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Shortest arc joining two points on a plane

Idea: Let the “correct” path be ȳ(x), then any path is

y(x) = ȳ(x) + εη(x)

where η(x1) = η(x2) = 0, and ε is some constant parameter.

Distance, for any given variation η(x):

L(α) =

ˆ
ds =

ˆ x2

x1

√
1 + (y ′)2 dx
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The general picture...

S(ε) =

ˆ b

a
f [y ′, y , x ] dx =

ˆ b

a
f [ȳ ′ + εη′, ȳ + εη, x ] dx .

Necessary condition: if ȳ minimizes S(ε), then

∂S

∂ε
= 0 =⇒ 0 =

∂f

∂ε
= η

∂f

∂y
+ η′

∂f

∂y ′
.

Can show:

∂S

∂ε
=

ˆ b

a
η(x)

(
∂f

∂y
− d

dx

∂f

∂y ′

)
dx = 0.

This is true for any η(x), so

∂f

∂y
− d

dx

∂f

∂y ′
= 0

−→ Euler-Lagrange equation.

Huan Q. Bui (Colby College) PDE’s & Calculus of Variations May 6, 2019 4 / 15



The general picture...

S(ε) =

ˆ b

a
f [y ′, y , x ] dx =

ˆ b

a
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f [ȳ ′ + εη′, ȳ + εη, x ] dx .

Necessary condition: if ȳ minimizes S(ε), then
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Back to silly example

f [y ′, y , x ] =
√

1 + (y ′)2

Applying the Euler-Lagrange equations:

∂f

∂y
− d

dx

∂f

∂y ′
= 0

=⇒ y ′ = Constant

=⇒ y = ax + b.

−→ a straight line as expected.
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A powerful method: Answer isn’t always obvious

Ex: The Brachistochrone problem by Bernoulli, 1696.

Goal: minimize sliding time on a frictionless path.

Time =
1√
2g

ˆ y2

y1

√
1 + (x ′)2

y
dy .

Applying Euler-Lagrange equation to f [x ′, x , y ], get{
x = a(θ − sin θ)

y = a(1− cos θ)
−→ Cycloid
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Two-way street

1 PDE’s can be formulated as minimization problems

2 Euler-Lagrange Equations as PDE’s
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PDE’s as minimization problems

Ex: Laplace’s equation with Dirichlet BC:

(∗)

{
∇2u = 0 in Ω

u = g on ∂Ω

Claim: Of all admissible w satisfying w = g , u solves (∗) ⇐⇒ u
minimizes

S [w ] =
1

2

ˆ
Ω
|∇w |2 dx .
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Proof =⇒

Show: u solves (∗) =⇒ S [u] ≤ S [w ]∀ admissible w .

Observe: 0 =

ˆ
w∇2u = −

ˆ
∇u · ∇w .

So,

S [u′] =
1

2

ˆ
|∇(u + v)|2 =

1

2

ˆ
|∇u|2 +

1

2

ˆ
|∇w |2 ≥ 1

2

ˆ
|∇u|2.

=⇒ u minimizes S [w ].
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Proof ⇐=

Show: u minimizes S [w ] =⇒ u solves (∗).

Idea: Consider variation in u, so let u → u + εv , v satisfies BC.

S [u + εv ] =
1

2

ˆ
|∇(u + εv)|2 =

1

2

ˆ
|∇u|2 + 2ε∇u · ∇v + ε2|∇v |2.

u minimizes S , so ∂S/∂ε = 0 at ε = 0, so after a lot of simplification

∂S

∂ε

∣∣∣∣
ε=0

= −
ˆ

v∇2u = 0.

This is true for any v , so ∇2u = 0 . So u solves (∗) as claimed.
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Euler-Lagrange Equations as PDE’s

Recall: If y minimizes

S [y ] =

ˆ
f [y ′, y , x ] dx

we have an associated Euler-Lagrange Equation:

∂f

∂y
=

d

dx

∂f

∂y ′
.

−→ Looks complicated, but if L is known then things often become
simple :)
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Principle of Least Action

S [y ] =

ˆ
f [y ′, y , x ] dx

Associated Euler-Lagrange Equation:

∂f

∂y
=

d

dx

∂f

∂y ′
.

In physics, S is called the action. f is called the Lagrangian, denoted L.

−→ Principle of Least Action: Systems tend to be such that δS = 0

L = Kinetic energy− Potential Energy

−→ Equations of motion are found as solutions to E-L PDE’s.
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Newton’s Second Law from E-L

Consider

L =
1

2
mv2 − U(x) = L[x ′, x , t] = L[v , x , t].

Then Euler-Lagrange equation tells us

∂L
∂x

=
d

dt

∂L
∂x ′

− dU

dx
=

d

dt
(mv)

F = ma

−→ In fact, Laplace’s, Poisson’s, wave eqns,... can be found this way!
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THE END
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Appendix

1 Since w = 0 at end points,

ˆ
w∇2u = (w∇v)

∣∣∣∣b
a

−
ˆ
∇u · ∇w = −

ˆ
∇u · ∇w

2

|∇(u + v)|2 = |∇u|2 + |∇w |2 + 2∇u · ∇w
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