Matrices in Quantum Computing

Huan Q. Bui

Matrix Analysis

Professor Leo Livshits

CLAS, May 2, 2019

Huan Q. Bui (Colby College)

Matrices in Quantum Computing

CLAS, May 2, 2019 1 / 24

3

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

2 Matrices in an entanglement circuit

- (日)

3

<ロト < 四ト < 三ト < 三ト

æ

A D N A B N A B N A B N

Quantum bits - Qubits

∃ ► < ∃ ►</p>

æ

- Quantum bits Qubits
- Quantum gates: single and multiple-qubit gates

э

→ ∃ →

< 1 k

- Quantum bits Qubits
- Quantum gates: single and multiple-qubit gates
- Measurement

э

< ∃⇒

Quantum Bits - Qubits

CLAS, May 2, 2019 5 / 24

▶ < ∃ >

$$a\begin{bmatrix}1\\0\end{bmatrix}+b\begin{bmatrix}0\\1\end{bmatrix}$$

Huan Q. Bui (Colby College)

▶ < ∃ >

Huan Q. Bui (Colby College)

CLAS, May 2, 2019 5 / 24

э

ヨト イヨト

< A > <

Huan Q. Bui (Colby College)

イロト イヨト イヨト イヨト

3

 \rightarrow linear transformations on one or many qubits.

æ

▶ < ∃ >

Image: A matrix and a matrix

 \rightarrow linear transformations on one or many qubits.

Example: Hadamard gate.

$$H\equivrac{1}{\sqrt{2}}egin{bmatrix}1&1\1&-1\end{bmatrix}$$

э

→ ∃ →

- ∢ 🗗 ▶

 \rightarrow linear transformations on one or many qubits.

Example: Hadamard gate.

$$H\equivrac{1}{\sqrt{2}}egin{bmatrix}1&1\1&-1\end{bmatrix}$$

3

< ∃⇒

< 47 ▶

 \rightarrow linear transformations on one or many qubits.

Example: Hadamard gate.

$$H\equivrac{1}{\sqrt{2}}egin{bmatrix}1&1\1&-1\end{bmatrix}$$

What does *H* do to, say $|0\rangle$?

 \rightarrow linear transformations on one or many qubits.

Example: Hadamard gate.

$$H\equivrac{1}{\sqrt{2}}egin{bmatrix}1&1\1&-1\end{bmatrix}$$

What does *H* do to, say $|0\rangle$?

 $H |0\rangle$

 \rightarrow linear transformations on one or many qubits.

Example: Hadamard gate.

$$H\equivrac{1}{\sqrt{2}}egin{bmatrix}1&1\1&-1\end{bmatrix}$$

What does *H* do to, say $|0\rangle$?

$$H\left|0
ight
angle = H\left[egin{smallmatrix} 1\\ 0 \end{bmatrix}$$

 \rightarrow linear transformations on one or many qubits.

Example: Hadamard gate.

$$H\equivrac{1}{\sqrt{2}}egin{bmatrix}1&1\1&-1\end{bmatrix}$$

What does *H* do to, say $|0\rangle$?

$$H \left| 0 \right\rangle = H \begin{bmatrix} 1 \\ 0 \end{bmatrix} = rac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

 \rightarrow linear transformations on one or many qubits.

Example: Hadamard gate.

$$H \equiv rac{1}{\sqrt{2}} egin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix}$$

What does *H* do to, say $|0\rangle$?

$$H \left| 0
ight
angle = H \left[egin{smallmatrix} 1 \ 0 \end{bmatrix} = rac{1}{\sqrt{2}} \left[egin{smallmatrix} 1 \ 1 \end{bmatrix} = rac{1}{\sqrt{2}} \left| 0
ight
angle + rac{1}{\sqrt{2}} \left| 1
ight
angle$$

Huan Q. Bui (Colby College)

æ

< □ > < □ > < □ > < □ > < □ >

Qubit 1:
$$a |0\rangle + b |1\rangle = \begin{bmatrix} a \\ b \end{bmatrix}$$
 Qubit 2: $c |0\rangle + d |1\rangle = \begin{bmatrix} c \\ d \end{bmatrix}$

