Matrices in Quantum Computing

Huan Q. Bui

Matrix Analysis
Professor Leo Livshits
CLAS, May 2, 2019

Presentation layout

(1) Background

(2) Matrices in an entanglement circuit
(3) Recap

Background

Background

Components:

Background

Components:
(1) Quantum bits - Qubits

Background

Components:
(1) Quantum bits - Qubits
(2) Quantum gates: single and multiple-qubit gates

Background

Components:
(1) Quantum bits-Qubits
(2) Quantum gates: single and multiple-qubit gates
(3) Measurement

Quantum Bits - Qubits

Classical Bit

Quantum Bits - Qubits

Classical Bit

Qubit

$$
a\left[\begin{array}{l}
1 \\
0
\end{array}\right]+b\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Quantum Bits - Qubits

Classical Bit

Qubit

$$
a\left[\begin{array}{l}
1 \\
0
\end{array}\right]+b\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad|a|^{2}+|b|^{2}=1
$$

Quantum Bits - Qubits

Classical Bit Qubit

$$
\begin{gathered}
a\left[\begin{array}{l}
1 \\
0
\end{array}\right]+b\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad|a|^{2}+|b|^{2}=1 \\
a|0\rangle+b|1\rangle
\end{gathered}
$$

Quantum Gates

Quantum Gates

\rightarrow linear transformations on one or many qubits.

Quantum Gates

\rightarrow linear transformations on one or many qubits.

Example: Hadamard gate.

$$
H \equiv \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

Quantum Gates

\rightarrow linear transformations on one or many qubits.

Example: Hadamard gate.

$$
H \equiv \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

Quantum Gates

\rightarrow linear transformations on one or many qubits.

Example: Hadamard gate.

$$
H \equiv \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

What does H do to, say $|0\rangle$?

Quantum Gates

\rightarrow linear transformations on one or many qubits.

Example: Hadamard gate.

$$
H \equiv \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

What does H do to, say $|0\rangle$?
$H|0\rangle$

Quantum Gates

\rightarrow linear transformations on one or many qubits.

Example: Hadamard gate.

$$
H \equiv \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

What does H do to, say $|0\rangle$?

$$
H|0\rangle=H\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Quantum Gates

\rightarrow linear transformations on one or many qubits.

Example: Hadamard gate.

$$
H \equiv \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

What does H do to, say $|0\rangle$?

$$
H|0\rangle=H\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Quantum Gates

\rightarrow linear transformations on one or many qubits.

Example: Hadamard gate.

$$
H \equiv \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

What does H do to, say $|0\rangle$?

$$
H|0\rangle=H\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle
$$

Multiple Qubits

Multiple Qubits

Qubit 1: $a|0\rangle+b|1\rangle=\left[\begin{array}{l}a \\ b\end{array}\right] \quad$ Qubit $2: c|0\rangle+d|1\rangle=\left[\begin{array}{l}c \\ d\end{array}\right]$

Multiple Qubits

Qubit 1: $a|0\rangle+b|1\rangle=\left[\begin{array}{l}a \\ b\end{array}\right] \quad$ Qubit 2: $c|0\rangle+d|1\rangle=\left[\begin{array}{l}c \\ d\end{array}\right]$

Multiple Qubits

Do this for the basis states

$$
|0\rangle \boxtimes|0\rangle=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]|0\rangle \boxtimes|1\rangle=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]|1\rangle \boxtimes|0\rangle=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]|1\rangle \boxtimes|1\rangle=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Multiple Qubits

Do this for the basis states

$$
|0\rangle \boxtimes|0\rangle=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]|0\rangle \boxtimes|1\rangle=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]|1\rangle \boxtimes|0\rangle=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]|1\rangle \boxtimes|1\rangle=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Notation:

$$
\begin{aligned}
|00\rangle & =|0\rangle \boxtimes|0\rangle & & |01\rangle
\end{aligned}=|0\rangle \boxtimes|1\rangle,
$$

Multiple Qubits

Do this for the basis states

$$
|0\rangle \boxtimes|0\rangle=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]|0\rangle \boxtimes|1\rangle=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]|1\rangle \boxtimes|0\rangle=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]|1\rangle \boxtimes|1\rangle=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Notation:

$$
\begin{aligned}
|00\rangle & =|0\rangle \boxtimes|0\rangle & & |01\rangle
\end{aligned}=|0\rangle \boxtimes|1\rangle,
$$

Can see that we have a basis for describing the combined state.

