Measurement-assisted variational simulation of non-trivial quantum states

Huan Q. Bui

Advisor: Timothy Hsieh

Perimeter Institute for Theoretical Physics

July 30, 2020

Huan Q. Bui (Perimeter Institute) Measurement-assisted variational simulation c

- Motivation
- Measurement-based quantum computing (MBQC)
- Variational simulation of non-trivial quantum states
- Research question: Measurement-assisted QAOA as an efficient/better simulation?

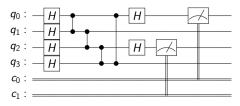
 Variational simulation of nontrivial quantum states with QAOA [HH19] requires O(L) circuit depth

 $Why? \implies$ local unitaries spread correlations slowly, making nontrivial states expensive to prepare

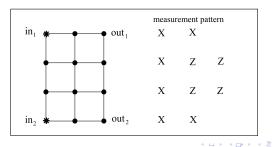
- Entanglement + measurements can rapidly spread correlations (e.g. simulated the GHZ state with O(1) layer of measurements)
 - \implies Entanglement + Measurements + Local unitaries = Speedup?

MBQC: One-way quantum computer [RB01]

Conventional quantum circuit models:



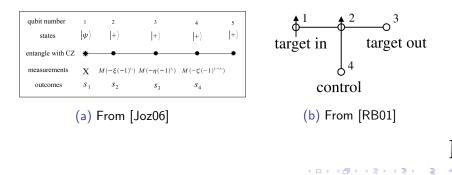
Cluster state: [Joz06] using quantum teleportation



July 30, 2020 4 / 21

Universality: Quantum circuit model \equiv Cluster state formulation.

- Transfer of information by teleportation
- Any single-qubit unitary can be done on a chain of qubits
- The CNOT gate can be implemented in a "T" configuration



Variational simulation of non-trivial quantum states

QAOA [FGG14]: Quantum approximate optimization algorithm

- Principle: Quantum adiabatic theorem on $H = H_2 + H_1$
- Variational ansatz (modified in (2))

$$|\psi(\boldsymbol{\gamma},\boldsymbol{\beta})\rangle = \underbrace{e^{-i\gamma_{p}H_{1}}e^{-i\beta_{p}H_{2}}\dots e^{-i\gamma_{2}H_{1}}e^{-i\beta_{2}H_{2}}e^{-i\gamma_{1}H_{1}}e^{-i\beta_{1}H_{2}}}_{p \text{ layers}}|\psi_{1}\rangle$$
(1)

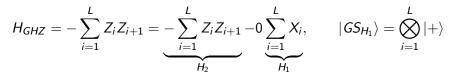
(γ,β) = (γ_p,..., γ₁, β_p,..., β₁)
|ψ₁⟩ = ground state of H₁ (easy to prepare)

Cost function:

Overlap:
$$|\langle \psi_0 | \psi(\gamma, \beta) \rangle|^2$$
, or Energy: $\langle \psi(\gamma, \beta) | H | \psi(\gamma, \beta) \rangle$. $\widehat{\mathbf{P}}$

Variational simulation of the GHZ state

<u>Example</u>: GHZ state $\sim |0\rangle^{\otimes L} + |1\rangle^{\otimes L}$



 \implies Perfect fidelity, $p \sim L/2$.

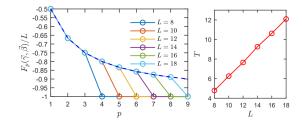


Figure: GHZ state simulation. Fidelity & p vs. L, [HH19]

Ŷ

July 30, 2020 7 / 21

Variational simulation of TFIM ground state

Example: Transverse field Ising model

$$H := H_2 + H_1 = -\sum_{i=1}^{L} Z_i Z_{i+1} - g \sum_{i=i}^{L} X_i$$

 \implies Perfect fidelity, $p \sim L/2$

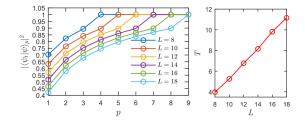


Figure: TFIM state simulation. Fidelity & p vs. L, [HH19]

Limitations of protocol in [HH19]:

- *p* ∼ *L*.
- MERA construction [Vid08]: p ~ log(L), but non-local unitaries required.
- \implies Is a measurement-assisted QAOA scheme a solution?

Measurement-based simulation of the GHZ state

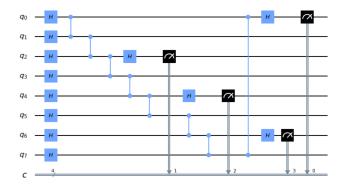


Figure: Preparing a 4-qubit GHZ state with a 8-qubit cluster state

Resulting state: $\sim |0\rangle^{\otimes 4} + |1\rangle^{\otimes 4}$ (up to one layer of Pauli corrections.) $\widehat{\mathbf{P}}$

Hamiltonian

$$H := H_2 + H_1 = -\sum_{i=1}^{L} Z_i Z_{i+1} - g \sum_{i=i}^{L} X_i$$

QAOA ansatz:

$$|\psi(\boldsymbol{\gamma},\boldsymbol{\beta})\rangle = e^{-i\gamma_{p}H_{1}}e^{-i\beta_{p}H_{2}}\dots e^{-i\gamma_{2}H_{1}}e^{-i\beta_{2}H_{2}}e^{-i\gamma_{1}H_{1}}e^{-i\beta_{1}H_{2}}|\psi_{1}\rangle$$

 $\mathsf{MBQC} \text{ is universal } \implies \mathsf{Measurement-based} \mathsf{QAOA} \mathsf{ ansatz} \mathsf{ is possible}.$

Ingredients: Z, X-rotations, & CNOT.
Scheme can be simplified by changing measurement pattern.