æ

< □ > < □ > < □ > < □ > < □ >

Qubit 1:
$$a |0\rangle + b |1\rangle = \begin{bmatrix} a \\ b \end{bmatrix}$$
 Qubit 2: $c |0\rangle + d |1\rangle = \begin{bmatrix} c \\ d \end{bmatrix}$
$$\begin{bmatrix} a \\ b \end{bmatrix} \boxtimes \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} a \begin{bmatrix} c \\ d \\ b \begin{bmatrix} c \\ d \end{bmatrix} \end{bmatrix} = \begin{bmatrix} ac \\ ad \\ bc \\ bd \end{bmatrix}.$$

CLAS, May 2, 2019 7 / 2

æ

< □ > < □ > < □ > < □ > < □ >

Do this for the basis states

$$|0\rangle \boxtimes |0\rangle = \begin{bmatrix} 1\\0\\0\\0\end{bmatrix} |0\rangle \boxtimes |1\rangle = \begin{bmatrix} 0\\1\\0\\0\end{bmatrix} |1\rangle \boxtimes |0\rangle = \begin{bmatrix} 0\\0\\1\\0\end{bmatrix} |1\rangle \boxtimes |1\rangle = \begin{bmatrix} 0\\0\\1\\0\end{bmatrix}$$

▶ ∢ ⊒

Image: A matrix and a matrix

Do this for the basis states

$$|0\rangle \boxtimes |0\rangle = \begin{bmatrix} 1\\0\\0\\0\end{bmatrix} |0\rangle \boxtimes |1\rangle = \begin{bmatrix} 0\\1\\0\\0\end{bmatrix} |1\rangle \boxtimes |0\rangle = \begin{bmatrix} 0\\0\\1\\0\end{bmatrix} |1\rangle \boxtimes |1\rangle = \begin{bmatrix} 0\\0\\1\\0\end{bmatrix}$$

Notation:

$$\begin{split} |00\rangle &= |0\rangle\boxtimes|0\rangle & \qquad |01\rangle &= |0\rangle\boxtimes|1\rangle \\ |10\rangle &= |1\rangle\boxtimes|0\rangle & \qquad |11\rangle &= |1\rangle\boxtimes|1\rangle \end{split}$$

Huan Q. Bui (Colby College)

Image: A image: A

Image: A matrix and a matrix

Do this for the basis states

$$|0\rangle \boxtimes |0\rangle = \begin{bmatrix} 1\\0\\0\\0\end{bmatrix} \ |0\rangle \boxtimes |1\rangle = \begin{bmatrix} 0\\1\\0\\0\end{bmatrix} \ |1\rangle \boxtimes |0\rangle = \begin{bmatrix} 0\\0\\1\\0\end{bmatrix} \ |1\rangle \boxtimes |1\rangle = \begin{bmatrix} 0\\0\\1\\0\end{bmatrix}$$

Notation:

$$\begin{split} |00\rangle &= |0\rangle \boxtimes |0\rangle & |01\rangle &= |0\rangle \boxtimes |1\rangle \\ |10\rangle &= |1\rangle \boxtimes |0\rangle & |11\rangle &= |1\rangle \boxtimes |1\rangle \end{split}$$

Can see that we have a basis for describing the combined state.

$$egin{bmatrix} \mathsf{a} \ b \end{bmatrix} oxtimes egin{bmatrix} \mathsf{c} \ \mathsf{d} \end{bmatrix} = \mathsf{a} \mathsf{c} \ket{00} + \mathsf{a} \mathsf{d} \ket{01} + \mathsf{b} \mathsf{c} \ket{10} + \mathsf{b} \mathsf{d} \ket{11}.$$

Huan Q. Bui (Colby College)

< 1 k

Huan Q. Bui (Colby College)

æ

Ex: $p(x) \cdot q(y)$ is a "combined state." But there are NO p(x), q(y) s.t.

$$p(x)\cdot q(y)=xy+1,$$

even though xy + 1 is a legitimate "combined state."

Ex: $p(x) \cdot q(y)$ is a "combined state." But there are NO p(x), q(y) s.t.

$$p(x)\cdot q(y)=xy+1,$$

even though xy + 1 is a legitimate "combined state."