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right] \boxtimes\left[\begin{array}{l}
c \\
d
\end{array}\right]=a c|00\rangle+a d|01\rangle+b c|10\rangle+b d|11\rangle .
$$

Elementariness \& Entanglement

Elementariness \& Entanglement

Not all combined states can be written as $|a\rangle \boxtimes|b\rangle \leftarrow$ Elementary.

Elementariness \& Entanglement

Not all combined states can be written as $|a\rangle \boxtimes|b\rangle \leftarrow$ Elementary.
Ex: $p(x) \cdot q(y)$ is a "combined state." But there are NO $p(x), q(y)$ s.t.

$$
p(x) \cdot q(y)=x y+1
$$

even though $x y+1$ is a legitimate "combined state."

Elementariness \& Entanglement

Not all combined states can be written as $|a\rangle \boxtimes|b\rangle \leftarrow$ Elementary.
Ex: $p(x) \cdot q(y)$ is a "combined state." But there are NO $p(x), q(y)$ s.t.

$$
p(x) \cdot q(y)=x y+1
$$

even though $x y+1$ is a legitimate "combined state."

Back to qubits. Consider this combined state:

Elementariness \& Entanglement

Not all combined states can be written as $|a\rangle \boxtimes|b\rangle \leftarrow$ Elementary.
Ex: $p(x) \cdot q(y)$ is a "combined state." But there are NO $p(x), q(y)$ s.t.

$$
p(x) \cdot q(y)=x y+1
$$

even though $x y+1$ is a legitimate "combined state."

Back to qubits. Consider this combined state:

$$
\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]
$$

Elementariness \& Entanglement

Not all combined states can be written as $|a\rangle \boxtimes|b\rangle \leftarrow$ Elementary.
Ex: $p(x) \cdot q(y)$ is a "combined state." But there are NO $p(x), q(y)$ s.t.

$$
p(x) \cdot q(y)=x y+1
$$

even though $x y+1$ is a legitimate "combined state."

Back to qubits. Consider this combined state:

$$
\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]=\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle
$$

Elementariness \& Entanglement

Not all combined states can be written as $|a\rangle \boxtimes|b\rangle \leftarrow$ Elementary.
Ex: $p(x) \cdot q(y)$ is a "combined state." But there are NO $p(x), q(y)$ s.t.

$$
p(x) \cdot q(y)=x y+1
$$

even though $x y+1$ is a legitimate "combined state."

Back to qubits. Consider this combined state:

$$
\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]=\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle \longrightarrow \text { Entangled }
$$

Kronecker Product

Kronecker Product

\mathcal{A} is a matrix acting on $|a\rangle, \mathcal{B}$ on $|b\rangle$

Kronecker Product

\mathcal{A} is a matrix acting on $|a\rangle, \mathcal{B}$ on $|b\rangle$

$$
\mathcal{A}|a\rangle \boxtimes \mathcal{B}|b\rangle=(\mathcal{A} \otimes \mathcal{B})(|a\rangle \boxtimes|b\rangle)
$$

Kronecker Product

\mathcal{A} is a matrix acting on $|a\rangle, \mathcal{B}$ on $|b\rangle$

$$
\mathcal{A}|a\rangle \boxtimes \mathcal{B}|b\rangle=(\mathcal{A} \otimes \mathcal{B})(|a\rangle \boxtimes|b\rangle)
$$

\otimes : Kronecker product, of two matrices.