Limitations:

- $p \sim L$, where p is the number of layers of measurements.
- Non-local unitaries required

 $\downarrow\downarrow\downarrow\downarrow$

Two possibilities:

- QAOA is insufficient; need a completely new algorithm.
- QAOA is sufficient, but need better MBQC implementation. \Leftarrow

Test QAOA with TFIM without translation invariance:

$$\mathcal{H} = \sum_{j} J_j Z_j Z_{j+1} + \sum_{j} g_j X_j \tag{2}$$

Modified QAOA ansatz (reference (1))

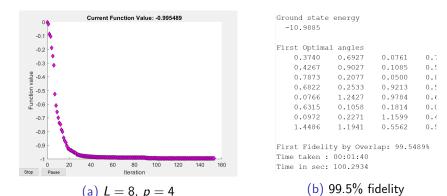
- p layers
- Each layer is parameterized by (γ, β)_k = (γ₁,..., γ_L, β₁,..., β_L)_k.

Conjecture

This modified QAOA can target any point in the phase diagram with perfect fidelity for at most p = L/2. In which case, the total number of parameters is L^2 .

2nd possibility: How far can QAOA go?

Conjecture seems to hold:



Note: Fidelity here is limited by precision setting.

July 30, 2020 14 / 21

< □ > < □ > < □ > < □ > < □ > < □ >

2nd possibility: How far can QAOA go?

irst Optima	l angles								
0.8137	0.5871	0.8301	0.7233	0.3972	1.4465	0.8842	0.0169	0.6192	0.4545
0.3606	0.0573	0.8608	0.6207	0.6431	0.5443	1.0091	0.9094	0.3803	0.7282
1.0406	0.4527	0.1617	0.2719	0.4206	0.9273	0.1018	0.2185	0.3168	0.4171
0.8567	0.6425	0.7548	0.7010	1.0682	1.3780	0.3439	1.2522	0.2124	0.1441
1.0175	0.5888	0.2326	0.6124	0.7090	0.5247	0.6871	0.9656	0.2851	0.3794
0.5176	0.6883	1.1344	0.2031	0.2970	1.0806	0.9063	0.0943	1.3235	0.2157
0.8787	0.2169	0.7295	0.4612	0.3440	0.1942	0.7990	1.0653	0.0877	0.1932
0.6477	0.7846	0.3086	0.1854	0.4175	0.3125	0.4870	0.7532	0.1419	0.7952
0.9112	0.6097	0.5502	0.6992	0.1392	0.1485	0.0476	0.2726	0.0506	1.3016
0.0247	0.4284	0.4669	0.3192	0.7880	0.5810	0.1528	0.1018	0.7222	0.0436

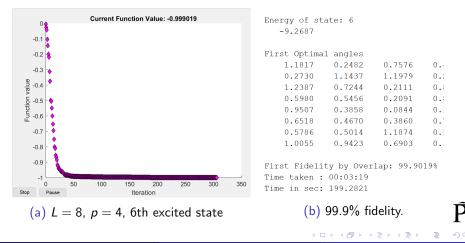
Figure: L = 10, p = 5, 99.9% fidelity.

Parameters ~ $L^2 \implies$ need more computing power to test L > 16.

2nd possibility: How far can QAOA go?

& Can simulate excited states with the same symmetry.

Example: 6th excited state for L = 8



July 30, 2020

16 / 21

Consider the following algorithm:

- Make a random QAOA state from $\bigotimes |+\rangle$ on 2L qubits with:
 - Low-depth (sublinear?)
 - Randomly generated parameters
- Measure every other qubit \implies get a *L*-qubit subsystem.
- Apply the QAOA optimization on this subsystem.

<u>Intuition</u>: Steps 1 and 2 generate a state with high entanglement, so that QAOA can drive it to the target state more quickly.

? |: Quicker? How much quicker?

Summary

- MBQC & simulating the GHZ state
- QAOA & its "range"
- Possible measurement-assisted QAOA algorithm

Questions:

- Is it possible, in principle, to get speedup with MBQC + QAOA?
- Target the critical ground state $(g \equiv 1)$ with sublinear circuit depth?

- Timothy Hsieh, advisor (Perimeter)
- Wen Wei Ho, MATLAB code tips (Harvard)
- Colby College Natural Science Computing Cluster

References I

- Edward Farhi, Jeffrey Goldstone, and Sam Gutmann, A quantum approximate optimization algorithm, arXiv preprint arXiv:1411.4028 (2014).
- Wen Wei Ho and Timothy H Hsieh, *Efficient variational simulation of non-trivial quantum states*, SciPost Phys **6** (2019), 029.
- Richard Jozsa, An introduction to measurement based quantum computation, NATO Science Series, III: Computer and Systems Sciences. Quantum Information Processing-From Theory to Experiment 199 (2006), 137–158.
- Michael A. Nielsen, *Cluster-state quantum computation*, Reports on Mathematical Physics 57 (2006), no. 1, 147 – 161.
- Robert Raussendorf and Hans J. Briegel, A one-way quantum computer, Phys. Rev. Lett. 86 (2001), 5188–5191.

Guifré Vidal, *Class of quantum many-body states that can be efficiently simulated*, Physical review letters **101** (2008), no. 11, 110501.