Ex: $p(x) \cdot q(y)$ is a "combined state." But there are NO p(x), q(y) s.t.

$$p(x)\cdot q(y)=xy+1,$$

even though xy + 1 is a legitimate "combined state."

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}$$

Ex: $p(x) \cdot q(y)$ is a "combined state." But there are NO p(x), q(y) s.t.

$$p(x)\cdot q(y)=xy+1,$$

even though xy + 1 is a legitimate "combined state."

$$rac{1}{\sqrt{2}} egin{bmatrix} 1 \ 0 \ 1 \end{bmatrix} = rac{1}{\sqrt{2}} \ket{00} + rac{1}{\sqrt{2}} \ket{11}$$

Ex: $p(x) \cdot q(y)$ is a "combined state." But there are NO p(x), q(y) s.t.

$$p(x)\cdot q(y)=xy+1,$$

even though xy + 1 is a legitimate "combined state."

$$\frac{1}{\sqrt{2}}\begin{bmatrix}1\\0\\0\\1\end{bmatrix} = \frac{1}{\sqrt{2}} |00\rangle + \frac{1}{\sqrt{2}} |11\rangle \longrightarrow \text{Entangled}$$

Kronecker Product

Huan Q. Bui (Colby College)

3

 \mathcal{A} is a matrix acting on $|a\rangle$, \mathcal{B} on $|b\rangle$

Image: A matrix

æ
\mathcal{A} is a matrix acting on $|a\rangle$, \mathcal{B} on $|b\rangle$

 $\mathcal{A} \ket{a} \boxtimes \mathcal{B} \ket{b} = (\mathcal{A} \otimes \mathcal{B})(\ket{a} \boxtimes \ket{b})$

Image: A matrix and a matrix

 ${\cal A}$ is a matrix acting on |a
angle, ${\cal B}$ on |b
angle

 $\mathcal{A}\ket{a}oxtimes\mathcal{B}\ket{b}=(\mathcal{A}\otimes\mathcal{B})(\ket{a}oxtimes\ket{b})$

 \otimes : Kronecker product, of two matrices.

э

 ${\cal A}$ is a matrix acting on |a
angle, ${\cal B}$ on |b
angle

$$\mathcal{A}\ket{\mathsf{a}}oxtimes\mathcal{B}\ket{\mathsf{b}}=(\mathcal{A}\otimes\mathcal{B})(\ket{\mathsf{a}}oxtimes\ket{\mathsf{b}})$$

 \otimes : Kronecker product, of two matrices.

lf

$$\mathcal{A} = \begin{bmatrix} m & n \\ o & p \end{bmatrix} \quad \text{and} \ \mathcal{B} = \begin{bmatrix} q & r & s \\ t & u & v \\ w & x & y \end{bmatrix}$$

then

 $\mathcal{A}\otimes\mathcal{B}$

イロト イヨト イヨト イヨト

then

-

Image: A matrix and a matrix

э

then

$$\mathcal{A} \otimes \mathcal{B} = \begin{bmatrix} m \begin{bmatrix} q & r & s \\ t & u & v \\ w & x & y \end{bmatrix} & n \\ o & & p \end{bmatrix}$$

Image: A mathematical states and a mathem

then

$$\mathcal{A} \otimes \mathcal{B} = \begin{bmatrix} m \begin{bmatrix} q & r & s \\ t & u & v \\ w & x & y \end{bmatrix} & n \begin{bmatrix} q & r & s \\ t & u & v \\ w & x & y \end{bmatrix} \\ o & p & \end{bmatrix}$$

Image: A mathematical states and a mathem

then

$$\mathcal{A} \otimes \mathcal{B} = \begin{bmatrix} q & r & s \\ t & u & v \\ w & x & y \end{bmatrix} & n \begin{bmatrix} q & r & s \\ t & u & v \\ w & x & y \end{bmatrix} \\ o \begin{bmatrix} q & r & s \\ t & u & v \\ w & x & y \end{bmatrix} & p & \end{bmatrix}$$

