MHz

hold on

plot(b*ones(size), energies, ’o’, ’Color’, ’red’, ’MarkerSize’,1);

end

hold off

title(’Hyperfine Zeeman splitting’)

xlabel(’Magnetic Field (G)’)

ylabel(’Energy Shift (MHz)’)

%%%%%%% FUNCTIONS %%%%%%%

% This part is self-explanatory, so I won’t add further comments
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function Ahfs = A_hfs(J, I, mj, mi, mjj, mii)

Ahfs = 0;

if mj == mjj && mi == mii

Ahfs = mj*mi;

elseif mj == mjj + 1 && mi == mii - 1

Ahfs = (1/2)*sqrt((J+mj)*(J-mj+1)*(I-mi)*(I+mi+1));

elseif mj == mjj - 1 && mi == mii + 1

Ahfs = (1/2)*sqrt((J-mj)*(J+mj+1)*(I+mi)*(I-mi+1));

else

Ahfs = 0;

end

end

function Bhfs = B_hfs(J, I, mj, mi, mjj, mii)

Bhfs = 0;

if mj == mjj && mi == mii

Bhfs = (1/2)*(3*miˆ2-I*(I+1))*(3*mjˆ2-J*(J+1));

elseif mj == mjj - 1 && mi == mii + 1

Bhfs = (3/4)*(2*mjj-1)*(2*mii+1)*sqrt((J+mjj)*(J-mjj+1)*(I-mii)*(I+mii+1));

elseif mj == mjj + 1 && mi == mii - 1

Bhfs = (3/4)*(2*mjj+1)*(2*mii-1)*sqrt((J-mjj)*(J+mjj+1)*(I+mii)*(I-mii+1));

elseif mj == mjj - 2 && mi == mii + 2

Bhfs = (3/4)*sqrt((J+mjj)*(J+mjj-1)*(J-mjj+1)*(J-mjj+2)...

*(I-mii)*(I-mii-1)*(I+mii+1)*(I+mii+2));

elseif mj == mjj + 2 && mi == mii - 2

Bhfs = (3/4)*sqrt((J-mjj)*(J-mjj-1)*(J+mjj+1)*(J+mjj+2)...

*(I+mii)*(I+mii-1)*(I-mii+1)*(I-mii+2));

else

Bhfs = 0;

end

Bhfs = Bhfs/(2*I*(2*I-1)*J*(2*J-1));

end

function mag = mag(B, J, L, S, mj, mi, mjj, mii)

me = 9.1093837015e-31; % electron mass

mn = 1.67493e-27; % neutron mass

eC = 1.60218e-19; % electric charge

hbar = 1.054571817e-34;

muB = eC*hbar/(2*me); % Bohr magneton

gL = 1 - me/mn; % gyro magnetic factor of the orbital

gS = 2.0023193043622; % electron spin g-factor

gJ = gL*(J*(J+1)-S*(S+1)+L*(L+1))/(2*J*(J+1))
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+ gS*(J*(J+1)+S*(S+1)-L*(L+1))/(2*J*(J+1));

gI = -0.00014193489; % this is an experimental value

mag = 0;

if mj == mjj && mi == mii

mag = (muB/(2*pi*hbar))*(gJ*mj + gI*mi)*B*1e-4; % B is in Gauss

else

mag = 0;

end

end
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