Kronecker Product

\mathcal{A} is a matrix acting on $|a\rangle, \mathcal{B}$ on $|b\rangle$

$$
\mathcal{A}|a\rangle \boxtimes \mathcal{B}|b\rangle=(\mathcal{A} \otimes \mathcal{B})(|a\rangle \boxtimes|b\rangle)
$$

\otimes : Kronecker product, of two matrices.

If

$$
\mathcal{A}=\left[\begin{array}{ll}
m & n \\
o & p
\end{array}\right] \quad \text { and } \mathcal{B}=\left[\begin{array}{ccc}
q & r & s \\
t & u & v \\
w & x & y
\end{array}\right]
$$

Kronecker Product

then

$$
\mathcal{A} \otimes \mathcal{B}
$$

Kronecker Product

then

$$
\mathcal{A} \otimes \mathcal{B}=\left[\begin{array}{ll}
m & n \\
0 & p
\end{array}\right]
$$

Kronecker Product

then

$$
\mathcal{A} \otimes \mathcal{B}=\left[\begin{array}{cc}
m\left[\begin{array}{ccc}
q & r & s \\
t & u & v \\
w & x & y
\end{array}\right] & n \\
0 &
\end{array}\right]
$$

Kronecker Product

then

$$
\mathcal{A} \otimes \mathcal{B}=\left[\begin{array}{cc}
m\left[\begin{array}{lll}
q & r & s \\
t & u & v \\
w & x & y
\end{array}\right] & n\left[\begin{array}{ccc}
q & r & s \\
t & u & v \\
w & x & y
\end{array}\right] \\
0 & p
\end{array}\right]
$$

Kronecker Product

then

$$
\mathcal{A} \otimes \mathcal{B}=\left[\begin{array}{cc}
m\left[\begin{array}{lll}
q & r & s \\
t & u & v \\
w & x & y
\end{array}\right] & n\left[\begin{array}{ccc}
q & r & s \\
t & u & v \\
w & x & y
\end{array}\right] \\
0\left[\begin{array}{lll}
q & r & s \\
t & u & v \\
w & x & y
\end{array}\right] & p
\end{array}\right.
$$

Kronecker Product

then

$$
\mathcal{A} \otimes \mathcal{B}=\left[\begin{array}{cc}
m\left[\begin{array}{lll}
q & r & s \\
t & u & v \\
w & x & y
\end{array}\right] & n\left[\begin{array}{lll}
q & r & s \\
t & u & v \\
w & x & y
\end{array}\right] \\
0\left[\begin{array}{lll}
q & r & s \\
t & u & v \\
w & x & y
\end{array}\right] & p\left[\begin{array}{lll}
q & r & s \\
t & u & v \\
w & x & y
\end{array}\right]
\end{array}\right]
$$

Kronecker Product

then

$$
\begin{aligned}
\mathcal{A} \otimes \mathcal{B} & =\left[\begin{array}{ccc}
m\left[\begin{array}{lll}
q & r & s \\
t & u & v \\
w & x & y
\end{array}\right] & n\left[\begin{array}{ccc}
q & r & s \\
t & u & v \\
w & x & y
\end{array}\right] \\
o\left[\begin{array}{lll}
q & r & s \\
t & u & v \\
w & x & y
\end{array}\right] & p\left[\begin{array}{ccc}
q & r & s \\
t & u & v \\
w & x & y
\end{array}\right]
\end{array}\right] \\
& =\left[\begin{array}{cccccc}
m q & m r & m s & n q & n r & n s \\
m t & m u & m v & n t & n u & n v \\
m w & m x & m s & n w & n x & n y \\
o q & o r & o s & p q & p r & p s \\
o t & o u & o v & p t & p u & p v \\
o w & o x & o y & p w & p x & p y
\end{array}\right]
\end{aligned}
$$

Kronecker Product

Check that $I|0\rangle \boxtimes H|0\rangle=(I \otimes H)|00\rangle$:

Kronecker Product

Check that $I|0\rangle \boxtimes H|0\rangle=(I \otimes H)|00\rangle$:

