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Components:

1 Quantum bits - Qubits

2 Quantum gates: single and multiple-qubit gates
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Quantum Bits - Qubits

a

[
1
0

]
+ b

[
0
1

]
|a|2 + |b|2 = 1

a |0〉+ b |1〉
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Quantum Gates

→ linear transformations on one or many qubits.

Example: Hadamard gate.

H ≡ 1√
2

[
1 1
1 −1

]

a : |0〉

b : |0〉 H •

What does H do to, say |0〉?

H |0〉

= H

[
1
0

]

=
1√
2

[
1
1

]

=
1√
2
|0〉+ 1√

2
|1〉
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Multiple Qubits

Qubit 1: a |0〉+ b |1〉 =
[
a
b

]
Qubit 2: c |0〉+ d |1〉 =

[
c
d

]

[
a
b

]
�

[
c
d

]
=

a
[
c
d

]
b

[
c
d

]
 =


ac
ad
bc
bd

 .
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Multiple Qubits

Do this for the basis states

|0〉� |0〉 =


1
0
0
0

 |0〉� |1〉 =

0
1
0
0

 |1〉� |0〉 =

0
0
1
0

 |1〉� |1〉 =

0
0
0
1



Notation:

|00〉 = |0〉� |0〉 |01〉 = |0〉� |1〉
|10〉 = |1〉� |0〉 |11〉 = |1〉� |1〉

Can see that we have a basis for describing the combined state.[
a
b

]
�

[
c
d

]
= ac |00〉+ ad |01〉+ bc |10〉+ bd |11〉 .
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Elementariness & Entanglement

Not all combined states can be written as |a〉� |b〉 ← Elementary.

Ex: p(x) · q(y) is a “combined state.” But there are NO p(x), q(y) s.t.

p(x) · q(y) = xy + 1,

even though xy + 1 is a legitimate “combined state.”

Back to qubits. Consider this combined state:

1√
2


1
0
0
1



=
1√
2
|00〉+ 1√

2
|11〉

−→ Entangled
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Kronecker Product

A is a matrix acting on |a〉, B on |b〉

A |a〉� B |b〉 = (A⊗ B)(|a〉� |b〉)

⊗ : Kronecker product, of two matrices.

If

A =

[
m n
o p

]
and B =

q r s
t u v
w x y
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Kronecker Product

then

A⊗ B

=


m

q r s
t u v
w x y



n

q r s
t u v
w x y



o

q r s
t u v
w x y



p

q r s
t u v
w x y





=



mq mr ms nq nr ns
mt mu mv nt nu nv
mw mx ms nw nx ny
oq or os pq pr ps
ot ou ov pt pu pv
ow ox oy pw px py
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Kronecker Product

Check that I |0〉� H |0〉 = (I ⊗ H) |00〉:

a : |0〉

b : |0〉 H •

LHS:

I |0〉� H |0〉

=

[
1 0
0 1

] [
1
0

]
�

1√
2

[
1 1
1 −1

] [
0
1

]

=

[
1
0

]
�

1√
2

[
1
1

]

=
1√
2


1
1
0
0
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2


1
1
0
0
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Some properties & Elementariness revisited

⊗ and � are very much alike.

1 Bilinear

2 Distributive.[
a
b

]
�

[
c
d

]

= (a |0〉+ b |1〉)� (c |0〉+ d |1〉)

= ac |00〉+ ad |01〉+ bc |10〉+ bd |11〉 .

3 Associative

4 NOT commutative.

Ex: |01〉 6= |10〉.

5 Elementariness.
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Some properties and Elementariness revisited

Ex:

a : |0〉

b : |0〉 H •

The Control-NOT gate:

CNOTb =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0



−→


|00〉 → |00〉
|10〉 → |10〉
|01〉 → |11〉
|11〉 → |01〉

Also called “entangled.”
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Entanglement Circuit

Time to decode:

a : |0〉

b : |0〉 H •

1 Step 1:

a : |0〉 → |0〉

b : |0〉 → 1√
2
|0〉+ 1√

2
|1〉

∣∣a′b′〉 = 1√
2

[
1 1 0 0

]>
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Entanglement Circuit

2 Step 2:

CNOTb


1/
√
2

1/
√
2

0
0



=


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0



1/
√
2

1/
√
2

0
0



=
1√
2


1
0
0
1



which is:

1√
2


1
0
0
1

 =
1√
2
|00〉+ 1√

2
|11〉 ← Entangled
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Simulation on IBM-Q
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Tensor Product

⊗ and � are really “the same!” → Tensor products.

Why tensor product?

Postulate (QM):

The state space of a composite physical system is the tensor product of
the state spaces of the component physical systems.
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Tensor Product

V ⊗W X

V ×W

linear

f̂

f

bilinear
φ

Roughly speaking...

Giving the f̂ : V ⊗W
linear−→ X is the same as giving f : V ×W

bilinear−→ X.
f = f̂ ◦ φ
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Tensor Product

If the target space X is V ⊗W. L is an operator on V,M on W,

V ⊗W V ⊗W

V ×W

linear

f̂

f

bilinear
φ

→ by uniqueness

(L ⊗M)(v ⊗ w) = L[v ]⊗M[w ]
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Tensor Product & Kronecker Product

ν a basis for V, ω for W → can make a basis τ for V ⊗W

V ⊗W V ⊗W

Cnm Cnm

linear

L⊗M

{}τ

linear

[L⊗M]τ←τ

Aτ

[L ⊗M]τ←τ = [L]ν←ν ⊗ [M]ω←ω
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Recap

How a 2-qubit entangling circuit works

Qubits, quantum gates as matrices

Kronecker product

Entanglement

Tensor product

Why quantum computer?
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