→ < ∃ →</p> CLAS, May 2, 2019

Image: A mathematical states and a mathem

then

$$\mathcal{A} \otimes \mathcal{B} = \begin{bmatrix} q & r & s \\ t & u & v \\ w & x & y \end{bmatrix} & n \begin{bmatrix} q & r & s \\ t & u & v \\ w & x & y \end{bmatrix} \\ o \begin{bmatrix} q & r & s \\ t & u & v \\ w & x & y \end{bmatrix} & p \begin{bmatrix} q & r & s \\ t & u & v \\ w & x & y \end{bmatrix} \end{bmatrix}$$

Huan Q. Bui (Colby College)

→ < ∃ →</p> CLAS, May 2, 2019

Image: A mathematical states and a mathem

then

$$\mathcal{A} \otimes \mathcal{B} = \begin{bmatrix} q & r & s \\ t & u & v \\ w & x & y \end{bmatrix} & n \begin{bmatrix} q & r & s \\ t & u & v \\ w & x & y \end{bmatrix} \\ \begin{bmatrix} q & r & s \\ t & u & v \\ w & x & y \end{bmatrix} & p \begin{bmatrix} q & r & s \\ t & u & v \\ w & x & y \end{bmatrix} \end{bmatrix}$$
$$= \begin{bmatrix} mq & mr & ms & nq & nr & ns \\ mt & mu & mv & nt & nu & nv \\ mw & mx & ms & nw & nx & ny \\ oq & or & os & pq & pr & ps \\ ot & ou & ov & pt & pu & pv \\ ow & ox & oy & pw & px & py \end{bmatrix}$$

Huan Q. Bui (Colby College)

CLAS, May 2, 2019

→ ∃ →

1 / 24

Check that $I |0\rangle \boxtimes H |0\rangle = (I \otimes H) |00\rangle$:

Image: A matrix and a matrix

Check that $I |0\rangle \boxtimes H |0\rangle = (I \otimes H) |00\rangle$:

LHS:

 $I\left|0
ight
angleig|H\left|0
ight
angle$

3

ヨト イヨト

Image: A matrix and a matrix

Check that $I |0\rangle \boxtimes H |0\rangle = (I \otimes H) |00\rangle$:

LHS:

$$| | 0 \rangle \boxtimes H | 0 \rangle = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \boxtimes \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Huan Q. Bui (Colby College)

Matrices in Quantum Computing

▶ < ∃ > CLAS, May 2, 2019 12 / 24

Image: A matrix and a matrix

Check that $I |0\rangle \boxtimes H |0\rangle = (I \otimes H) |00\rangle$:

LHS:

$$\begin{split} I \left| 0 \right\rangle \boxtimes H \left| 0 \right\rangle \ = \ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \boxtimes \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \\ = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \boxtimes \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \end{aligned}$$

Huan Q. Bui (Colby College)

▶ < ∃ > CLAS, May 2, 2019 12 / 24

Image: A matrix and a matrix

Check that $I |0\rangle \boxtimes H |0\rangle = (I \otimes H) |00\rangle$:

LHS:

$$\begin{array}{l} I \left| 0 \right\rangle \boxtimes H \left| 0 \right\rangle \ = \ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \boxtimes \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \\ = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \boxtimes \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

Huan Q. Bui (Colby College)

Image: A matrix and a matrix

Image: A matrix

RHS:

Image: A matrix

RHS:

$$(I \otimes H) |00\rangle = \begin{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} & \mathcal{O} \\ \mathcal{O} & \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Image: A matrix

RHS:

$$(I \otimes H) |00\rangle = \begin{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} & \mathcal{O} \\ \mathcal{O} & \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

Huan Q. Bui (Colby College)

Image: A matrix

Huan Q. Bui (Colby College)

э

- Bilinear
- 2 Distributive.