LHS:
$I|0\rangle \boxtimes H|0\rangle$

Kronecker Product

Check that $I|0\rangle \boxtimes H|0\rangle=(I \otimes H)|00\rangle$:

LHS:

$$
||0\rangle \boxtimes H| 0\rangle=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \boxtimes \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Kronecker Product

Check that $I|0\rangle \boxtimes H|0\rangle=(I \otimes H)|00\rangle$:

LHS:

$$
\begin{aligned}
||0\rangle \boxtimes H| 0\rangle & =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \boxtimes \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& =\left[\begin{array}{l}
1 \\
0
\end{array}\right] \boxtimes \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$

Kronecker Product

Check that $I|0\rangle \boxtimes H|0\rangle=(I \otimes H)|00\rangle$:

LHS:

$$
\begin{aligned}
||0\rangle \boxtimes H| 0\rangle & =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \boxtimes \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& =\left[\begin{array}{l}
1 \\
0
\end{array}\right] \boxtimes \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& =\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Kronecker Product

Check that $I|0\rangle \boxtimes H|0\rangle=(I \otimes H)|00\rangle$:

Kronecker Product

Check that $I|0\rangle \boxtimes H|0\rangle=(I \otimes H)|00\rangle$:
RHS:

Kronecker Product

Check that $I|0\rangle \boxtimes H|0\rangle=(I \otimes H)|00\rangle$:
RHS:

$$
(I \otimes H)|00\rangle=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] & \mathcal{O} \\
\mathcal{O} & \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

Kronecker Product

Check that $I|0\rangle \boxtimes H|0\rangle=(I \otimes H)|00\rangle$:
RHS:

$$
(I \otimes H)|00\rangle=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] & \mathcal{O} \\
\mathcal{O} & \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]
$$

Some properties \& Elementariness revisited

Some properties \& Elementariness revisited

\otimes and \boxtimes are very much alike.

Some properties \& Elementariness revisited

\otimes and \boxtimes are very much alike.
(1) Bilinear

Some properties \& Elementariness revisited

\otimes and \boxtimes are very much alike.
(1) Bilinear
(2) Distributive.

Some properties \& Elementariness revisited

\otimes and \boxtimes are very much alike.
(1) Bilinear
(2) Distributive.

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right] \boxtimes\left[\begin{array}{l}
c \\
d
\end{array}\right]
$$

Some properties \& Elementariness revisited

\otimes and \boxtimes are very much alike.
(1) Bilinear
(2) Distributive.

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right] \boxtimes\left[\begin{array}{l}
c \\
d
\end{array}\right]=(a|0\rangle+b|1\rangle) \boxtimes(c|0\rangle+d|1\rangle)
$$

Some properties \& Elementariness revisited

\otimes and \boxtimes are very much alike.
(1) Bilinear
(2) Distributive.

$$
\begin{aligned}
{\left[\begin{array}{l}
a \\
b
\end{array}\right] \boxtimes\left[\begin{array}{l}
c \\
d
\end{array}\right] } & =(a|0\rangle+b|1\rangle) \boxtimes(c|0\rangle+d|1\rangle) \\
& =a c|00\rangle+a d|01\rangle+b c|10\rangle+b d|11\rangle
\end{aligned}
$$

Some properties \& Elementariness revisited

\otimes and \boxtimes are very much alike.
(1) Bilinear
(2) Distributive.

$$
\begin{aligned}
{\left[\begin{array}{l}
a \\
b
\end{array}\right] \boxtimes\left[\begin{array}{l}
c \\
d
\end{array}\right] } & =(a|0\rangle+b|1\rangle) \boxtimes(c|0\rangle+d|1\rangle) \\
& =a c|00\rangle+a d|01\rangle+b c|10\rangle+b d|11\rangle .
\end{aligned}
$$

(3) Associative

Some properties \& Elementariness revisited

\otimes and \boxtimes are very much alike.
(1) Bilinear
(2) Distributive.

$$
\begin{aligned}
{\left[\begin{array}{l}
a \\
b
\end{array}\right] \boxtimes\left[\begin{array}{l}
c \\
d
\end{array}\right] } & =(a|0\rangle+b|1\rangle) \boxtimes(c|0\rangle+d|1\rangle) \\
& =a c|00\rangle+a d|01\rangle+b c|10\rangle+b d|11\rangle .
\end{aligned}
$$

(3) Associative
(9) NOT commutative.

Some properties \& Elementariness revisited

\otimes and \boxtimes are very much alike.
(1) Bilinear
(2) Distributive.

$$
\begin{aligned}
{\left[\begin{array}{l}
a \\
b
\end{array}\right] \boxtimes\left[\begin{array}{l}
c \\
d
\end{array}\right] } & =(a|0\rangle+b|1\rangle) \boxtimes(c|0\rangle+d|1\rangle) \\
& =a c|00\rangle+a d|01\rangle+b c|10\rangle+b d|11\rangle .
\end{aligned}
$$

(3) Associative
(9) NOT commutative. Ex: $|01\rangle \neq|10\rangle$.

Some properties \& Elementariness revisited

\otimes and \boxtimes are very much alike.
(1) Bilinear
(2) Distributive.

$$
\begin{aligned}
{\left[\begin{array}{l}
a \\
b
\end{array}\right] \boxtimes\left[\begin{array}{l}
c \\
d
\end{array}\right] } & =(a|0\rangle+b|1\rangle) \boxtimes(c|0\rangle+d|1\rangle) \\
& =a c|00\rangle+a d|01\rangle+b c|10\rangle+b d|11\rangle .
\end{aligned}
$$

(3) Associative
(9) NOT commutative. Ex: $|01\rangle \neq|10\rangle$.
(5) Elementariness.

Some properties and Elementariness revisited

Some properties and Elementariness revisited

Ex:

Some properties and Elementariness revisited

Ex:

The Control-NOT gate:

Some properties and Elementariness revisited

Ex:

The Control-NOT gate:

$$
\mathrm{CNOT}_{b}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

Some properties and Elementariness revisited

Ex:

The Control-NOT gate:

$$
\text { CNOT }_{b}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] \quad \longrightarrow\left\{\begin{array}{l}
|00\rangle \rightarrow|00\rangle \\
|10\rangle \rightarrow|10\rangle \\
|01\rangle \rightarrow|11\rangle \\
|11\rangle
\end{array} \rightarrow|01\rangle\right.
$$

Some properties and Elementariness revisited

Ex:

The Control-NOT gate:

$$
\text { CNOT }_{b}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] \quad \rightarrow\left\{\begin{array}{l}
|00\rangle \rightarrow|00\rangle \\
|10\rangle \rightarrow|10\rangle \\
|01\rangle \rightarrow|11\rangle \\
|11\rangle \rightarrow|01\rangle
\end{array}\right.
$$

Also called "entangled."

Entanglement Circuit

Time to decode:

Entanglement Circuit

Time to decode:

1 Step 1:

Entanglement Circuit

Time to decode:

1 Step 1:

$$
\begin{aligned}
a:|0\rangle & \rightarrow|0\rangle \\
b:|0\rangle & \rightarrow \frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle \\
\left|a^{\prime} b^{\prime}\right\rangle & =\frac{1}{\sqrt{2}}\left[\begin{array}{llll}
1 & 1 & 0 & 0
\end{array}\right]^{\top}
\end{aligned}
$$

Entanglement Circuit

2 Step 2:

Entanglement Circuit

2 Step 2:

$$
\mathrm{CNOT}_{b}\left[\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2} \\
0 \\
0
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2} \\
0 \\
0
\end{array}\right]
$$

Entanglement Circuit

2 Step 2:

$$
\text { CNOT }_{b}\left[\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2} \\
0 \\
0
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2} \\
0 \\
0
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]
$$

which is:

$$
\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]=\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle \leftarrow \text { Entangled }
$$

Simulation on IBM-Q

Quantum State: Computation Basis

Tensor Product

Tensor Product

\otimes and \boxtimes are really "the same!"