- Bilinear
- ② Distributive.

$$\begin{bmatrix} a \\ b \end{bmatrix} \boxtimes \begin{bmatrix} c \\ d \end{bmatrix}$$

- Bilinear
- ② Distributive.

$$egin{bmatrix} a \ b \end{bmatrix} oxtimes egin{bmatrix} c \ c \ d \end{bmatrix} = (a \ket{0} + b \ket{1}) oxtimes (c \ket{0} + d \ket{1})$$

- Bilinear
- ② Distributive.

$$egin{bmatrix} a \ b \end{bmatrix} oxtimes egin{bmatrix} c \ d \end{bmatrix} = (a \ket{0} + b \ket{1}) oxtimes (c \ket{0} + d \ket{1}) \ = ac \ket{00} + ad \ket{01} + bc \ket{10} + bd \ket{11}.$$

- Bilinear
- ② Distributive.

$$egin{bmatrix} a \ b \end{bmatrix} oxtimes egin{bmatrix} c \ d \end{bmatrix} = (a \ket{0} + b \ket{1}) oxtimes (c \ket{0} + d \ket{1}) \ = ac \ket{00} + ad \ket{01} + bc \ket{10} + bd \ket{11}.$$

- Bilinear
- Oistributive.

$$egin{bmatrix} a \ b \end{bmatrix} oxtimes egin{bmatrix} c \ d \end{bmatrix} = (a \ket{0} + b \ket{1}) oxtimes (c \ket{0} + d \ket{1}) \ = ac \ket{00} + ad \ket{01} + bc \ket{10} + bd \ket{11}.$$

INOT commutative.

- Bilinear
- Oistributive.

$$\begin{bmatrix} a \\ b \end{bmatrix} \boxtimes \begin{bmatrix} c \\ d \end{bmatrix} = (a |0\rangle + b |1\rangle) \boxtimes (c |0\rangle + d |1\rangle)$$
$$= ac |00\rangle + ad |01\rangle + bc |10\rangle + bd |11\rangle.$$

Associative

• NOT commutative. Ex: $|01\rangle \neq |10\rangle$.

- Bilinear
- Oistributive.

$$\begin{bmatrix} a \\ b \end{bmatrix} \boxtimes \begin{bmatrix} c \\ d \end{bmatrix} = (a |0\rangle + b |1\rangle) \boxtimes (c |0\rangle + d |1\rangle)$$
$$= ac |00\rangle + ad |01\rangle + bc |10\rangle + bd |11\rangle.$$

- Associative
- NOT commutative. Ex: $|01\rangle \neq |10\rangle$.
- Elementariness.

Huan Q. Bui (Colby College)

э

Ex:

э

Ex:

The Control-NOT gate:

Huan Q. Bui (Colby College)

Matrices in Quantum Computing

CLAS, May 2, 2019 15 / 24

Ex:

The Control-NOT gate:

$$CNOT_b = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Ex:

The Control-NOT gate:

$$CNOT_{b} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \longrightarrow \begin{cases} |00\rangle \rightarrow |00\rangle \\ |10\rangle \rightarrow |10\rangle \\ |01\rangle \rightarrow |11\rangle \\ |11\rangle \rightarrow |01\rangle \end{cases}$$

.

Huan Q. Bui (Colby College)

э

Ex:

The Control-NOT gate:

$$CNOT_{b} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \longrightarrow \begin{cases} |00\rangle \rightarrow |00\rangle \\ |10\rangle \rightarrow |10\rangle \\ |01\rangle \rightarrow |11\rangle \\ |11\rangle \rightarrow |01\rangle \end{cases}$$

.

Also called "entangled."
Time to decode:

Image: A matrix

æ

Time to decode:

1 Step 1:

Time to decode:

1 Step 1:

$$egin{aligned} & a: |0
angle
ightarrow |0
angle \ & b: |0
angle
ightarrow rac{1}{\sqrt{2}} |0
angle + rac{1}{\sqrt{2}} |1
angle \ & \left|a'b'
ight
angle = rac{1}{\sqrt{2}} egin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}^ op \end{aligned}$$

Huan Q. Bui (Colby College)

< ∃⇒ CLAS, May 2, 2019 16 / 24

æ

Image: A matrix

2 Step 2:

2

2 Step 2:

$$CNOT_{b} \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \\ 0 \end{bmatrix}$$

2

2 Step 2:

$$CNOT_{b} \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

which is:

$$\frac{1}{\sqrt{2}}\begin{bmatrix}1\\0\\0\\1\end{bmatrix} = \frac{1}{\sqrt{2}}\ket{00} + \frac{1}{\sqrt{2}}\ket{11} \leftarrow \textbf{Entangled}$$

Huan Q. Bui (Colby College)

< ∃⇒ CLAS, May 2, 2019

Image: A matrix

æ

17 / 24

Quantum State: Computation Basis

- (日)

Huan Q. Bui (Colby College)

E ► < E ►

• • • • • • • •

3

 \otimes and \boxtimes are really "the same!"