Tensor Product

\otimes and \boxtimes are really "the same!" \rightarrow Tensor products.

Tensor Product

\otimes and \boxtimes are really "the same!" \rightarrow Tensor products.
Why tensor product?

Tensor Product

\otimes and \boxtimes are really "the same!" \rightarrow Tensor products.
Why tensor product?

Postulate (QM):

The state space of a composite physical system is the tensor product of the state spaces of the component physical systems.

Tensor Product

Tensor Product

Tensor Product

Roughly speaking...

Giving the $\hat{f}: \mathbf{V} \otimes \mathbf{W} \xrightarrow{\text { linear }} \mathbf{X}$ is the same as giving $f: \mathbf{V} \times \mathbf{W} \xrightarrow{\text { bilinear }} \mathbf{X}$. $f=\hat{f} \circ \phi$

Tensor Product

If the target space \mathbf{X} is $\mathbf{V} \otimes \mathbf{W}$. \mathcal{L} is an operator on \mathbf{V}, \mathcal{M} on \mathbf{W},

Tensor Product

If the target space \mathbf{X} is $\mathbf{V} \otimes \mathbf{W}$. \mathcal{L} is an operator on \mathbf{V}, \mathcal{M} on \mathbf{W},

Tensor Product

If the target space \mathbf{X} is $\mathbf{V} \otimes \mathbf{W}$. \mathcal{L} is an operator on \mathbf{V}, \mathcal{M} on \mathbf{W},

$$
\mathcal{L}[v] \otimes \mathcal{M}[w]
$$

Tensor Product

If the target space \mathbf{X} is $\mathbf{V} \otimes \mathbf{W}$. \mathcal{L} is an operator on \mathbf{V}, \mathcal{M} on \mathbf{W},

$(\mathcal{L} \otimes \mathcal{M})(v \otimes w) \quad \mathcal{L}[v] \otimes \mathcal{M}[w]$

Tensor Product

If the target space \mathbf{X} is $\mathbf{V} \otimes \mathbf{W}$. \mathcal{L} is an operator on \mathbf{V}, \mathcal{M} on \mathbf{W},

\rightarrow by uniqueness

$$
(\mathcal{L} \otimes \mathcal{M})(v \otimes w)=\mathcal{L}[v] \otimes \mathcal{M}[w]
$$

Tensor Product \& Kronecker Product

Tensor Product \& Kronecker Product

ν a basis for \mathbf{V}, ω for $\mathbf{W} \rightarrow$ can make a basis τ for $\mathbf{V} \otimes \mathbf{W}$

Tensor Product \& Kronecker Product

ν a basis for \mathbf{V}, ω for $\mathbf{W} \rightarrow$ can make a basis τ for $\mathbf{V} \otimes \mathbf{W}$

Tensor Product \& Kronecker Product

ν a basis for \mathbf{V}, ω for $\mathbf{W} \rightarrow$ can make a basis τ for $\mathbf{V} \otimes \mathbf{W}$

$$
[\mathcal{L} \otimes \mathcal{M}]_{\tau \leftarrow \tau}=[\mathcal{L}]_{\nu \leftarrow \nu} \otimes[\mathcal{M}]_{\omega \leftarrow \omega}
$$

Recap

Recap

- How a 2-qubit entangling circuit works

Recap

- How a 2-qubit entangling circuit works
- Qubits, quantum gates as matrices

Recap

- How a 2-qubit entangling circuit works
- Qubits, quantum gates as matrices
- Kronecker product

Recap

- How a 2-qubit entangling circuit works
- Qubits, quantum gates as matrices
- Kronecker product
- Entanglement

Recap

- How a 2-qubit entangling circuit works
- Qubits, quantum gates as matrices
- Kronecker product
- Entanglement
- Tensor product

Recap

- How a 2-qubit entangling circuit works
- Qubits, quantum gates as matrices
- Kronecker product
- Entanglement
- Tensor product
- Why quantum computer?

References