æ

\otimes and \boxtimes are really "the same!" \rightarrow Tensor products.

 \otimes and \boxtimes are really "the same!" \rightarrow Tensor products.

Why tensor product?

 \otimes and \boxtimes are really "the same!" \rightarrow Tensor products.

Why tensor product?

Postulate (QM):

The state space of a composite physical system is the *tensor product* of the state spaces of the component physical systems.

Huan Q. Bui (Colby College)

• • • • • • • • •

3

Tensor Product

イロト イヨト イヨト イヨト

2

Tensor Product

Roughly speaking...

Giving the
$$\hat{f} : \mathbf{V} \otimes \mathbf{W} \xrightarrow{\text{linear}} \mathbf{X}$$
 is the same as giving $f : \mathbf{V} \times \mathbf{W} \xrightarrow{\text{bilinear}} \mathbf{X}$.
 $f = \hat{f} \circ \phi$

Huan Q. Bui (Colby College)

∃ → CLAS, May 2, 2019 20 / 24

< 行

æ

If the target space ${\bm X}$ is ${\bm V}\otimes {\bm W}.$ ${\cal L}$ is an operator on ${\bm V},$ ${\cal M}$ on ${\bm W},$

If the target space ${\bm X}$ is ${\bm V}\otimes {\bm W}.$ ${\cal L}$ is an operator on ${\bm V},$ ${\cal M}$ on ${\bm W},$

If the target space X is $V \otimes W$. \mathcal{L} is an operator on V, \mathcal{M} on W,

 $\mathcal{L}[v] \otimes \mathcal{M}[w]$

Huan Q. Bui (Colby College)

Matrices in Quantum Computing

CLAS, May 2, 2019

21 / 24

If the target space X is $V \otimes W$. \mathcal{L} is an operator on V, \mathcal{M} on W,

 $(\mathcal{L}\otimes\mathcal{M})(v\otimes w)$ $\mathcal{L}[v]\otimes\mathcal{M}[w]$

If the target space X is $V \otimes W$. \mathcal{L} is an operator on V, \mathcal{M} on W,

 \rightarrow by uniqueness

$$(\mathcal{L}\otimes\mathcal{M})(v\otimes w)=\mathcal{L}[v]\otimes\mathcal{M}[w]$$

Tensor Product & Kronecker Product

Huan Q. Bui (Colby College)

Tensor Product & Kronecker Product

 ν a basis for ${\bf V},\,\omega$ for ${\bf W}\to{\sf can}$ make a basis τ for ${\bf V}\otimes{\bf W}$

Tensor Product & Kronecker Product

 ν a basis for ${\bf V}$, ω for ${\bf W} \rightarrow$ can make a basis τ for ${\bf V} \otimes {\bf W}$

u a basis for **V**, ω for **W** \rightarrow can make a basis au for **V** \otimes **W**

イロト イヨト イヨト イヨト

• How a 2-qubit entangling circuit works

æ

- How a 2-qubit entangling circuit works
- Qubits, quantum gates as matrices

- How a 2-qubit entangling circuit works
- Qubits, quantum gates as matrices
- Kronecker product

- How a 2-qubit entangling circuit works
- Qubits, quantum gates as matrices
- Kronecker product
- Entanglement

- How a 2-qubit entangling circuit works
- Qubits, quantum gates as matrices
- Kronecker product
- Entanglement
- Tensor product

- How a 2-qubit entangling circuit works
- Qubits, quantum gates as matrices
- Kronecker product
- Entanglement
- Tensor product
- Why quantum computer?

References

Huan Q. Bui (Colby College)

イロト イヨト イヨト イヨト

3